Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Information Processing with Pulsed Neural Networks Ulrich Ramacher Corp. Research, Infineon Technologies AG, Munich [email protected] Prof. Ramacher, CPR ST 6-May-17 Page 1 Dilemma (1) Prof. Ramacher, CPR ST 6-May-17 Page 2 lack of robustness Dilemma (2) Prof. Ramacher, CPR ST 6-May-17 Page 3 lack of architecture information Dilemma (3) • Non-invasive long-term recording of neural tissue. • High-density sensor with 128128 Sensors in 11mm². • Extended CMOS-process with biocompatible high-k surface dielectric. • Self-calibration circuitry and pre-amplification on chip. • Applications in neurobiology and drug discovery Sensor [mV] Neuron [mV] Infineon Neurochip 20µm Time [ms] Prof. Ramacher, CPR ST 6-May-17 Page 4 Gap between signal processing by few cells and information processing by large arrays Program 1. Use pulsed IAF neurons and adaptive synapses (inhibitory, excitatory) 2. Use experimental evidence 3. Start from simple, complete vision systems 4. Find basic network structures for information processing 5. Find quantitative ansatz for information processing 6. Demonstrate usefulness for cell phones Prof. Ramacher, CPR ST 6-May-17 Page 5 Neuron Model a k ( t ) a k ( t0 ) Wkl (t ) X l (t ) Wk 0 ik (t )dt t lS ( t ) t k R ( t0 ) : 0 or : 0 dak / dt c ak (t ) W kl (t ) X l (t ) Wk 0 ik (t ) lS ( t0 ) Rule 1: Reaching the threshold, a neuron resets membrane potential to zero and starts sending a pulse of 1 ms Rule 2: A neuron either receives or sends deterministic dynamical system Prof. Ramacher, CPR ST 6-May-17 Page 6 Experiment 1 Prof. Ramacher, CPR ST 6-May-17 Page 7 Frequency Experiment 1 Prof. Ramacher, CPR ST 6-May-17 Page 8 Observations • „Firing patterns don‘t come to an end“ • information processing is not a function of time Does frequency of firing patterns characterize the net ? Inet = - pn x ln pn Is entropy a reproducible measure of information? Prof. Ramacher, CPR ST 6-May-17 Page 9 Experiment 2: Prof. Ramacher, CPR ST 6-May-17 Page 10 Experiment 2 Prof. Ramacher, CPR ST 6-May-17 Page 11 Findings • distribution function of fp‘s is independent of initial conditions Inet = - pn x ln pn is a reproducibly measurable quantity Prof. Ramacher, CPR ST 6-May-17 Page 12 Entropy as a function of mean synaptic weight Each color corresponds to a different realization of wij Network size: 40 neurons Prof. Ramacher, CPR ST 6-May-17 Page 13 Network size: 40 neurons ISI Prof. Ramacher, CPR ST 6-May-17 Page 14 Fire Rate Synapse Model (proposed by U. Ramacher, April 99) k E (t0 ), l S (t0 ) : else : Wkl Wkl ak (t ) ( X l ) 2 W W kl kl Adaptation rule : local, causal, simple Wkl Wkl Wkl (t ) X l Wkl ' (t ) X l ' Wk 0 ik (t ) ak (t 0) 2 l 'S (t0 ) Prof. Ramacher, CPR ST 6-May-17 Page 15 µ negative • 20 x 24 pixels , each connected to a neuron by a constant synapse • adaptive synapses connecting neighboured neurons Prof. Ramacher, CPR ST 6-May-17 Page 16 synapses = coupled system of damped oscillators µ positive 20x24 pixel, 10% noise Prof. Ramacher, CPR ST 6-May-17 Page 17 synapses = coupled system of damped exponentially rising and falling „elements“ Spot Detector = Illumination Encoder Prof. Ramacher, CPR ST 6-May-17 Page 18 Pixels: 64 x 64 Prof. Ramacher, CPR ST 6-May-17 Page 19 Projection onto the receptive field of a simple cell in the visual cortex LGN primary visual cortex (V1) light retina Dr. Arne Heittmann Prof. Ramacher, CPR ST 6-May-17 Page 20 stimulus optic nerve convergence Dr. Arne Heittmann Prof. Ramacher, CPR ST 6-May-17 Page 21 Modeling the Experiment Bright Stimulus Dark Stimulus y0 Dy x0 Dx Stimulus Stimuli projected