Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Leckebusch et al.: European property damage potentials European property damage potentials: development and application of a simple storm regression model to global and regional simulations G.C. Leckebusch M. Donat U. Ulbrich FU Berlin MSC Napoli RT6.2 Meeting Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials Introduction: Storm damages in the past Economic and insured loss: Germany 1970 - 1998 Economic loss Flashfloods 4% Insured loss Frost Other Flooding 5% 1% 8% Other 3% Frost 3% Flooding 15% Other Storms 7% Hail 15% RT6.2 Meeting Other Storms 2% Winter Storm 53% Hail 20% Winter Storms 64% Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials Economic and insured losses Source: Münchener Rück, Jahresrückblick Naturkatastrophen 2004 RT6.2 Meeting Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials 1000 hPa Stormtrack (Winter) Stormtrack is originally defined as bandpass (2.5-8 days) filtered standard deviation of the geopotential height in 500 hPa Thus, the stormtrack reflects the variability caused by travelling extra-tropical cyclones and high-pressure systems in the mid-latitudes In this study we used the 1000 hPa level, due to data availability, for winter. Data used: On IPCC AR4 Model Data Portal available 20 contributing models RT6.2 Meeting Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials 1000 hPa Stormtrack (Winter) 20 IPCC GCMs Ulbrich et al., submitted to J. Clim. RT6.2 Meeting Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials Validation: Cyclone Track density; All systems NCEP-Re Winter: Oct.-Mar. HadCM3 ECHAM4 HadAM3P ECHAM5 Units: Cyclone systems per winter NCEP RT6.2 Meeting Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials Validation: Cyclone Track density; 5% strongest systems Strong: exceedance of the 95th percentile of the Laplacian of MSLP NCEP-Re HadCM3 ECHAM4 NCEP-Re Units: Cyclone systems per winter HadAM3P RT6.2 Meeting ECHAM5 Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials A2 - Climate Change Signal: Cyclone Track density; All systems HadCM3 ECHAM4 Coloured: 90/95/99th Significance Level HadAM3P ECHAM5 Dashed lines: negative changes Solid lines: positive changes RT6.2 Meeting Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials A2 - Climate Change: Track density; 5% strongest systems HadCM3 ECHAM4 Coloured: 90/95/99th Significance Level HadAM3P ECHAM5 Dashed lines: negative changes Solid lines: positive changes Leckebusch & Ulbrich (2004) ; Leckebusch et al. (2006) RT6.2 Meeting Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials A2 - Climate Change: Number of systems: all vs. intense systems Lambert & Fyfe (2006) RT6.2 Meeting Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials Circulation Weather Types during winter (ONDJFM) in an ensemble of GCMs frequency [%] recent climate: CWTs ERA40 and 20C 1961-2000 winter (ONDJFM) 45 40 35 30 25 20 15 10 5 0 Z Difference A1B-20C [%] climate change: (A1B) AZ NE E SE S SW W NW N undef. gale CWTs - Climate change signal A1B-20C winter (ONDJFM) 10 8 6 4 2 0 -2 -4 -6 -8 -10 Z RT6.2 Meeting AZ NE E SE S SW W NW N undef. gale Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials Circulation Weather Types on gale days (ONDJFM) [days/year] recent climate (20C): 25 20 15 10 5 0 Z AZ NE E SE S SW W NW N undef. E SE S SW W NW N undef. climate change (A1B-20C): [days/year] 10 5 0 -5 -10 -15 Z RT6.2 Meeting AZ NE Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials 98th percentile