Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 3 Discrete Random Variables and Probability Distributions  3.1 - Random Variables  3.2 - Probability Distributions for Discrete Random Variables  3.3 - Expected Values  3.4 - The Binomial Probability Distribution  3.5 - Hypergeometric and Negative Binomial Distributions  3.6 - The Poisson Probability Distribution What is the connection between probability and random variables? Events (and their corresponding probabilities) that involve experimental measurements can be described by random variables. 2 POPULATION random variable X Example: X = Cholesterol level (mg/dL) x1 x2 x3 x6 …etc…. x5 x4 xn SAMPLE of size n Pop values Probabilities xi p(xi ) x1 p(x1) x2 p(x2) x3 p(x3) ⋮ ⋮ Total 1 Data values Relative Frequencies xi p(xi ) = fi /n x1 p(x1) x2 p(x2) x3 p(x3) ⋮ ⋮ xk p(xk) Total 1 3 POPULATION random variable X Example: X = Cholesterol level (mg/dL) “Density” f ( x ) p ( x) (height) (area) Probability Histogram p( x)  f ( x) x Probabilities x p(x) x1 p(x1) x2 p(x2) x3 p(x3) ⋮ ⋮ Total 1 Total Area = 1 p(x) = Probability that the random variable X is equal to a specific value x, i.e., | x x (width) Pop values p(x) = P(X = x) “probability mass function” (pmf) | x X Consider the following discrete random variable… Example: X = “value shown on a single random toss of a fair die (1, 2, 3, 4, 5, 6)” X is said to be uniformly distributed over the values 1, 2, 3, 4, 5, 6. Probability Histogram Probability Table x p(x) 1 1/6 2 1/6 3 1/6 4 1/6 5 1/6 6 1/6 1 Density f(x) P(X = x) Total Area = 1 1 6 1 6 1 6 1 6 1 6 1 6 X “What is the probability of rolling a 4?” p (4)  P( X  4)  5 Consider the following discrete random variable… Example: X = “value shown on a single random toss of a fair die (1, 2, 3, 4, 5, 6)” X is said to be uniformly distributed over the values 1, 2, 3, 4, 5, 6. Probability Histogram Probability Table x p(x) 1 1/6 2 1/6 3 1/6 4 1/6 5 1/6 6 1/6 1 Density f(x) P(X = x) Total Area = 1 1 6 1 6 1 6 1 6 1 6 1 6 X “What is the probability of rolling a 4?” p (4)  P( X  4)  1 6 6 POPULATION random variable X Example: X = Cholesterol level (mg/dL) Probability Histogram Pop values Probabilities x p(x) x1 p(x1) x2 p(x2) x3 p(x3) ⋮ ⋮ Total 1 Total Area = 1 F(x) = Probability that the random variable X is less than or equal to a specific value x, i.e., F(x) = P(X  x) “cumulative distribution function” (cdf) | x X Motivation ~ Consider the following discrete random variable… Example: X = “value shown on a single random toss of a fair die (1, 2, 3, 4, 5, 6)” X is said to be uniformly distributed over the values 1, 2, 3, 4, 5, 6. Cumulative distribution P(X = x) P(X  x) x p(x) F(x) 1 1/6 1/6 2 1/6 2/6 3 1/6 3/6 4 1/6 4/6 5 1/6 5/6 6 1/6 1 1 8 