Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Ecological and Evolutionary Systems biology: Conceptual and molecular tools for analysis Justin Borevitz Ecology & Evolution University of Chicago Finch (large beaked) Sitting in a cotton wood http://naturalvariation.org/ http://naturalvariation.org/ Hemicordate Sea anemone Stickleback Deer mouse burrow Aquilegia, Arabidopsis, Mimulus? Indiana Dunes National Lakeshore Developing Model Organisms - Community • Critical mass of labs, hands/eyes/minds • Coordinated collaboration – webinar lab meetings – Open chat/ focus problems/ big picture meetings • United by questions – Development: novelty/plasticity – Adaptation: abiotic/biotic • United by organism – Shared tools: genomic/ genetic/ methods • United by ecoregion – field study site – Soil/ water testing, weather monitoring, development/behavioral real time recording Developing Model Organisms - Tools • High throughput Phenotyping – Physiological dissection of 1000s correlated traits – Biological Variation • Multi species ecological interactions – “extended phenotype” Functional Genomics •Microarrays • Environmental Interaction (GxE) •SNPs – Local adaptation •Induced deletions • Epistasis (GxG) – Magnify minor QTL in local backgrounds • Multiple genes under major QTL – High Density markers – Linkage Drag Talk Outline •• Genetic Genetic Diversity Diversity –– Population Population structure, structure, Haplotype Haplotype Mapping Mapping set set •• Phenotyping Phenotyping in in multiple multiple environments environments –– Seasonal Seasonal Variation Variation in in the the Lab Lab •• SNP/Tiling SNP/Tiling microarrays microarrays –– Splicing Splicing –– Methylation Methylation –– Very Very High High Density Density Markers Markers SFPs SFPs –– Bulk Bulk Mapping Mapping –– Deletions Deletions Global and Local Population Structure Olivier Loudet Local adaptation under strong selection Seasonal Variation Matt Horton Megan Dunning Local Population Structure common haplotypes 144 Non singleton SNPs >2000 accessions Megan Dunning, Yan Li Global, Midwest, and UK Diversity within and between populations 80 Major Haplotypes Diversity within and between populations 17 Major Haplotypes 80 Major Haplotypes Variation within a field http://naturalvariation.org/hapmap Begin with regions spanning the Native Geographic range Lund Sweden Nordborg et al PLoS Biology 2005 Li et al PLoS ONE 2007 Tossa Del Mar Spain Seasons in the Growth Chamber • • • • Changing Day length Cycle Light Intensity Cycle Light Colors Cycle Temperature Day Length Light Intensity Temperature 1400 Sw eden Spain 20:00 1200 30 Spain standard 18:00 25 standard standard 1000 16:00 600 8:00 Geneva Scientific/ Percival 15 10 Spain High 5 400 6:00 Spain Low 0 200 0 Spain standard month month jun may apr mar feb jan dec nov oct aug jul jun may apr mar jan feb dec oct nov -10 sep aug jul jun may apr mar jan feb dec oct nov sep Sweden month Sw eden Low -5 2:00 0:00 Sw eden High sep 4:00 aug 10:00 800 jul W/m2 12:00 degrees C 20 14:00 hours 35 Sw eden 22:00 Kurt Spokas Version 2.0a June 2006 USDA-ARS Website Midwest Area (Morris,MN) http://www.ars.usda.gov/mwa/ncscrl Flowering time QTL, Kas/Col RILs Genomic Breeding Path Borevitz and Chory, COPB 2003 Which arrays should be used? BAC array cDNA array Long oligo array Which arrays should be used? Gene array Exon array 35bp tile, 25mers 10bp gaps Tiling array Which arrays should be used? SNP array How about multiple species? Microbial communities? Pst,Psm,Psy,Psx, Agro, Xanthomonas, H parasitica, 15 virus, Ressequencing array Tiling/SNP array 2007 250k SNPs, 1.6M tiling probes Transcriptome Atlas Improved Genome Annotation ORFa ORFb start conservation MMMM M M AAAAA SFP SFP SFP SNP Chromosome (bp) deletion MMMM M M SNP Universal Whole Genome Array RNA Gene/Exon Discovery Gene model correction Non-coding/ micro-RNA DNA Chromatin Immunoprecipitation ChIP chip Alternative Splicing Methylation Antisense transcription Transcriptome Atlas Expression levels Tissues specificity RNA Immunoprecipitation RIP chip Allele Specific Expression Polymorphism SFPs Discovery/Genotyping Comparative Genome Hybridization (CGH) Insertion/Deletions Copy Number Polymorphisms Control for hybridization/genetic polymorphisms to understand TRUE expression variation Additive, Dominant, Maternal, Genotype Variation AT1G07350 AT1G29120 AT1G51350 D E