of daily max. wind speed (ONDJFM) ERA40 ECHAM5-OM1 run1 (MPI-M) ECHAM5-OM1 (DMI) EGMAM 20C A1B-20C RT6.2 Meeting Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials Storm (loss) days per winter 20C 6 [days/year] 5 4 • 98th percentile typical threshold for loss damages 3 2 1 • Storm (loss) day if 98th percentile is exceeded in 0 Z 20% AZ NE E investigation SE S SW Warea NW (red N undef. at least of the box)gale [days/year] A1B-20C (98th percentile not adapted) 12 10 8 6 4 2 0 -2 Z NE SE SW NW undef. NW undef. [days/year] A1B-20C (98th percentile adapted) 12 10 8 6 4 2 0 -2 Z RT6.2 Meeting NE SE SW Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials Model theory Estimation of future changes in climate extremes and their relation to property damage Following the “multi model approach” direct use of GCM/RCM output in the impact model • Loss depends on - local gust wind speed - insured property or amount of forest in the area • insured property values can roughly be estimated from population density • Loss increases with wind speed above a threshold. Different storm-loss functions have been proposed, a frequent one is: loss ~ v3. RT6.2 Meeting Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials For property damages: • Germany: Insurance companies pay when wind speeds exceed Bft 8 = 17.2 – 20.7 m/s This wind speed is approx. equal to the 98th percentile of wind speeds at regular (non-coastal, no mountain) stations in Germany RT6.2 Meeting Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials Approach based on: Klawa, M. und U. Ulbrich, 2003: A model for the estimation of storm losses and the identification of severe winter storms in Germany. Natural Hazards and Earth System Sciences, Vol. 3, 725-732. vmax (region , day ) pop ( region ) * 1 v98 (region ) regions days year Loss ≈ c* 3 for vmax v98 „normalized cubic wind“ v v98 v98 RT6.2 Meeting 3 for v v98 Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials What have we achieved so far? Model structure 1: Calculation of „normalized cubic wind“ from input data (e.g. ERA40) per year vmax (region , day ) 1 v98 (region ) days year 3 2: GIS (ArcGIS) - including global population distribution data on 1x1 degree grid - including interpolation of forestry data to model grid via GIS (at present: nearest neighbour) - Calculation of accumulated damage potential for different time slices and/or regions 3: Fitting the calculated values per year and region to observed losses RT6.2 Meeting Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials Application of loss model on climate simulations Loss Ratio in ECHAM5/OM1, 20C, run 1 Loss Ratio [‰] 1 0,8 0,6 0,4 0,2 jährl. Werte 2000 1999 1998 0,1507 Std. deviation 0,0894 0,0707 0,1494 2095 2094 2093 2092 2091 2090 2089 2088 2087 2086 2085 2084 2083 2082 2081 2080 2079 2078 2077 2076 2075 2074 2073 2100 0,1284 2099 0,1395 2098 Mean value 2072 2071 Loss Ratio [‰] 1997 (2071-2100) 2097 (1971-2000) 2096 (1971-2000) jährl. Werte Mittelwert + 17 % RT6.2 Meeting EH5/OM1, A1B Mittelw ert Loss Ratio in ECHAM5/OM1, A1B, run 1 1 0,8 0,6 0,4 0,2 0 1996 EH5/OM1, 20C 1995 1994 1993 1992 1991 1990 1989 1988 1987 1986 1985 ERA 40 1984 1983 1982 1981 1980 1979 1978 1977 1976 1975 1974 1973 1972 1971 0 + ~110 % Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials Loss ratio: Control Climate ACC signal (A2): Leckebusch et al., 2007, GRL RT6.2 Meeting Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials Model improvements in ENSEMBLES Input parameter: Wind gusts (Forecasts!) Loss Ratio based on momentary wind values vs. daily maximum gust from ERA40 0,700 0,600 loss ration [‰] 0,500 0,400 0,300 0,200 0,100 19 70 19 71 19 72 19 73 19 74 19 75 19 76 19 77 19 78 19 79 19 80 19 81 19 82 19 83 19 84 19 85 19 86 19 87 19 88 19 89 19 90 19 91 19 92 19 93 19 94 19 95 19 96 19 97 19 98 19 99 20 00 0,000 GdV c165/166 c49 Correlation with insurance data (GdV): Overestimation in 1993 Underestimation in 1990 RT6.2 Meeting c165/166 c49 1970-2000Further investigation 0,78 0,83 with respect to the kind of exceedance Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials GERMANY: Exceedance of 98th Percentile (1971-2000) in ERA40 • 1993 more weak events than 1990 • 1990 more extreme exceedances of 98th Percentile than 1993 Approach 1 („static“): Approach 2 („dynamic“): Loss limit consistently increased Loss limit individually adjusted after loss events RT6.2 Meeting Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials „dynamic approach“ Schadensatz [0,01€ pro 1000€] auf Basis von P98 80 70 60 50 40 30 20 10 0 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 GdV P98_c49_jahr P98_c49_winter P98_0.1v_d500 P98_0.1v_d500_ES P98_0.1v_d1000 P98_0.1v_d1500 Correlation with real damage data (GdV) 1970-1999 RT6.2 Meeting P98_jahr P98_winter 0.1v_d500 0.1v_d1000 0.1v_d1500 0,83 0,90 0,877 0,883 0,878 Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials Regional Climate Model analysis: 98th percentile of maximum wind speed (ONDJFM) ERA40 Max of 4 RT6.2 Meeting gust forecast Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials 98th percentile of maximum wind speed (ONDJFM) RCMs forced by ERA40 RT6.2 Meeting Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials Loss Ratios, RCMs (ERA40-driven) wssmax 0,800 0,700 0,600 0,500 0,400 0,300 0,200 0,100 0,000 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 GdV ERA40_code49 ERA40_MaxOf4 CHMI-ALADIN_wssmax DMI-HIRHAM_wssmax SMHI-RCA_wssmax GdV Korrelation mit GdV (1970-2000) ERA40 ERA40 code 49 MaxOf4 0,89 Korrelation mit ERA40 code49 ETHZ-CLM_wssmax CNRM-RM4.5_wssmax MPI-M-REMO_wssmax KNMI-RACMO2_wssmax ETHZCLM CNRMRM4.5 MPI-MREMO KNMIRACMO2 CHMIALADIN DMIHIRHAM SMHIRCA 0,86 0,82 0,79 0,73 0,76 0,75 0,78 0,64 0,97 0,88 0,72 0,82 0,83 0,70 0,86 0,80 0,80 0,62 0,69 0,79 0,71 0,82 0,79 Korrelation mit ERA40 MO4 Mittelwert 0,15 0,15 0,15 0,15 0,14 0,15 0,16 0,14 0,16 0,15 Standardabweichung 0,12 0,12 0,11 0,07 0,09 0,10 0,10 0,09 0,10 0,08 RT6.2 Meeting Helsinki, 26.-27.4.2007 Leckebusch et al.: European property damage potentials Data problem: (March 2007) Availability of data from RT2A: Milestones M2A.2.2/M2A.2.3 “Provision of Stream One simulations [...] on servers or on request” (due in August 2006) seems NOT fulfilled adequately yet and leads to a delay in further analysis, as even on request data availability seems poor (see table). Availability of GCM data: Requested, but not made available yet HadGem1 (METO-HC) IPSL-CM4 (IPSL) Available at PCMDI (IPCC AR4)* ECHAM5/MPI-OM (MPIMET) Available via CERA / on request ECHAM5/MPI-OM (DMI) Available on request EGMAM (FUB) Available on request CNRM-CM3 Available at PCMDI (IPCC AR4)* ARPEGE-MICOM-OASIS (NERSC) Requested, but not made available yet * Output of IPCC AR4 runs at PCMDI is onlay available in a daily resolution (daily mean values). For some analysis we plan to do, 6-hourly values are required. Thus, model output from PCMDI archive is only partly suitable for our analysis in ENSEMBLES. RT6.2 Meeting Helsinki, 26.-27.4.2007