* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download PHYS101 - Concord University
Survey
Document related concepts
Transcript
IntroductoryPhysics PHYS101 Dr RichardH.CyburtOfficeHours TRF9:30-11:00am AssistantProfessorofPhysics F12:30-2:00pm Myoffice:402cintheScienceBuilding Myphone:(304)384-6006 Meetingsmayalsobearrangedatothertimes, byappointment Myemail:[email protected] Inpersonoremailisthebestwaytogetahold Checkmyscheduleonmyofficedoor. ofme. PHYS101 PHYS101:IntroductoryPhysics 400 Lecture:8:00-9:15am,TRScienceBuilding Lab1:3:00-4:50pm,FScienceBuilding304 Lab2:1:30-3:20pm,MScienceBuilding304 Lab3:3:30-5:20pm,MScienceBuilding304 Lab20:6:00-7:50pm,MScienceBuilding304 PHYS101 MasteringPhysicsOnline GotoHYPERLINK"http://www.masteringphysics.com."www.masteringphysics.com. ◦ UnderRegisterNow,selectStudent. ◦ Confirmyouhavetheinformationneeded,thenselectOK!Registernow. RCYBURTPHYS101),andchooseContinue. ◦ Enteryourinstructor’sCourseID( ◦ EnteryourexistingPearsonaccountusername andpassword andselectSignin. ◦ YouhaveanaccountifyouhaveeverusedaPearsonMyLab &Masteringproduct,suchasMyMathLab,MyITLab,MySpanishLab,or MasteringChemistry. ◦ Ifyoudon’thaveanaccount,select Create andcompletetherequiredfields. ◦ Selectanaccessoption. ◦ Entertheaccesscodethatcamewithyourtextbookorwaspurchasedseparatelyfromthebookstore. PHYS101 Midterm1 Therewillbeasignoutsheetinmyoffice ◦ Youmustsigntogetyourexam Therewillbeabonusassignment,basedonyourexam ◦ ◦ ◦ ◦ Willearnyouextrapointsonyourexam Itwillbeonlineasahomework Youmustdobetteronthisassignment,thanyourtesttogetbonuspoints Bonus=30%x(Homework– Midterm) BonusHomeworkisOnline,dueSep26,12:59pm(justbeforelabsstartfortheday) PHYS101 Midterm2 Thursday,September29 CoveringChapters5-8 ReviewSession,Wednesday,September28,7:00-9:00pmS300 PHYS101 IntroductoryPhysics PHYS101 DouglasAdams Hitchhiker’sGuidetotheGalaxy PHYS101 You’realreadyknowphysics! Youjustdon’tnecessarilyknowtheterminologyand languageweuse!!! PhysicsofNASCAR PhysicsofAngerBirds PHYS101 Courtesyofmywife…..(andtheOED) Yourwordfortodayis: noctambulate,v. noctambulate, v. [‘ intr. Towalkaboutatnight.’] Pronunciation: Brit. /nɒkˈtambjᵿleɪt/, U.S. /nɑkˈtæmbjəˌleɪt/ Origin:Formed withinEnglish,bycompounding.Etymons: nocti- comb.form, ambulate v. Etymology: < nocti- comb.form + ambulate v.,after noctambulation n., noctambulator n. Compare French noctambuler (1866).Compareearliersomnambulate vb. at somn- comb.form . intr. Towalkaboutatnight.1955 H.Spring TheseLoversfledAway 206 NowandthenIwould noctambulate throughthecity. 1988 R.Johnson Oxf.Myths 21 RightupuntilthenineteenthcenturytheUniversitypolicecould arrestcitizensfornoctambulating. 1993 A.Lane etal. SubterraneanWorld(song)in A.Lane DirtyPearl (recordsleevenotes), Allthe bushybratsturnedoutfromThewesternburgs..Noctambulating aroundnowheresville. PHYS101 Inclass!! PHYS101 Thislecturewillhelpyouunderstand: RecapofLecturespast UsingLabasaPhysicsProblem Questionsaboutforcesandcircularmotion Newton’sLawofGravity GravityandOrbits PHYS101 ExercisewithDrag Text:p.144 ©2015PearsonEducation,Inc. FromLab:Ropes&Pulleys PHYS101 QuickCheck 6.14 Acoinsitsonaturntableasthetablesteadily rotatescounterclockwise.Thefree-body diagramsbelowshowthecoinfrom behind,movingawayfromyou.Whichis thecorrectdiagram? ©2015PearsonEducation,Inc. QuickCheck 