Motivation ~ Consider the following discrete random variable… Example: X = “value shown on a single random toss of a fair die (1, 2, 3, 4, 5, 6)” X is said to be uniformly distributed over the values 1, 2, 3, 4, 5, 6. Cumulative distribution P(X = x) P(X  x) x p(x) F(x) 1 1/6 1/6 2 1/6 2/6 3 1/6 3/6 4 1/6 4/6 5 1/6 5/6 6 1/6 1 1 “staircase graph” from 0 to 1 9 POPULATION Pop vals pmf x p(x) x1 p(x1) F(x1) = p(x1) x2 p(x2) F(x2) = p(x1) + p(x2) x3 p(x3) F(x3) = p(x1) + p(x2) + p(x3) ⋮ ⋮ ⋮ Total 1 increases from 0 to 1 random variable X Example: X = Cholesterol level (mg/dL) cdf Calculating “interval probabilities”… F(b) = P(X  b) F(a–) = P(X  a–) F(b) – F(a–) = P(X  b) – P(X  a–) = P(a  X  b) b   p(x) a | | a–a | b X F(x) = P(X  x) POPULATION Pop vals pmf x p(x) x1 p(x1) F(x1) = p(x1) x2 p(x2) F(x2) = p(x1) + p(x2) x3 p(x3) F(x3) = p(x1) + p(x2) + p(x3) ⋮ ⋮ ⋮ Total 1 increases from 0 to 1 random variable X Example: X = Cholesterol level (mg/dL) Calculating “interval probabilities”…  F(b) = P(X  b) F(a–) = P(X  a–) b a cdf f ( x) dx  F (b)  F (a) b  f ( x )  x  F ( b )  F ( a )  F(b) – F(a–) = a p( x) P(X  b) – P(X  a–) = P(a  X  b) b   p(x) a F(x) = P(X  x) | | a–a | b X FUNDAMENTAL THEOREM OF CALCULUS (discrete form) POPULATION Pop vals pmf x p(x) x1 p(x1) F(x1) = p(x1) x2 p(x2) F(x2) = p(x1) + p(x2) x3 p(x3) F(x3) = p(x1) + p(x2) + p(x3) ⋮ ⋮ ⋮ Total 1 increases from 0 to 1 random variable X Example: X = Cholesterol level (mg/dL) Calculating “interval probabilities”…  F(b) = P(X  b) F(a–) = P(X  a–) b a cdf f ( x) dx  F (b)  F (a) b  f ( x )  x  F ( b )  F ( a )  F(b) – F(a–) = a p( x) P(X  b) – P(X  a–) = P(a  X  b) b   p(x) a F(x) = P(X  x) | | a–a | b X FUNDAMENTAL THEOREM OF CALCULUS (discrete form) Chapter 3 Discrete Random Variables and Probability Distributions  3.1 - Random Variables  3.2 - Probability Distributions for Discrete Random Variables  3.3 - Expected Values  3.4 - The Binomial Probability Distribution  3.5 - Hypergeometric and Negative Binomial Distributions  3.6 - The Poisson Probability Distribution POPULATION Pop values Probabilities x pmf p(x) x1 p(x1) x2 p(x2) x3 p(x3) ⋮ ⋮ Total 1 random variable X Example: X = Cholesterol level (mg/dL) Just as the sample mean x and sample variance s2 were used to characterize “measure of center” and “measure of spread” of a dataset, we can now define the “true” population mean  and population variance  2, using probabilities. • Population mean    x p ( x) Also denoted by E[X], the “expected value” of the variable X. • Population variance  2   ( x   ) 2 p ( x) 14 POPULATION Pop values Probabilities x pmf p(x) x1 p(x1) x2 p(x2) x3 p(x3) ⋮ ⋮ Total 1 random variable X Example: X = Cholesterol level (mg/dL) Just as the sample mean x and