Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 Association Rule Mining Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction Market-Basket transactions TID Items 1 Bread, Milk 2 3 4 5 Bread, Diaper, Beer, Eggs Milk, Diaper, Beer, Coke Bread, Milk, Diaper, Beer Bread, Milk, Diaper, Coke © Tan,Steinbach, Kumar Introduction to Data Mining Example of Association Rules {Diaper} {Beer}, {Milk, Bread} {Eggs,Coke}, {Beer, Bread} {Milk}, Implication means co-occurrence, not causality! 4/18/2004 ‹#› Definition: Frequent Itemset Itemset – A collection of one or more items Example: {Milk, Bread, Diaper} – k-itemset An itemset that contains k items Support count () – Frequency of occurrence of an itemset – E.g. ({Milk, Bread,Diaper}) = 2 Support TID Items 1 Bread, Milk 2 3 4 5 Bread, Diaper, Beer, Eggs Milk, Diaper, Beer, Coke Bread, Milk, Diaper, Beer Bread, Milk, Diaper, Coke – Fraction of transactions that contain an itemset – E.g. s({Milk, Bread, Diaper}) = 2/5 Frequent Itemset – An itemset whose support is greater than or equal to a minsup threshold © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› Definition: Association Rule Association Rule – An implication expression of the form X Y, where X and Y are itemsets – Example: {Milk, Diaper} {Beer} Rule Evaluation Metrics TID Items 1 Bread, Milk 2 3 4 5 Bread, Diaper, Beer, Eggs Milk, Diaper, Beer, Coke Bread, Milk, Diaper, Beer Bread, Milk, Diaper, Coke – Support (s) Example: Fraction of transactions that contain both X and Y {Milk , Diaper } Beer – Confidence (c) Measures how often items in Y appear in transactions that contain X © Tan,Steinbach, Kumar s (Milk, Diaper, Beer ) |T| 2 0.4 5 (Milk, Diaper, Beer ) 2 c 0.67 (Milk, Diaper ) 3 Introduction to Data Mining 4/18/2004 ‹#› Association Rule Mining Task Given a set of transactions T, the goal of association rule mining is to find all rules having – support ≥ minsup threshold – confidence ≥ minconf threshold Brute-force approach: – List all possible association rules – Compute the support and confidence for each rule – Prune rules that fail the minsup and minconf thresholds Computationally prohibitive! © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› Mining Association Rules Example of Rules: TID Items 1 Bread, Milk 2 3 4 5 Bread, Diaper, Beer, Eggs Milk, Diaper, Beer, Coke Bread, Milk, Diaper, Beer Bread, Milk, Diaper, Coke {Milk,Diaper} {Beer} (s=0.4, c=0.67) {Milk,Beer} {Diaper} (s=0.4, c=1.0) {Diaper,Beer} {Milk} (s=0.4, c=0.67) {Beer} {Milk,Diaper} (s=0.4, c=0.67) {Diaper} {Milk,Beer} (s=0.4, c=0.5) {Milk} {Diaper,Beer} (s=0.4, c=0.5) Observations: • All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer} • Rules originating from the same itemset have identical support but can have different confidence • Thus, we may decouple the support and confidence requirements © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› Mining Association Rules Two-step approach: 1. Frequent Itemset Generation – Generate all itemsets whose support minsup 2. Rule Generation – Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset Frequent itemset generation is still computationally expensive © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› Frequent Itemset Generation null A B C D E AB AC AD AE BC BD BE CD CE DE ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ABCD ABCE ABDE ACDE ABCDE © Tan,Steinbach, Kumar Introduction to Data Mining BCDE Given d items, there are 2d possible candidate itemsets 4/18/2004 ‹#› Frequent Itemset Generation Brute-force approach: – Each itemset in the lattice is a candidate frequent itemset – Count the support of each candidate by scanning the database Transactions N TID 1 2 3 4 5 Items Bread, Milk Bread, Diaper, Beer, Eggs Milk, Diaper, Beer, Coke Bread, Milk, Diaper, Beer Bread, Milk, Diaper, Coke List of Candidates M w – Match each transaction against every candidate – Complexity ~ O(NMw) => Expensive since M = 2d !!! © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› Computational Complexity Given d unique items: – Total number of itemsets = 2d – Total number of possible association rules: d d k R k j 3 2 1 d 1 d k k 1 j 1 d d 1 If d=6, R = 602 rules © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› Reducing Number of Candidates Apriori principle: – If an itemset is frequent, then all of its subsets must also be frequent Apriori principle holds due to the following property of the support measure: X , Y : ( X Y ) s( X ) s(Y ) – Support of an itemset never exceeds the support of its subsets – This is known as the anti-monotone property of support © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› Illustrating Apriori Principle null A B C D E AB AC AD AE BC BD BE CD CE DE ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE Found to be Infrequent ABCD