6.14 Acoinsitsonaturntableasthetablesteadily rotatescounterclockwise.Thefree-body diagramsbelowshowthecoinfrom behind,movingawayfromyou.Whichis thecorrectdiagram? C. ©2015PearsonEducation,Inc. QuickCheck 6.15 Acarturnsacorneronabankedroad. Whichofthediagramscould be thecar’sfree-bodydiagram? ©2015PearsonEducation,Inc. QuickCheck 6.15 Acarturnsacorneronabankedroad. Whichofthediagramscould be thecar’sfree-bodydiagram? E. ©2015PearsonEducation,Inc. Section6.5Newton’s LawofGravity ©2015PearsonEducation,Inc. MassandWeight Massandweightarenotthe samething. Massisaquantitythat describesanobject’sinertia, itstendencytoresistbeing accelerated. Weightisthegravitationalforceexertedonanobjectbyaplanet: w =–mg ©2015PearsonEducation,Inc. GravityObeysanInverse-SquareLaw Gravityisauniversal forcethataffectsall objectsintheuniverse. Newtonproposedthat theforceofgravity hasthefollowing properties: 1. Theforceisinverselyproportionaltothesquareofthedistancebetweentheobjects. 2. Theforceisdirectlyproportionaltotheproductofthemassesofthetwoobjects. ©2015PearsonEducation,Inc. GravityObeysanInverse-SquareLaw Newton’slawofgravityisaninverse-squarelaw. Doublingthedistancebetweentwomassescausestheforce betweenthemtodecreasebyafactorof4. ©2015PearsonEducation,Inc. ConceptualExample6.11Varying gravitationalforce Thegravitationalforcebetweentwogiantleadspheresis0.010Nwhenthe centersofthespheresare20mapart.Whatisthedistancebetweentheir centerswhenthegravitationalforcebetweenthemis0.160N? REASON Wecansolvethisproblemwithoutknowingthemassesofthetwo spheres.Thekeyistoconsidertheratiosofforcesanddistances.Gravityisan inverse-squarerelationship;theforceis relatedtotheinversesquareofthedistance.Theforceincreases byafactorof (0.160N)/(0.010N)= 16,sothedistancemustdecrease byafactorof= 4. Thedistanceisthus(20m)/4= 5.0m. ASSESS Thistypeofratioreasoningisaverygoodwaytogetaquickhandleonthe solutiontoaproblem. ©2015PearsonEducation,Inc. Example6.12Gravitationalforce betweentwopeople Youareseatedinyourphysicsclassnexttoanotherstudent0.60maway. Estimatethemagnitudeofthegravitationalforcebetweenyou.Assumethatyou eachhaveamassof 65kg. PREPARE Wewillmodeleachofyouasasphere.Thisisnotaparticularlygood model,butitwilldoformakingan estimate.Wewilltakethe0.60masthedistancebetweenyourcenters. ©2015PearsonEducation,Inc. Example6.12Gravitationalforce betweentwopeople(cont.) SOLVE ThegravitationalforceisgivenbyEquation6.15: ASSESS Theforceisquitesmall,roughlytheweightofonehaironyourhead.This seemsreasonable;youdon’tnormallysensethisattractiveforce! ©2015PearsonEducation,Inc. QuickCheck 6.16 TheforceofPlanetYonPlanetXis___themagnitude of. ◦ Onequarter ◦ Onehalf ◦ Thesameas ◦ Twice ◦ Fourtimes ©2015PearsonEducation,Inc. 2M M Planet X Planet Y QuickCheck 6.16 TheforceofPlanetYonPlanetXis___themagnitude of. ◦ Onequarter ◦ Onehalf ◦ Thesameas ◦ Twice ◦ Fourtimes ©2015PearsonEducation,Inc. 2M M Newton’sthirdlaw Planet X Planet Y QuickCheck 6.17 Thegravitationalforcebetweentwoasteroidsis 1,000,000N.Whatwilltheforcebeifthedistance betweentheasteroidsisdoubled? ◦ 250,000N ◦ 500,000N ◦ 1,000,000N ◦ 2,000,000N ◦ 4,000,000N ©2015PearsonEducation,Inc. QuickCheck 6.17 Thegravitationalforcebetweentwoasteroidsis 1,000,000N.Whatwilltheforcebeifthedistance betweentheasteroidsisdoubled? ◦ 250,000N ◦ 500,000N ◦ 1,000,000N ◦ 2,000,000N ◦ 4,000,000N ©2015PearsonEducation,Inc. GravityonOtherWorlds Ifyoutraveledtoanotherplanet,yourmass wouldbethesamebutyourweight wouldvary.Theweightofamassm onthemoonisgivenby UsingNewton’slawofgravity(Eq.