sample variance s2 were used to characterize “measure of center” and “measure of spread” of a dataset, we can now define the “true” population mean  and population variance  2, using probabilities. • Population mean    x p ( x) Also denoted by E[X], the “expected value” of the variable X. • Population variance  2   ( x   ) 2 p ( x) 15 Example 1: POPULATION random variable X Example: X = Cholesterol level (mg/dL) 1/2 Pop values Probabilities xi p(xi ) 210 1/6 240 1/3 270 1/2 Total 1 1/3 1/6    x p( x)  (210)(1/ 6)  (240)(1/ 3)  (270)(1/ 2)  250 2 2 2  2   ( x   )2 p( x)  (40) (1/ 6)  (10) (1/ 3)  (20) (1/ 2)  500 16 Example 2: POPULATION random variable X Example: X = Cholesterol level (mg/dL) Equally likely outcomes result in a “uniform distribution.” Pop values Probabilities xi p(xi ) 180 1/3 210 1/3 240 1/3 Total 1 1/3 1/3 1/3    x p( x)  (180)(1/ 3)  (210)(1/ 3)  (240)(1/ 3)  210 (clear from symmetry) 2 2 2  2   ( x   )2 p( x)  (30) (1/ 3)  (0) (1/ 3)  (30) (1/ 3)  600 17 To summarize… 18 POPULATION Discrete random variable X Probability Table Pop Probabilities xi pmf p(xi ) x1 p(x1) x2 p(x2) x3 p(x3) ⋮ ⋮ 1 Probability Histogram Total Area = 1 X    x p( x)  2   ( x   ) 2 p ( x) Frequency Table Data xi x1 x2 x3 x6 x4 …etc…. x5 xn SAMPLE of size n Relative Frequencies Density Histogram p(xi ) = fi /n x1 p(x1) x2 p(x2) x3 p(x3) ⋮ ⋮ xk p(xk) 1 Total Area = 1 X x   x p( x) s 2  nn1  ( x  x ) 2 p( x) 19 POPULATION Continuous Discrete random variable X Probability Table Pop Probabilities xi pmf p(xi ) x1 p(x1) x2 p(x2) x3 p(x3) ⋮ ⋮ 1 Probability Histogram Total Area = 1 X    x p( x)  2   ( x   ) 2 p ( x) Frequency Table Data xi x1 x2 x3 x6 x4 …etc…. x5 xn SAMPLE of size n Relative Frequencies Density Histogram p(xi ) = fi /n x1 p(x1) x2 p(x2) x3 p(x3) ⋮ ⋮ xk p(xk) 1 Total Area = 1 X x   x p( x) s 2  nn1  ( x  x ) 2 p( x) 20 One final example… 21 Example 3: TWO INDEPENDENT POPULATIONS X1 = Cholesterol level (mg/dL) X2 = Cholesterol level (mg/dL) x p1(x) 1 = 250 x p2(x) 2 = 210 210 1/6 12 = 500 180 1/3 22 = 600 240 1/3 210 1/3 270 1/2 240 1/3 Total 1 Total 1 D = X1 – X2 ~ ??? d -30 0 Outcomes (210, 240) (210, 210), (240, 240) +30 (210, 180), (240, 210), (270, 240) +60 (240, 180), (270, 210) +90 (270, 180) 22 Example 3: TWO INDEPENDENT POPULATIONS X1 = Cholesterol level (mg/dL) X2 = Cholesterol level (mg/dL) x p1(x) 1 = 250 x p2(x) 2 = 210 210 1/6 12 = 500 180 1/3 22 = 600 240 1/3 210 1/3 270 1/2 240 1/3 Total 1 Total 1 D = X1 – X2 ~ ??? d -30 0 Probabilities Outcomesp(d) 1/9 ? 240) (210, 2/9 ? 210), (240, 240) (210, +30 3/9 ? 180), (240, 210), (270, 240) (210, +60 2/9 ? 180), (270, 210) (240, +90 1/9 ? 180) (270, The outcomes of D are NOT EQUALLY LIKELY!!! 