onto RF of a Simple Cell ( x0 , y0 ) ( H B) Prof. Ramacher, CPR ST 6-May-17 Page 22 : measured pulse rate Gi: Gabor function G ( x, y)dxdy i ( x0 , x0 Dx )( y0 , y0 Dy ) H: Spot Intensity B: Background Intensity Pulse difference detector (1) i1>i2 W KL WKL aK (t ) ( X L ) 2 Prof. Ramacher, CPR ST 6-May-17 Page 23 i1<i2 Pulse difference detector (2) Dynamics of the Synapse W41: dWKL (WKL W ) ( I pre I ) WKL ( X L ) dt 0 , Ipre Ig 0 , WKL 0 Prof. Ramacher, CPR ST 6-May-17 Page 24 Pulse difference detector (3) Number of pulses Characteristic Neuron 2 Neuron 1 Neuron 4 i2 Prof. Ramacher, CPR ST 6-May-17 Page 25 i1 = 0.5 Q =1 WK0 = 0.08 td = 1ms T = 0.5s Architecture of feature detector (proposed by A. Heittmann, 2003) 1 1 1 3 1 --- 3 2 3 4 3‘ 3‘ 3‘ 3 4 4 2 4‘ 4‘ 4‘ 4 2 --- 2 3‘ 4‘ 5‘ 5 6 µ>0 µ<0 Prof. Ramacher, CPR ST 6-May-17 Page 26 constant Shaping the response-profile of the detector 1 i ( x, y)dxdy N i1 ( x0 , y0 ) ( x0 , x0 Dx )( y0 , y0 Dy ) N i2 ( x0 , y0 ) 2 i ( x, y )dxdy ( x0 , x0 Dx )( y0 , y0 Dy ) section of the retina ( x0 , y0 ) WK 0 1 2 ( H B)( Ni ( x0 , y0 ) Ni ( x0 , y0 )) Q ( H B) G ( x, y)dxdy i i1 ( x, y ) i2 ( x, y ) Prof. Ramacher, CPR ST 6-May-17 Page 27 H: Spot Intensity B: Background Intensity Q Gi ( x, y ) WK 0 Results of a detector implementation Gabor-Wavelet Prof. Ramacher, CPR ST 6-May-17 Page 28 measured profile - 256 Gradient detectors - size of receptive field: 17 x 17 Pixel - T=750ms @ 1ms Pulse-duration ideal Prof. Ramacher, CPR ST 6-May-17 Page 29 Simulated Filter responses, T=750ms Real Imaginary Real Imaginary 90° 90° 0° 0° The Head-Detector Restriction - single scale (keep eye-distance fixed) Prof. Ramacher, CPR ST 6-May-17 Page 30 Check for Robustness in Eye-Brow Zone Reference Image Filter Response, horizontal direction region of interest 20x20 Pixel Prof. Ramacher, CPR ST 6-May-17 Page 31 new eye-brow image A simple memory (1) , 1 zone Learning Phase 2 W KL WKL a K ( X l ) exp K (t ) L (t ) / 2 (t ) 2 Detector Layer K Prof. Ramacher, CPR ST 6-May-17 Page 32 Input Layer Memory Layer WKK K L K (t ) K , M K 1-1 connection between input and detector layer 1-1 connection between input and memory layer full connection between detector and memory layer Experiment 1: learned image in input and memory Activity (number of events), 2ms window Pulse-patterns of input-layer Prof. Ramacher, CPR ST 6-May-17 Page 33 A simple memory (2), 1 Zone Recognition Phase 2 W KL WKL a K ( X l ) exp K ,M L (t ) / 2 (t ) 2 Detector Layer K Prof. Ramacher, CPR ST 6-May-17 Page 34 Gabor Layer Memory Layer WKK K L K ,M K 1-1 connection between input and detector layer full connection between detector and memory layer Experiment 3: recognition of non-learned eye-brow Activity (number of events), 2ms window Pulse-patterns of input-layer Prof. Ramacher, CPR ST 6-May-17 Page 35 Experiment 2: Isolated neurons Activity (number of events), 2ms window Pulse-patterns of input-layer Prof. Ramacher, CPR ST 6-May-17 Page 36 Zone-Architecture I Detector Layer 1 Horizontal Orientations F 1 ( x, y) Detector Layer 2 Memory Layer Vertical Orientations F 2 ( x, y ) F j ( x0 , y0 ) I x, y G j ( x x0 , y y0 ) x, y G j ( x, y ) : Gabor-Kernel I x, y Prof. Ramacher, CPR ST 6-May-17 Page 37 I x, y : Input Image Zone-Architecture II Zone 5 Zone 6 Zone 1 Zone 7 Zone 2 Zone 3 Zone 4 Zuordnung: Zonen zu Bildregionen : Zone für Gabor-Wavlet mit horizontaler Orientierung Prof. Ramacher, CPR ST 6-May-17 Page 38 : Zone für Gabor-Wavlet mit vertikaler Orientierung Reference-Image and Test-Images Reference-Image: Test-Images: Prof. Ramacher, CPR ST 6-May-17 Page 39 Face 0001 Face 0011 Face 0014 Face 0001 