(6.15))theweightisgivenby Sincethesearetwoexpressionsforthesameforce,theyareequaland ©2015PearsonEducation,Inc. GravityonOtherWorlds Ifweusevaluesforthemassandtheradiusofthemoon,wecompute gmoon = 1.62m/s2. A70-kgastronautwearingan80-kgspacesuitwouldweighmorethan 330lb ontheearthbutonly54lb onthemoon. ©2015PearsonEducation,Inc. QuickCheck6.18 PlanetXhasfree-fallacceleration8m/s2 atthesurface.PlanetYhas twicethemassandtwicetheradiusof planetX.OnPlanetY ◦ ◦ ◦ ◦ ◦ g =2m/s2 g =4m/s2 g =8m/s2 g =16m/s2 g =32m/s2 ©2015PearsonEducation,Inc. QuickCheck6.18 PlanetXhasfree-fallacceleration8m/s2 atthesurface.PlanetYhas twicethemassandtwicetheradiusof planetX.OnPlanetY ◦ ◦ ◦ ◦ ◦ g =2m/s2 g =4m/s2 g =8m/s2 g =16m/s2 g =32m/s2 ©2015PearsonEducation,Inc. WeightlessnessinOrbit Astronautsandtheirspacecraftareinfreefall. ©2015PearsonEducation,Inc. QuickCheck 6.19 AstronautsontheInternationalSpaceStationareweightless because ◦ There’snogravityinouterspace. ◦ Thenetforceonthemiszero. ◦ Thecentrifugalforcebalancesthegravitationalforce. ◦ g isverysmall,althoughnotzero. ◦ Theyareinfreefall. ©2015PearsonEducation,Inc. QuickCheck 6.19 AstronautsontheInternationalSpaceStationareweightless because ◦ There’snogravityinouterspace. ◦ Thenetforceonthemiszero. ◦ Thecentrifugalforcebalancesthegravitationalforce. ◦ g isverysmall,althoughnotzero. ◦ Theyareinfreefall. ©2015PearsonEducation,Inc. Section6.6Gravityand Orbits ©2015PearsonEducation,Inc. OrbitalMotion Ifthelaunchspeedofa projectileissufficientlylarge, therecomesapointatwhich thecurveofthetrajectoryand thecurveoftheearthare parallel. Suchaclosedtrajectoryis calledanorbit. Anorbitingprojectileisin freefall. ©2015PearsonEducation,Inc. OrbitalMotion Theforceofgravityistheforcethatcausesthecentripetalaccelerationofan orbitingobject: Anobjectmovinginacircleofradiusr atspeedvorbit willhavethiscentripetal accelerationif Thatis,ifanobjectmovesparalleltothesurfacewiththespeed ©2015PearsonEducation,Inc. OrbitalMotion Theorbitalspeedofaprojectilejustskimmingthesurfaceofasmooth,airless earthis Wecanusevorbit tocalculatetheperiodofthesatellite’sorbit: ©2015PearsonEducation,Inc. QuickCheck6.22 A60-kgpersonstandsoneachofthefollowingplanets. Onwhichplanetishisorherweightthegreatest? ©2015PearsonEducation,Inc. QuickCheck 6.22 A60-kgpersonstandsoneachofthefollowingplanets. Onwhichplanetishisorherweightthegreatest? A ©2015PearsonEducation,Inc. Example6.14Findingthespeedtoorbit Deimos Marshastwomoons,eachmuchsmallerthantheearth’smoon. Thesmallerofthesetwobodies,Deimos,isn’tquitespherical,butwecanmodel itasasphereofradius6.3km. Itsmassis1.8× 1015 kg. AtwhatspeedwouldaprojectilemoveinaveryloworbitaroundDeimos? ©2015PearsonEducation,Inc. Example6.14Findingthespeedtoorbit Deimos(cont.) SOLVE Thefree-fallaccelerationatthesurfaceofDeimos issmall: ©2015PearsonEducation,Inc. Example6.14Findingthespeedtoorbit Deimos(cont.) Giventhis,wecanuseEquation6.13tocalculatetheorbitalspeed: ASSESS Thisisquiteslow.Withagoodjump,youcouldeasilylaunchyourselfintoanorbitaround Deimos! ©2015PearsonEducation,Inc. GravityandOrbits