Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Lecture Notes on Precalculus Eleftherios Gkioulekas c Copyright 2010 Eleftherios Gkioulekas. All rights reserved. Permission is granted to make and distribute verbatim copies of this document, only on a strictly non-commercial basis, provided the copyright notice this permission notice, and the availability information below are preserved on all copies. These notes are constantly updated by the author. If you have not obtained this file from the author’s website, it may be out of date. This notice includes the date of latest update to this file. If you are using these notes for a course, I would be very pleased to hear from you, in order to document for my University the impact of this work. The main online lecture notes website is: http://faculty.utpa.edu/gkioulekase/ You may contact the author at: [email protected] Last updated: February 1, 2015 1 Contents Trigonometric identities PRE1: Review of geometry PRE2: Trigonometric functions PRE3: Trigonometric identities PRE4: Trigonometric equations and inequalities PRE5: Application to Triangles PRE6: Vectors PRE7: Sequences and series PRE8: Conic sections 1 4 13 46 72 104 123 143 161 2 3 Trigonometric identities a±b ⇓ sin(a ± b) = sin a cos b ± sin b cos a cos(a ± b) = cos a cos b ∓ sin a sin b tan a ± tan b tan(a ± b) = 1 ∓ tan a tan b cot a cot b ∓ 1 cot(a ± b) = (!!) cot b ± cot a 2a ⇓ sin(2a) = 2 sin a cos a cos(2a) = cos2 a − sin2 a = 2 cos2 a − 1 = 1 − 2 sin2 a 2 tan a tan(2a) = 1 − tan2 a cot2 a − 1 cot(2a) = 2 cot a =⇒ I sin(a + b) sin(a − b) = sin2 a − sin2 b I cos(a + b) cos(a − b) = cos2 a − sin2 b 3a =⇒ sin(3a) = −4 sin3 a + 3 sin a cos(3a) = +4 cos3 a − 3 cos a tan(3a) = 3 tan a − tan3 a 1 − 3 tan2 a In terms of cos 2a ⇓ 1 + cos(2a) 1 − cos(2a) sin2 a = cos2 a = 2 2 1 + cos(2a) 1 − cos(2a) 2 2 tan a = cot a = 1 + cos(2a) 1 − cos(2a) tan(a/2) ⇓ 2 tan(a/2) 1 − tan2 (a/2) sin a = cos a = 1 + tan2 (a/2) 1 + tan2 (a/2) 2 tan(a/2) 1 − tan2 (a/2) tan a = cot a = 2 tan(a/2) 1 − tan2 (a/2) Transformation to sum ⇓ 2 sin a cos b = sin(a − b) + sin(a + b) 2 cos a cos b = cos(a − b) + cos(a + b) =⇒ 2 sin a sin b = cos(a − b) − cos(a + b) product ⇓ a±b a∓b sin a ± sin b = 2 sin cos 2 2 a+b a−b cos a + cos b = 2 cos cos 2 2 a+b b−a cos a − cos b = 2 sin sin (!!) 2 2 sin(a ± b) tan a ± tan b = cos a cos b sin(b ∓ a) cot a ± cot b = (!!) sin a sin b Also note the factorizations: (π/2) ± a (π/2) ∓ a cos 2 2 a ± (π/2 − b) a ∓ (π/2 − b) I sin a ± cos b = sin a ± sin(π/2 − b) = 2 sin cos 2 2 I 1 + cos a = 2 cos2 (a/2) I 1 − cos a = 2 sin2 (a/2) I 1 ± sin a = sin(π/2) ± sin a = 2 sin 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 References The following references were consulted during the preparation of these lecture notes. (1) Pistofides (1988): “Algebra. I.”, unpublished lecture notes. (2) Pistofides (1989): “Algebra. II.”, unpublished lecture notes. (3) Xenou (1994): “Algebra and Analytic Geometry. 1”, , Ekdoseis ZHTH. (4) Xenou (1995): “Algebra B”, Ekdoseis ZHTH. Lecture notes by Pistofides are available for download at http://www.math.utpa.edu/lf/OGS/pistofides.html