Download slides

Document related concepts
no text concepts found
Transcript
Designing a cluster for
geophysical fluid dynamics
applications
Göran Broström
Dep. of Oceanography, Earth Science
Centre, Göteborg University.
Our cluster
(me and Johan Nilsson, Dep. of Meterology,
Stockholm University)
• Grant from the Knut & Alice Wallenberg foundation (1.4
MSEK)
•
•
•
•
48 cpu cluster
Intel P4 2.26 Ghz
500 Mb 800Mhz Rdram
SCI cards
• Delivered by South Pole
• Run by NSC (thanks Niclas & Peter)
What we study
Geophysical fluid dynamics
• Oceanography
• Meteorology
• Climate dynamics
Thin fluid layers
Large aspect ratio
Highly turbulent
Gulf stream: Re~1012
Large variety of scales
Parameterizations are important in geophysical fluid
dynamics
Timescales
• Atmospheric low pressures:
• Seasonal/annual cycles:
• Ocean eddies:
•
•
•
•
•
•
10 days
0.1-1 years
0.1-1 year
El Nino:
2-5 years.
North Atlantic Oscillation:
5-50 years.
Turnovertime of atmophere:
10 years.
Anthropogenic forced climate change: 100 years.
Turnover time of the ocean:
4.000 years.
Glacial-interglacial timescales: 10.000-200.000 years.
Some examples of atmospheric
and oceanic low pressures.
Timescales
• Atmospheric low pressures:
• Seasonal/annual cycles:
• Ocean eddies:
10 days
0.1-1 years
0.1-1 year
• El Nino:
2-5 years.
•
•
•
•
•
North Atlantic Oscillation:
5-50 years.
Turnovertime of atmophere:
10 years.
Anthropogenic forced climate change: 100 years.
Turnover time of the ocean:
4.000 years.
Glacial-interglacial timescales: 10.000-200.000 years.
Normal state
Initial ENSO state
The ENSO state
The ENSO state
Timescales
•
•
•
•
Atmospheric low pressures:
Seasonal/annual cycles:
Ocean eddies:
El Nino:
• North Atlantic Oscillation:
years.
•
•
•
•
10 days
0.1-1 years
0.1-1 year
2-5 years.
5-50
Turnovertime of atmophere:
10 years.
Anthropogenic forced climate change: 100 years.
Turnover time of the ocean:
4.000 years.
Glacial-interglacial timescales: 10.000-200.000 years.
Positive NAO phase
Negative NAO phase
Positive NAO phase
Negative NAO phase
Timescales
•
•
•
•
•
•
•
Atmospheric low pressures:
10 days
Seasonal/annual cycles:
0.1-1 years
Ocean eddies:
0.1-1 year
El Nino:
2-5 years.
North Atlantic Oscillation:
5-50 years.
Turnovertime of atmophere:
10 years.
Anthropogenic forced climate change: 100 years.
• Turnover time of the ocean:
years.
4.000
• Glacial-interglacial timescales: 10.000-200.000 years.
Temperature in the North Atlantic
Timescales
•
•
•
•
Atmospheric low pressures:
Seasonal/annual cycles:
Ocean eddies:
El Nino:
• North Atlantic Oscillation:
10 days
0.1-1 years
0.1-1 year
2-5 years.
5-50 years.
• Turnovertime of atmophere:
10 years.
• Anthropogenic forced climate change: 100 years.
• Turnover time of the ocean:
4.000 years.
• Glacial-interglacial timescales: 10.000-200.000
years.
Ice coverage, sea level
What model will we use?