23 Example 3: TWO INDEPENDENT POPULATIONS X1 = Cholesterol level (mg/dL) X2 = Cholesterol level (mg/dL) x p1(x) 1 = 250 x p2(x) 2 = 210 210 1/6 12 = 500 180 1/3 22 = 600 240 1/3 210 1/3 270 1/2 240 1/3 Total 1 Total 1 D = X1 – X2 ~ ??? d -30 0 Probabilities Outcomesp(d) (1/6)(1/3) (210, 240)= 1/18 via independence (210, 210), (240, 240) +30 (210, 180), (240, 210), (270, 240) +60 (240, 180), (270, 210) +90 (270, 180) 24 Example 3: TWO INDEPENDENT POPULATIONS X1 = Cholesterol level (mg/dL) X2 = Cholesterol level (mg/dL) x p1(x) 1 = 250 x p2(x) 2 = 210 210 1/6 12 = 500 180 1/3 22 = 600 240 1/3 210 1/3 270 1/2 240 1/3 Total 1 Total 1 D = X1 – X2 ~ ??? d -30 0 Probabilities p(d) (1/6)(1/3) = 1/18 via independence (210, 210),+ (1/3)(1/3) (1/6)(1/3) (240, 240) = 3/18 +30 (210, 180), (240, 210), (270, 240) +60 (240, 180), (270, 210) +90 (270, 180) 25 Example 3: TWO INDEPENDENT POPULATIONS X1 = Cholesterol level (mg/dL) X2 = Cholesterol level (mg/dL) x p1(x) 1 = 250 x p2(x) 2 = 210 210 1/6 12 = 500 180 1/3 22 = 600 240 1/3 210 1/3 270 1/2 240 1/3 Total 1 Total 1 Probability Histogram 6/18 5/18 3/18 3/18 1/18 D = X1 – X2 ~ ??? d -30 0 Probabilities p(d) (1/6)(1/3) = 1/18 via independence (1/6)(1/3) + (1/3)(1/3) = 3/18 +30 (210, 180),+ (1/3)(1/3) (240, 210), (270, 240) (1/6)(1/3) + (1/2)(1/3) = 6/18 +60 (240, 180),+ (1/2)(1/3) (270, 210) (1/3)(1/3) = 5/18 +90 (270, 180)= 3/18 (1/2)(1/3) 26 Example 3: TWO INDEPENDENT POPULATIONS X1 = Cholesterol level (mg/dL) Probability Histogram X2 = Cholesterol level (mg/dL) x p1(x) 1 = 250 x p2(x) 2 = 210 210 1/6 12 = 500 180 1/3 22 = 600 240 1/3 210 1/3 270 1/2 240 1/3 Total 1 Total 1 D = X1 – X2 ~ ??? d -30 0 6/18 5/18 3/18 1/18 D = (-30)(1/18) + (0)(3/18) + (30)(6/18) + (60)(5/18) + (90)(3/18) = 40 Probabilities f(d) D = 1 – 2 (1/6)(1/3) = 1/18 via independence (1/6)(1/3) + (1/3)(1/3) = 3/18 +30 (210, 180),+ (1/3)(1/3) (240, 210), (270, 240) (1/6)(1/3) + (1/2)(1/3) = 6/18 +60 (240, 180),+ (1/2)(1/3) (270, 210) (1/3)(1/3) = 5/18 +90 (270, 180)= 3/18 (1/2)(1/3) 3/18 D2 = (-70) 2(1/18) + (-40) 2(3/18) +  (-10) 2(6/18) + (20) 2(5/18) + (50) 2(3/18) = 1100 2 = 2 + 2 D 1 2   27 General: TWO INDEPENDENT POPULATIONS X1 = Cholesterol level (mg/dL) IF the two Probability Histogram populations are dependent… X2 = Cholesterol level (mg/dL) x f1(x) 1 = 250 210 1/6 12 = 500 240 1/3 f2(x) 2 = 210 …then this 2 180 1/3still  formula holds, 2 = 600 210 BUT…… 1/3 270 1/2 240 Total 1 x 1/3 -30 0 5/18 3/18 3/18 1/18 Mean (X1 – X Total 2) = 1Mean (X1) – Mean (X2) D = X1 – X2 ~ ??? d 6/18 D = (-30)(1/18) + (0)(3/18) + (30)(6/18) + (60)(5/18) + (90)(3/18) = 40 Probabilities f(d) D = 1 – 2 (1/6)(1/3) = 1/18 via independence (1/6)(1/3) + (1/3)(1/3) = 3/18 = (-70) + Cov (-40) 2(3/18) + ) Var (X1 – X2) = Var (X1) D+2 Var (X22(1/18) ) – 2 (X , X 2 1 2 2 +30 (210, 180),+ (1/3)(1/3) (240, 210), (270, 240) (1/6)(1/3) + (1/2)(1/3) = 6/18 +60 (240, 180),+ (1/2)(1/3) (270, 210) (1/3)(1/3) = 5/18 These two formulas are valid for (270, 180) +90 (1/2)(1/3) = 3/18 continuous as well as discrete distributions.  (-10) (6/18) + (20) (5/18) + (50) 2(3/18) = 1100 2 = 2 + 2 D 1 2   28 POPULATION random variable X Example: X = Cholesterol level (mg/dL) Pop values Probabilities x pmf p(x) x1 p(x1) x2 p(x2) x3 p(x3) ⋮ ⋮ Total 1 General Properties of “Expectation” of X Mean:  X  E[ X ]   x p( x) Suppose X is transformed to another random variable, say h(X). Then by def, h ( X )  E[h( X )]   h( x) p( x) Variance:  X2   E ( xXXX))22 p(x ) ( x   X ) 2 p( x) 29 POPULATION random variable X Example: X = Cholesterol level (mg/dL) Pop values Probabilities x pmf p(x) bx1 bx2 bx3 p(x1) ⋮ ⋮ Total 1 p(x2) p(x3) General Properties of “Expectation” of X Mean:  X  E[ X ]   x p( x) Suppose X is constant, say b, throughout entire population… Then by def, E[b]   b p ( x)  b  p ( x)  b 1  b Variance:  X2  E ( X   X ) 2    ( x   X ) 2 p( x) 30 POPULATION random variable X Example: X = Cholesterol level (mg/dL) Pop values Probabilities x pmf p(x) bx1 bx2 bx3 p(x1) ⋮ ⋮ Total 1 p(x2) p(x3) General Properties of “Expectation” of X Mean:  X  E[ X ]   x p( x) Suppose X is constant, say b, throughout entire population… Then… E[b]  b Variance:  X2  E ( X   X ) 2    ( x   X ) 2 p( x) 31 POPULATION random variable X Pop values Probabilities x pmf p(x) a x1 a x2 a x3 Example: X = Cholesterol level (mg/dL) p(x1) p(x2) p(x3) ⋮ ⋮ Total 1 General Properties of “Expectation” of X Mean:  X  E[ X ]   x p( x) Multiply X by any constant a… Then by def, E[aX ]   a x p( x)  a  x p ( x)  a E[ X ] Variance:  X2  E ( X   X ) 2    ( x   X ) 2 p( x) 32 POPULATION random variable X Example: X = Cholesterol level (mg/dL) Pop values Probabilities x pmf p(x) a x1 a x2 a x3 p(x1) p(x2) p(x3) ⋮ ⋮ Total 1 General Properties of “Expectation” of X Mean:  X  E[ X ]   x p( x) Multiply X by any constant a… Then… E[aX ]  a E[ X ] i.e.,… a X  a  X Variance:  X2  E ( X   X ) 2    ( x   X ) 2 p( x) 33 POPULATION Pop values Probabilities x pmf p(x) x1  b random variable X Example: X = Cholesterol level (mg/dL) x2  b x3  b p(x1) p(x2) p(x3) ⋮ ⋮ Total 1 General Properties of “Expectation” of X Mean:  X  E[ X ]   x p( x) Multiply X by any constant a… Then… E[aX ]  a E[ X ] i.e.,… a X  a  X Add any constant b to X…  ( x  b) p( x)   x p( x)   b p( x) E[ X  b]   E[ X ]  E[b] Variance:  X2  E ( X   X ) 2    ( x   X ) 2 p( x) 34 POPULATION Pop values Probabilities x pmf p(x) x1  b random variable X Example: X = Cholesterol level (mg/dL) x2  b x3  b p(x1) p(x2) p(x3) ⋮ ⋮ Total 1 General Properties