ABCE Pruned supersets © Tan,Steinbach, Kumar Introduction to Data Mining ABDE ACDE BCDE ABCDE 4/18/2004 ‹#› Illustrating Apriori Principle Item Bread Coke Milk Beer Diaper Eggs Count 4 2 4 3 4 1 Items (1-itemsets) Itemset {Bread,Milk} {Bread,Beer} {Bread,Diaper} {Milk,Beer} {Milk,Diaper} {Beer,Diaper} Minimum Support = 3 Pairs (2-itemsets) (No need to generate candidates involving Coke or Eggs) Triplets (3-itemsets) If every subset is considered, 6C + 6C + 6C = 41 1 2 3 With support-based pruning, 6 + 6 + 1 = 13 © Tan,Steinbach, Kumar Count 3 2 3 2 3 3 Introduction to Data Mining Itemset {Bread,Milk,Diaper} Count 3 4/18/2004 ‹#› Apriori Algorithm Method: – Let k=1 – Generate frequent itemsets of length 1 – Repeat until no new frequent itemsets are identified Generate length (k+1) candidate itemsets from length k frequent itemsets Prune candidate itemsets containing subsets of length k that are infrequent Count the support of each candidate by scanning the DB Eliminate candidates that are infrequent, leaving only those that are frequent © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› The Apriori Algorithm — Example Database D TID 100 200 300 400 itemset sup. C1 {1} 2 {2} 3 Scan D {3} 3 {4} 1 {5} 3 Items 134 235 1235 25 C2 itemset sup L2 itemset sup 2 2 3 2 {1 {1 {1 {2 {2 {3 C3 itemset {2 3 5} Scan D {1 3} {2 3} {2 5} {3 5} © Tan,Steinbach, Kumar 2} 3} 5} 3} 5} 5} 1 2 1 2 3 2 L1 itemset sup. {1} {2} {3} {5} 2 3 3 3 C2 itemset {1 2} Scan D {1 {1 {2 {2 {3 3} 5} 3} 5} 5} L3 itemset sup {2 3 5} 2 Introduction to Data Mining 4/18/2004 ‹#› FP-growth Algorithm Use a compressed representation of the database using an FP-tree Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› FP-tree construction null After reading TID=1: TID 1 2 3 4 5 6 7 8 9 10 Items {A,B} {B,C,D} {A,C,D,E} {A,D,E} {A,B,C} {A,B,C,D} {B,C} {A,B,C} {A,B,D} {B,C,E} A:1 B:1 After reading TID=2: null A:1 B:1 B:1 C:1 D:1 © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› FP-Tree Construction TID 1 2 3 4 5 6 7 8 9 10 Items {A,B} {B,C,D} {A,C,D,E} {A,D,E} {A,B,C} {A,B,C,D} {B,C} {A,B,C} {A,B,D} {B,C,E} Header table Item Pointer A B C D E © Tan,Steinbach, Kumar Transaction Database null B:3 A:7 B:5 C:1 C:3 D:1 D:1 C:3 D:1 D:1 D:1 E:1 E:1 E:1 Pointers are used to assist frequent itemset generation Introduction to Data Mining 4/18/2004 ‹#› FP-growth C:1 Conditional Pattern base for D: P = {(A:1,B:1,C:1), (A:1,B:1), (A:1,C:1), (A:1), (B:1,C:1)} D:1 Recursively apply FPgrowth on P null A:7 B:5 B:1 C:1 C:3 D:1 D:1 Frequent Itemsets found (with sup > 1): AD, BD, CD, ACD, BCD D:1 D:1 © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› Projected Database Original Database: TID 1 2 3 4 5 6 7 8 9 10 Items {A,B} {B,C,D} {A,C,D,E} {A,D,E} {A,B,C} {A,B,C,D} {B,C} {A,B,C} {A,B,D} {B,C,E} Projected Database for node A: TID 1 2 3 4 5 6 7 8 9 10 Items {B} {} {C,D,E} {D,E} {B,C} {B,C,D} {} {B,C} {B,D} {} For each transaction T, projected transaction at node A is T E(A) © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› ECLAT For each item, store a list of transaction ids (tids) Horizontal Data Layout TID 1 2 3 4 5 6 7 8 9 10 © Tan,Steinbach, Kumar Items A,B,E B,C,D C,E A,C,D A,B,C,D A,E A,B A,B,C A,C,D B Vertical Data Layout A 1 4 5 6 7 8 9 B 1 2 5 7 8 10 C 2 3 4 8 9 D 2 4 5 9 E 1 3 6 TID-list Introduction to Data Mining 4/18/2004 ‹#› ECLAT Determine support of any k-itemset by intersecting tid-lists of two of its (k-1) subsets. A 1 4 5 6 7 8 9 B 1 2 5 7 8 10 AB 1 5 7 8 3 traversal approaches: – top-down, bottom-up and hybrid Advantage: very fast support counting Disadvantage: intermediate tid-lists may become too large for memory © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› Maximal Frequent Itemset An itemset is maximal frequent if none of its immediate supersets is frequent null Maximal Itemsets A B C D E AB AC AD AE BC BD BE CD CE DE ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ABCD ABCE ABDE Infrequent Itemsets ABCD E © Tan,Steinbach, Kumar Introduction to Data Mining ACDE BCDE Border 4/18/2004 ‹#› Closed Itemset An itemset is closed if none of its immediate supersets has the same support as the itemset TID 1 2 3 4 5 Items {A,B} {B,C,D} {A,B,C,D} {A,B,D} {A,B,C,D} © Tan,Steinbach, Kumar Itemset {A} {B} {C} {D} {A,B} {A,C} {A,D} {B,C} {B,D} {C,D} Introduction to Data Mining Support 4 5 3 4 4 2 3 3 4 3 Itemset Support {A,B,C} 2 {A,B,D} 3 {A,C,D} 2 {B,C,D} 2 {A,B,C,D} 2 4/18/2004 ‹#› Maximal vs Closed Frequent Itemsets Minimum support = 2 124 123 A 12 124 AB 12 ABC 24 AC AD ABD ABE 1234 B AE 345 D 2 3 BC BD 4 ACD 245 C 123 4 24 2 Closed but not maximal null 24 BE 2 4 ACE E ADE CD Closed and maximal 34 CE 3 BCD 45 DE 4 BCE BDE CDE 4 2 ABCD ABCE ABDE ACDE BCDE # Closed = 9 # Maximal = 4 ABCDE © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#›