AT1G53560 AT1G76170 Alternative spliced exons - verification v v v c RT-PCR c FDR for selection Total exons tested Total exons Tested exons confirmed c v c gDNA PCR 3% 86,349 69 5 5 Col Van Col Col No significant Col Van allele specific expression Van Van Van Col RNA Genomic DNA cis regulatory variation cis regulatory variation (Van allele) (Col allele) RNA RNA Paternal Imprinting RNA Global Allele Specific Expression Maternal Imprinting RNA 65,000 SNPs Transcribed Accession Pairs 12,000 genes >= 1 SNP 6,000 >= 2 SNPs Zhang, X., Richards, E., Borevitz, J. Current Opinion in Plant Biology (2007) Potential Deletions SFPs and CC*GG Methylome SFP A) Extract genomic 100ng * * mSFP * * HpaII digestion DNA (single leaf) * * * Digest with either Random labeling msp1 or hpa2 CC*GG Label with biotin B) * * * * Random primers Hybridize to array MspI digestion Hpa msp Hpa msp Hpa msp Van Van Col Col Van Van Col Col Intensity Random labeling Hpa msp SFP detection on tiling arrays Delta p0 FALSE Called FDR 1.00 0.95 18865 160145 11.2% 1.25 0.95 10477 132390 7.5% 1.50 0.95 6545 115042 5.4% 1.75 0.95 4484 102385 4.2% 2.00 0.95 3298 92027 3.4% Chip genotyping of a Recombinant Inbred Line 29kb interval Map bibb 100 bibb mutant plants 100 wt mutant plants bibb mapping Bulk segregant Mapping using Chip hybridization bibb maps to Chromosome2 near ASYMETRIC LEAVES1 AS1 ChipMap BIBB = ASYMETRIC LEAVES1 AS1 (ASYMMETRIC LEAVES1) = MYB closely related to PHANTASTICA located at 64cM bibb as1 Sequenced AS1 coding region from bib-1 …found g -> a change that would introduce a stop codon in the MYB domain bib-1 W49* MYB as-101 Q107* bibb as1-101 Array Mapping chr1 chr2 chr3 chr4 Hazen et al Plant Physiology (2005) chr5 eXtreme Array Mapping Histogram of Kas/Col RILs Red light 6 4 2 0 counts 8 10 12 15 tallest RILs pooled vs 15 shortest RILs pooled 6 8 10 hypocotyl length (mm) 12 14 eXtreme Array Mapping Allele frequencies determined by SFP genotyping. Thresholds set by simulations RED2 QTL 12cM LOD Chromosome 2 16 12 RED2 QTL LOD 8 4 0 0 20 40 cM 60 80 100 Composite Interval Mapping Red light QTL RED2 from 100 Kas/ Col RILs (Wolyn et al Genetics 2004) eXtreme Array Mapping BurC F2 QTL Lz x Ler F2 XAM Lz x Col F2 (Werner et al Genetics 2006) eXtreme Array Fine Mapping ~2Mb ~8cM Col Kas mark1 ~268 Col het ~43 het ~2 Col het Kas het het Col ~43 Kas het ~268 ~43 Kas RED2 QTL mark2 ~539 ~2 Col X ~43 Col Col Low High >400 SFPs Kas Kas Kas Select recombinants by PCR >200 from >1250 plants Potential Deletions >500 potential deletions 45 confirmed by Ler sequence 23 (of 114) transposons Disease Resistance (R) gene clusters Single R gene deletions Genes involved in Secondary metabolism Unknown genes Potential Deletions Suggest Candidate Genes FLM natural deletion FLOWERING1 QTL Chr1 (bp) MAF1 Flowering Time QTL caused by a natural deletion in FLM (Werner et al PNAS 2005) Fast Neutron deletions FKF1 80kb deletion CHR1 Het cry2 10kb deletion CHR1 Natural Copy Variation on Tiling Arrays Segregating self seed from wild ME isolate (Early – Late) Unite Genetic and Physical Map • Shotgun genomic or 454 reads • ESTs/ cDNAs/ BAC ends • 1000s of contigs • Genotype mapping population on arrays – Create very high density genetic map • Known position of genes/contigs allow QTL candidatet gene identification – Control hybridization variation for gene expression Aquilegia (Columbines) Recent adaptive radiation, 350Mb genome Genetics of Speciation along a Hybrid Zone Aquilegia (Columbine) NSF Genome Complexity • Microarray floral development – QTL candidates • Physical Map (BAC tiling path) – Physical assignment of ESTs • QTL for pollinator preference – ~400 RILs, map abiotic stress – QTL fine mapping/ LD mapping • Develop transformation techniques – VIGS • Whole Genome Sequencing (JGI 2007) Scott Hodges (UCSB) Elena Kramer (Harvard) Magnus Nordborg (USC) Justin Borevitz (U Chicago) Jeff Tompkins (Clemson) http://www.plosone.org/ NaturalVariation.org USC Magnus Nordborg Paul Marjoram Max Planck Detlef Weigel Scripps Sam Hazen University of Michigan Sebastian Zoellner University University of of Chicago Chicago Xu Zhang Yan Li Peter Roycewicz Evadne Smith Megan Dunning Joy Bergelson Michigan Michigan State State Shinhan Shiu Purdue Ivan Baxter Talking points • How to clone QTL? • Why? - , • Is it worth it • Macro evolution vs micro – Large steps vs gradual small steps