of “Expectation” of X Mean:  X  E[ X ]   x p( x) Multiply X by any constant a… Add any constant b to X… Then… E[aX ]  a E[ X ] E[ X  b]  E[ X ]  b i.e.,… a X  a  X X b  X  b Variance:  X2  E ( X   X ) 2    ( x   X ) 2 p( x) 35 POPULATION Pop values Probabilities x pmf p(x) x1 p(x1) x2 p(x2) x3 p(x3) ⋮ ⋮ Total 1 random variable X Example: X = Cholesterol level (mg/dL) General Properties of “Expectation” of X Mean:  X  E[ X ]   x p( x) E[aX  b]  a E[ X ]  b  a X b  a  X  b Variance:  X2  E ( X   X ) 2    ( x   X ) 2 p( x) 36 POPULATION random variable X Example: X = Cholesterol level (mg/dL) Pop values Probabilities x pmf p(x) x1 p(x1) x2 p(x2) x3 p(x3) ⋮ ⋮ Total 1 General Properties of “Expectation” of X Variance:  X2  E ( X   X ) 2    ( x   X ) 2 p( x) Multiply X by any constant a… then X is also multiplied by a. 2  aX  E (aX  a X ) 2   E  a 2 ( X   X ) 2   a 2 E ( X   X ) 2   a 2  X2 37 POPULATION random variable X Example: X = Cholesterol level (mg/dL) Pop values Probabilities x pmf p(x) x1 p(x1) x2 p(x2) x3 p(x3) ⋮ ⋮ Total 1 General Properties of “Expectation” of X Variance:  X2  E ( X   X ) 2    ( x   X ) 2 p( x) Multiply X by any constant a… then X is also multiplied by a. 2  aX  a 2  X2 2 i.e.,…Var (aX )  a Var ( X )  aX  a  X i.e.,…SD(aX )  a SD( X ) 38 POPULATION random variable X Example: X = Cholesterol level (mg/dL) Pop values Probabilities x pmf p(x) x1 p(x1) x2 p(x2) x3 p(x3) ⋮ ⋮ Total 1 General Properties of “Expectation” of X Variance:  X2  E ( X   X ) 2    ( x   X ) 2 p( x) Add any constant b to X… then b is also added to X . 2  X2 b  E  ( X  b)  ( X  b)      E  ( X   X ) 2    X2 39 POPULATION random variable X Example: X = Cholesterol level (mg/dL) Pop values Probabilities x pmf p(x) x1 p(x1) x2 p(x2) x3 p(x3) ⋮ ⋮ Total 1 General Properties of “Expectation” of X Variance:  X2  E ( X   X ) 2    ( x   X ) 2 p( x) Add any constant b to X… then b is also added to X .  X2 b   X2 i.e.,…Var ( X  b)  Var ( X )  X b   X i.e.,… SD( X  b)  SD( X ) 40 POPULATION Pop values Probabilities x pmf p(x) x1 p(x1) x2 p(x2) x3 p(x3) ⋮ ⋮ Total 1 random variable X Example: X = Cholesterol level (mg/dL) General Properties of “Expectation” of X Variance:  X2  E ( X   X ) 2    ( x   X ) 2 p( x)  E  X 2  2 X  X   X 2   E  X 2   2E 2X E X XX    EX2EX21  E  X 2   2 X 2   X 2  E  X 2    X 2 41 POPULATION random variable X Example: X = Cholesterol level (mg/dL) Pop values Probabilities x pmf pmf p(x) x1 p(x1) x2 p(x2) x3 p(x3) ⋮ ⋮ Total 1 General Properties of “Expectation” of X Variance:  X2  E ( X   X ) 2    ( x   X ) 2 p( x)  X2  E  X 2    X 2   x2 p( x)   X 2   E  X   E[ X ] 2 X 2 2   x p( x)   x p( x)  2 2 This is the analogue of the “alternate computational formula” for the sample variance s2. 42