Newton’ssecondlawtells usthatFM onm = ma,where FM onm isthegravitational forceofthelargebody onthesatelliteanda is thesatellite’sacceleration. Becauseit’smovingina circularorbit,Newton’s secondlawgives ©2015PearsonEducation,Inc. GravityandOrbits Asatellitemusthavethis specificspeedinorderto maintainacircularorbit ofradiusr aboutthelarger massM. ©2015PearsonEducation,Inc. GravityandOrbits Foraplanetorbitingthesun,theperiodT isthetimetocompleteonefullorbit. Therelationshipamongspeed,radius,andperiodisthesameasforanycircular motion: v =2πr/T Combiningthiswiththevalueofv foracircularorbitfromEquation6.21gives Ifwesquarebothsidesandrearrange,wefindtheperiodofasatellite: ©2015PearsonEducation,Inc. QuickCheck 6.20 Twosatelliteshavecircularorbitswiththesameradius.Whichhasa higherspeed? ◦ Theonewithmoremass. ◦ Theonewithlessmass. ◦ Theyhavethesamespeed. ©2015PearsonEducation,Inc. QuickCheck 6.20 Twosatelliteshavecircularorbitswiththesameradius.Whichhasa higherspeed? ◦ Theonewithmoremass. ◦ Theonewithlessmass. ◦ Theyhavethesamespeed. ©2015PearsonEducation,Inc. QuickCheck 6.21 Twoidenticalsatelliteshavedifferentcircularorbits.Whichhasa higherspeed? ◦ Theoneinthelargerorbit ◦ Theoneinthesmallerorbit ◦ Theyhavethesamespeed. ©2015PearsonEducation,Inc. QuickCheck 6.21 Twoidenticalsatelliteshavedifferentcircularorbits.Whichhasa higherspeed? ◦ Theoneinthelargerorbit ◦ Theoneinthesmallerorbit ◦ Theyhavethesamespeed. ©2015PearsonEducation,Inc. QuickCheck6.23 Asatelliteorbitstheearth.ASpaceShuttlecrewissenttoboostthe satelliteintoahigherorbit.Whichofthesequantitiesincreases? ◦ Speed ◦ Angularspeed ◦ Period ◦ Centripetalacceleration ◦ Gravitationalforceoftheearth ©2015PearsonEducation,Inc. QuickCheck6.23 Asatelliteorbitstheearth.ASpaceShuttlecrewissenttoboostthe satelliteintoahigherorbit.Whichofthesequantitiesincreases? ◦ Speed ◦ Angularspeed ◦ Period ◦ Centripetalacceleration ◦ Gravitationalforceoftheearth ©2015PearsonEducation,Inc. Example6.15Locatingageostationary satellite Communicationsatellitesappearto“hover”overonepointontheearth’s equator.Asatellitethatappearstoremainstationaryastheearthrotatesissaid tobeinageostationaryorbit.Whatistheradiusoftheorbitofsuchasatellite? PREPARE Forthesatellitetoremainstationarywithrespecttotheearth,the satellite’sorbitalperiodmustbe24hours;insecondsthisisT= 8.64× 104 s. ©2015PearsonEducation,Inc. Example6.15Locatingageostationary satellite(cont.) SOLVE WesolvefortheradiusoftheorbitbyrearrangingEquation6.22.Themass atthecenteroftheorbitistheearth: ©2015PearsonEducation,Inc. Example6.15Locatingageostationary satellite(cont.) ASSESS Thisisahighorbit,andtheradiusisabout7timestheradiusoftheearth. RecallthattheradiusoftheInternationalSpaceStation’sorbitisonlyabout5% largerthanthatoftheearth. ©2015PearsonEducation,Inc. GravityonaGrandScale Nomatterhowfaraparttwoobjectsmaybe,thereisagravitationalattraction betweenthem. Galaxiesareheldtogetherbygravity. Allofthestarsinagalaxyaredifferentdistancesfromthegalaxy’scenter,andso orbitwithdifferentperiods. ©2015PearsonEducation,Inc. ExampleProblem Phobos isthecloserofMars’stwosmallmoons,orbiting at9400kmfromthecenterofMars,aplanetofmass 6.4× 1023kg. WhatisPhobos’s orbitalperiod? HowdoesthiscomparetothelengthoftheMartianday,whichisjust shyof25hours? ©2015PearsonEducation,Inc.