MIT General circulation model
MIT General circulation model
•
•
•
•
•
•
•
•
General fluid dynamics solver
Atmospheric and ocean physics
Sophisticated mixing schemes
Biogeochemical modules
Efficient solvers
Sophisticated coordinate system
Automatic adjoint schemes
Data assimilation routines
• Finite difference scheme
• F77 code
• Portable
MIT General circulation model
Spherical coordinates
“Cubed sphere”
MIT General circulation model
•
•
•
•
•
•
•
•
General fluid dynamics solver
Atmospheric and ocean physics
Sophisticated mixing schemes
Biogeochemical modules
Efficient solvers
Sophisticated coordinate system
Automatic adjoint schemes
Data assimilation routines
• Finite difference scheme
• F77 code
• Portable
MIT General circulation model
MIT General circulation model
MIT General circulation model
MIT General circulation model
MIT General circulation model
MIT General circulation model
MIT General circulation model
MIT General circulation model
Some computational aspects
Some tests in INGVAR
(32 AMD 900 Mhz cluster)
Experiments with
60*60*20 grid points
Experiments with
60*60*20 grid points
Experiments with
60*60*20 grid points
Experiments with
120*120*20 grid points
MM5 Regional atmospheric model
MM5 Regional atmospheric model
MM5 Regional atmospheric model
Choosing
cpu’s, motherboard, memory,
connections
SG
I:
32
0
AM 0,
D 50.
: X ..
AM P2
D 80
In :XP 0+
te
l:P 260
In
te 4,2 0+
l:P .8
G
4
hz
In
2
.2
te
l
In :P 6G
te
l: 4,1. Hz
X
In eo 7 G
te
l: n, 2 Hz
Xe .8
C
om on, Gh
pa 2.2 z
q
G
hz
Al
p
HP ha
Ita ...
ni
HP um
zx 2
60
00
Run time
Specfp (swim)
700
600
500
400
300
200
100
0
2.
26
G
Hz
Xe
on
2.
2G
Hz
Xe
on
D
ua
l
P4
2.
2
P4
1.
7
P4
G
Hz
G
Hz
ua
l
D
AM
D
20
00
+
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
AM
D
run time
Run time on different nodes
Choosing interconnection
(requires a cluster to test)
Based on earlier experience we
use SCI from Dolphinics (SCALI)
Our choice
•
•
•
•
•
Named Otto
SCI cards
P4 2.26 GHz (single cpus)
800 Mhz Rdram (500 Mb)
Intel motherboards (the only available)
• 48 nodes
• NSC (nicely in the shadow of Monolith)
Otto (P4 2.26 GHz)
Scaling
Otto (P4 2.26 GHz)
Ingvar (AMD 900 MHz)
Why do we get this kind of
results?
Time spent on different
“subroutines”
60*60*20
120*120*20
Relative time Otto/Ingvar
Some tests on other machines
•
•
•
•
•
INGVAR: 32 node,
AMD 900 MHz, SCI
Idefix:
16 node, Dual PIII 1000 MHz, SCI
SGI 3800: 96 Proc.
500 MHz
Otto: 48 node, P4 2.26 Mhz, SCI
? MIT, LCS: 32 node, P4 2.26 Mhz, MYRINET
Comparing different system
(120*120*20 gridpoints)
Comparing different system
(120*120*20 gridpoints)
Comparing different system
(60*60*20 gridpoints)
SCI or Myrinet?
120*120*20 gridpoints
SCI or Myrinet?
120*120*20 gridpoints
(60*60*20 gripoints)
(ooops, I used the ifc
Compiler for these tests)
SCI or Myrinet?
120*120*20 gridpoints
(60*60*20 gripoints)
(1066Mhz rdram?)
(ooops, I used the ifc
Compiler for these tests)
SCI or Myrinet?
(time spent in pressure calc.)
120*120*20 gridpoints
(60*60*20 gripoints)
(1066Mhz rdram?)
(ooops, I used the ifc
Compiler for these tests)
Conclusions
• Linux clusters are useful in computational
geophysical fluid dynamics!!
• SCI cards are necessary for parallel runs >10 nodes.
• For efficient parallelization: >50*50*20 grid points per
node!
• Few users - great for development.
• Memory limitations, for 48 proc. a’ 500 Mb,
1200*1200*30 grid points is maximum (eddy
resolving North Atlantic, Baltic Sea).
• For applications similar as ours, go for SCI cards +
cpu with fast memory bus and fast memory!!
Experiment with low resolution
(eddies are parameterized)
Experiment with low resolution
(eddies are parameterized)
Thanks for your attention
Related documents