Normalized accumulated activity Activity-Diagram Memory Zone 1 Detector Memory Zone 2 Detector Memory Detector Zone 3 Memory Detector Zone 4 Memory Detector Time [ms] Prof. Ramacher, CPR ST 6-May-17 Page 40 Zone 5 Face 0011 Normalized accumulated activity Activity-Diagram Memory Zone 1 Detector Memory Zone 2 Detector Memory Detector Zone 3 Memory Detector Zone 4 Memory Detector Time [ms] Prof. Ramacher, CPR ST 6-May-17 Page 41 Zone 5 Face 0014 Normalized accumulated activity Activity-Diagram Memory Zone 1 Detector Memory Zone 2 Detector Memory Detector Zone 3 Memory Detector Zone 4 Memory Detector Time [ms] Prof. Ramacher, CPR ST 6-May-17 Page 42 Zone 5 Binding of zones by synchrony Binding Layer … W KL WKL aK X L 2 1 3 2 4 6 W zone i 1/ zone i K ,M 5 7 zone4 K ,M zone3 K ,M Zuordnung: Zonen zu Neuronen des Spotdetektors zur Bindung Prof. Ramacher, CPR ST 6-May-17 Page 43 zone2 K ,M zone1K ,M zone5 K ,M Memory Layer Results ~ 40ms Spot_0001 ~ 40ms Spot_0011 Prof. Ramacher, CPR ST 6-May-17 Page 44 ~ 40ms Spot_0014 Column Architecture Image plane Detector Feature 1 Memory Feature 1 Zone 1 Detector Feature 2 Memory Feature 2 robust recognition Zone 2 . . . Detector Feature n Memory Feature n Binding Object 1 Associative Memory Binding Object 2 Binding Object n Prof. Ramacher, CPR ST 6-May-17 Page 45 Zone n ∙ ∙ ∙ ∙ ∙ ∙ ∙ The vision: a 3D-Vision-Cube The Vision-Cube • 3D-stacking-architecture • Low-power • Real time capabilities • Integration of sensors and information processing • Distributes layers of information processing to layers of the stack • Solves problem of connectivity Prof. Ramacher, CPR ST 6-May-17 Page 46 CMOS-sensor, sensor array Analogue-pulse conversion Feature-Detection Gabor-Wavelets, different orientations … Object-recognition Object-detection Design of a testchip for the „Synchrony detector“, Base-Chip for the 3D-Stack Infineon 130nm CMOS-Technology pixel memory (1 Pixel) local AER-subcircuit testcircuits for 3Dinterconnects Test circuit Integrate-andFire-Neuron 3D-vias for supply and digital control signals adaptive synapses layout of 1 neuron rows of 3D-vias for layer-to-layer signal distribution array of 128 x 128 neurons, 64k synapses control circuit AER-encodercircuit Prof. Ramacher, CPR ST 6-May-17 Page 47 Power consumption: 3mW @1.5V (analog) , 40-250mW @1.5V (digital) Size: 7.6mm x 7.8mm Gabor-Feature-Detector chip (layout) including a pulse router for the 3D-integration Infineon 130nm CMOS-Technology Array of 128x128 (64k) processing elements for pulse processing and routing Processing element: - photo-Detector - pulse-processing (gradient detection) - dynamic routing of pulses 3D- wiring channel for vertical signal distribution SRAM for storing routing information Digital macro: - routing circuit - configuration - AER-circuit (event based) Prof. Ramacher, CPR ST 3D- wiring 6-May-17 Page 48 for power supply and control signals 3D-Stacking Chip 3 SOLID Connection Chip 2 15 µm 7 µm Chip 1 14 µm Layer 7 Layer 6 Layer 5 12 µm 12µm 12µm Prof. Ramacher, CPR ST 6-May-17 Page 49 Bottom-Chip Real 3D !! Layer 7 Layer 6 Layer 5 Layer 4 Layer 3 Layer 2 Bottom Substrate, Layer 1 Prof. Ramacher, CPR ST 6-May-17 Page 50 13µm 7µm Conclusion • IAF neurons, adaptive synapses, only • network built for -- Gabor wavelet based feature cascade -- memory -- comparison of memory and detector plane • synchrony of neurons indicative for -- robust recognition of memory feature at detector plane (elastic matching) -- binding of features as object • built in 130 nm CMOS -- synchrony detector -- Gabor wavelet detector -- 3 D stack of 7 silicon chips Prof. Ramacher, CPR ST 6-May-17 Page 51