Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
ECE 546 Lecture -12 MNA and SPICE Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected] ECE 546 – Jose Schutt-Aine 1 Nodal Analysis The Node Voltage method consists in determining potential differences between nodes and ground (reference) using KCL For Node 1: V1 Vm V1 V1 V2 0 ZA ZB ZC ECE 546 – Jose Schutt-Aine 2 Nodal Analysis For Node 2: V2 V1 V2 V2 Vn 0 ZC ZD ZE Rearranging the terms gives: 1 1 1 1 Z Z Z V1 Z B C A C 1 ZC Defining: 1 V2 Z Vm A 1 1 1 1 V1 Z Z Z V2 Z Vn D E E C GA 1 1 1 1 1 , GB , GC , GD , GE ZA ZB ZC ZD ZE ECE 546 – Jose Schutt-Aine 3 Nodal Analysis Rearranging the terms gives: GA GB GC GC V1 GAVm GC GC GD GE V2 GEVm The system can be solved to yield V1 and V2. ECE 546 – Jose Schutt-Aine 4 Nodal Analysis For Node 1: For Node 2: V1 50 V1 j1045 V1 V2 0 10 j5 2 j2 V2 V1 V2 V2 0 2 j2 3 j4 5 ECE 546 – Jose Schutt-Aine 5 Nodal Analysis Rearranging the terms gives: 1 50 1045 1 1 1 10 j 5 2 j 2 V1 2 j 2 V2 10 j 5 1 1 1 1 V1 V2 0 2 j2 2 j2 3 j4 5 ECE 546 – Jose Schutt-Aine 6 Nodal Analysis 1 1 1 1 500 5 j 2 4 V 5 4 1 1 1 V2 5090 1 1 5 4 4 j 2 2 [Y] [v]=[i] ECE 546 – Jose Schutt-Aine 7 Nodal Analysis - Solution 10 0.25 j 25 0.75 j 0.5 13.556.3 V1 24.772.25 V 0.45 j 0.5 0.25 0.546 15.95 0.25 0.75 j 0.5 0.45 j 0.5 10 0.25 j 25 18.3537.8 V1 33.653.75 V 0.45 j 0.5 0.25 0.546 15.95 0.25 0.75 j 0.5 ECE 546 – Jose Schutt-Aine 8 MNA Formulation V1 V2 0 Node 1: 3 5 V2 V1 V2 V2 V3 0 Node 2: 5 10 5 V3 V2 V3 0 Node 3: 5 10 ECE 546 – Jose Schutt-Aine 9 MNA Solution Arrange in matrix form: [G][V]=[I] 0 V1 3 0.2 0.2 0.2 0.5 0.2 V 0 2 0.2 0.3 V3 0 0 Use Gaussian elimination to form an upper triangular matrix 0 V1 3 0.2 0.2 0 0.3 0.2 V2 3 0 0.25 V3 3 0 Solve for V1, V2 and V3 using backward substitution This can always be solved no matter how large the matrix is ECE 546 – Jose Schutt-Aine 10 Why SPICE ? Established platform Powerful engine Source code available for free Extensive libraries of devices New device installation procedure easy ECE 546 – Jose Schutt-Aine 11 SPICE SPICE Directory Structure ECE 546 – Jose Schutt-Aine 12 MOS SPICE Parameters Symbol Description Value Units Ldrawn Device length (drawn) 0.35 mm Leff Device length (effective) 0.25 mm tox Gate oxide thickness 70 A Na Density of acceptor ions in NFET channel 1.0 1017 cm-3 Nd Density of donor ions in PFET channel 2.5 1017 cm-3 VTn NFET threshold voltage 0.5 V VTp PFET threshold voltage -0.5 V l Channel modulation parameter 0.1 V-1 g Body effect parameter 0.3 V1/2 Vsat Saturation velocity 1.7 105 m/s mn Electron mobility 400 cm2/Vs mp Hole mobility 100 cm2/Vs kn NFET process transconductance 200 mA/V2 kp PFET process transconductance 50 mA/V2 Cox Gate oxide capacitance per unit area 5 fF/mm2 CGSO,CGDO Gate source and drain overlap capacitance 0.1 fF/mm CJ Junction capacitance 0.5 fF/mm2 CJSW Junction sidewall capacitance 0.2 fF/mm Rpoly Gate sheet resistance 4 W/square Rdiff Source and drain sheet resistance 4 W/square ECE 546 – Jose Schutt-Aine 13 Problems • Nonlinear Devices Diodes, transistors cannot be simulated in the frequency domain Capacitors and inductors are best described in the frequency domain Use time-domain representation for reactive elements (capacitors and inductors) • Circuit Size Matrix size becomes prohibitively large ECE 546 – Jose Schutt-Aine 14 Motivations Zo Zo C - Loads are nonlinear - Need to model reactive elements in the time domain - Generalize to nonlinear reactive elements ECE 546 – Jose Schutt-Aine 15 Time-Domain Model for Linear Capacitor For linear capacitor C with voltage v and current i which must satisfy i C dv dt Using the backward Euler scheme, we discretize time and voltage variables and obtain at time t = nh vn1 vn hvn' 1 ECE 546 – Jose Schutt-Aine 16 Time-Domain Model for Linear Capacitor After substitution, we obtain v 'n1 in1 C so that in1 vn1 vn h C The solution for the current at tn+1 is, therefore, C C in1 vn1 - vn h h ECE 546 – Jose Schutt-Aine 17 17 Time-Domain Model for Linear Capacitor Backward Euler companion model at t=nh Trapezoidal companion model at t=nh ECE 546 – Jose Schutt-Aine 18 Time-Domain Model for Linear Capacitor Step response comparisons 0.4 Vo (volts ) 0.3 Exact Backward Eule r Tra pezoid al 0.2 0.1 0.0 0 10 20 30 40 50 60 Time (ns) ECE 546 – Jose Schutt-Aine 19 Time-Domain Model for Linear Inductor di vL dt Backward Euler : in1 in hin1 in1 vn1 vn1 L L L in1 in h h ECE 546 – Jose Schutt-Aine 20 Time-Domain Model for Linear Inductor If trapezoidal method is applied in1 in vn1 h in1 in 2 2L 2L in1 vn h h ECE 546 – Jose Schutt-Aine 21 The Diode + I V • Diode Properties – Two-terminal device that conducts current freely in one direction but blocks current flow in the opposite direction. – The two electrodes are the anode which must be connected to a positive voltage with respect to the other terminal, the cathode in order for current to flow. ECE 546 – Jose Schutt-Aine 22 Diode Circuits V V out D I D I S eVD / VT 1 VS RI D VD RI D (VD ) VD Nonlinear transcendental system Use graphical method ID Diode characteristics Vs/R Load line (external characteristics) Vout VS VD Solution is found at itersection of load line characteristics and diode characteristics ECE 546 – Jose Schutt-Aine 23 BJT Ebers-Moll Model C NPN Transistor B E I iE S evBE / VT 1 I S evBC / VT 1 F I iC I S evBE / VT 1 S evBC / VT 1 R I I iB S evBE / VT 1 S evBC / VT 1 F R F F 1F R R 1R Describes BJT operation in all of its possible modes ECE 546 – Jose Schutt-Aine 24 Newton Raphson Method Problem: Wish to solve for f(x)=0 Use fixed point iteration method: Define F ( x) x K ( x) f ( x) : xk 1 F ( xk ) x k K ( x k ) f ( x k ) With Newton Raphson: df 1 K ( x) [ f ( x)] dx 1 therefore, : xk 1 xk [ f ( xk )]1 f ( xk ) ECE 546 – Jose Schutt-Aine 25 Newton Raphson Method (Graphical Interpretation) ECE 546 – Jose Schutt-Aine 26 Newton Raphson Algorithm N R : xk 1 xk Ak f xk 1 Ak xk 1 Ak xk f ( xk ) Sk . xk+1 is the solution of a linear system of equations. Ak x Sk LU fact Forward and backward substitution. Ak is the nodal matrix for Nk Sk is the rhs source vector for Nk. ECE 546 – Jose Schutt-Aine 27 Newton Raphson Algorithm voltage controlled current controlled 0. k 0, gives V0 , i0 1. Find Vk , ik compute companion mod els. Gk , I k , Rk , Ek Vc Cc 2. Obtain Ak , Sk . 3. Solve Ak xk Sk . 4. xk 1 Solution 5. Check for convergence xk 1 xk . If they converge, then stop. 6. k 1 k , and go to step 1. ECE 546 – Jose Schutt-Aine 28 Newton Raphson - Diode It is obvious from the circuit that the solution must satisfy f(V) = 0 We also have 1 I s V / Vt f '(V ) e R Vt The Newton method relates the solution at the (k+1)th step to the solution at the kth step by f (Vk ) Vk 1 Vk f '(Vk ) Vk E I s eVk / Vt 1 Vk 1 Vk - R 1 I s Vk / Vt e R Vt ECE 546 – Jose Schutt-Aine 29 Newton Raphson After manipulation we obtain E 1 g k Vk 1 - J k R R I s Vk / Vt gk e Vt J k I s ( eVk /Vt -1) - Vk g k ECE 546 – Jose Schutt-Aine 30 Diode Circuit – Iterative Method Newton-Raphson Method Use: xk 1 xk f '( xk ) 1 f ( xk ) Vout VD 1 x( k 1) x( k ) f '( x( k ) ) f ( x( k ) ) f (VD ) VD VS I S eVD / VT 1 0 R 1 I f '(VD ) S eVD / VT R VT VD( k ) VS ( k 1) D V V (k ) D R V ( k ) / VT IS e D 1 1 I S VD( k ) / VT e R VT (k ) Where VD is the value of VD at the kth iteration Procedure is repeated until convergence to final (true) value of VD which is the solution. Rate of convergence is quadratic. ECE 546 – Jose Schutt-Aine 31 Newton Raphson for Diode Newton-Raphson representation of diode circuit at kth iteration gk I s Vk / Vt e Vt J k I s ( eVk / Vt -1) - Vk g k ECE 546 – Jose Schutt-Aine 32 Current Controlled Companion dh(i ) Rk di i ik Ek h(ik ) Rk ik ECE 546 – Jose Schutt-Aine 33 General Network Let x = vector variables in the network to be solved for. Let f(x) = 0 be the network equations. Let xk be the present iterate, and define Ak f ( xk ) Jacobian of f at x xk Let Nk be the linear network where each non-linear resistor is replaced by its companion model computed from xk. I j g j (V j ) ECE 546 – Jose Schutt-Aine 34 General Network V jk Pj k Pj k Companion model I k g Vk GkVk dg (V ) Gk dV V Vk ECE 546 – Jose Schutt-Aine 35 Nonlinear Reactive Elements dq q f (v ) , i dt dq qn1 qn h dt t tn1 qn1 qn f (vn1 ) or , in1 in1 (vn1 ) h h h ECE 546 – Jose Schutt-Aine 36 General Element ECE 546 – Jose Schutt-Aine 37