Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Bioactive Compounds from Marine Microbes Bioactive Compounds from Algae (Part 2) Cyanobacteria (“Blue-Green Algae”) Bioactive Compounds from (Other) Marine Bacteria Bioactive Compounds from Marine Fungi Algae Monera (“Prokaryotes”) Protista Plantae Fungi Animalia Algae Prokaryotic Kingdom Monera (Bacteria) Cyanobacteria (“Blue-Green Algae”) Eukaryotic Kingdom Protista “Microalgae” Dinophyta (“Dinoflagellates”) Raphidophyta (“Raphidophytes”) Bacillariophyta (“Diatoms”) Chrysophyta (“Golden Algae”) Chlorophyta (“Green Algae”) Phaeophyta (“Brown Algae”) “Macroalgae” Rhodophyta (“Red Algae”) “Harmful Algal Blooms” (HABs) Eukaryotic HAB Toxins CH3 H COOH Domoic Acid CH 2COOH H 3C COOH Syndrome “Amnesic Shellfish Poisoning” (ASP) Source Species Pseudonitzschia spp. Target Glutamate Receptors “Paralytic Shellfish Poisoning” (ASP) Alexandrium tamarense Inhibits Sodium Channels N H R4 H H N R1 Saxitoxin N NH2+ N H OH +H 2N OH HO R2 R3 Brevetoxin O O OHC CH3 CH3 CH2 CH3 O O CH3 O O O “Neurotoxic Shellfish Karenia brevis Poisoning” (ASP) (and others) “Florida Red Tide” Activates Sodium Channels “Ciguatera Fish Poisoning” (CFP) Activates Sodium Channels O O CH3 O O O CH3 H3C Ciguatoxin (and others) CH3 H H HO H H O H H H H H OH O H H H H O O O O O H H H H 3C O O CH3 H 9 Gambierdiscus toxicus OH O H O O H H H H OH Pectenotoxin (and others) HO OH O “Diarrhetic Shellfish Dinophysis spp. Poisoning” (CFP) O CH3 H 3C O O O O O OH OH H3 C OH H3 C O OH O O O CH 3 CH3 ? Polyketides from Dinoflagellates “Polyether Ladders” HO O O e.g. PbTx-1 OHC CH3 CH3 CH2 CH3 O O CH3 O O O O O CH3 O O O CH3 Macrolides Linear Polyethers O CH3 O CH3 H 3C O e.g. PTX-1 OH O H O O O O O O OH OH H3 C OH H3 C R1 R4 H3C O OH OH O OR3 O O CH3 O CH 3 CH3 H OH O O O H O e.g. Okadaic Acid CH3 R2 Polyketide Synthases (PKSs) are Modular Enzymes H Sc E NADPH b-ketoacyl synthase (KS) O Sc Sc R E H COOH O CO2 NADP+ b-ketoacyl reductase (KR) Sc H Dehydrase (DH) R Sa Sc R Sa R Sa H2O O O O OH O H E E E Sa Enoyl reductase (ER) R Sa O Polyketide Synthase (PKS) Acyl Carrier Protein Ketosynthase (KS) (ACP) Acyl Transferase (AT) S CoAS CoAS O R1 O 2 AT S O R1 R2 S O R1 O ACP S O R1 O HO PKSI Primers S O R R1 R2 KS AT S O Enoyl Dehydratase Ketoreductase Reductase (DH) (KR) (ER) O R1 OH R2 Organism Prorocentrum lima P. hoffmanianum Karenia brevis Symbiodinium sp. Amphidinium operculatum R2 R2 PKSI PKSII + + + + + - + - Snyder et al. (2003) Mar. Biotechnol., 5 (1):1-12. Prokaryotic Algae Monera (“Prokaryotes”) Cyanobacteria (“Blue-Green Algae”) Protista Plantae Fungi Animalia Cyanobacteria (“Blue-Green Algae”) Photosynthetic Bacteria Oldest Organisms on the Earth (Fossil Record - 3.5 Billions Years!) Marine, Freshwater and Terrestrial Stromatolites Symbiosis - e.g. Lichen Pigments and Algae PBs4 Chl a1 Cyanobacteria x Dinoflagellata Bacillariophyta Chrysophyta Chlorophyta Phaeophyta Rhodophyta x x x x x x 1Chl b c d Car. 2 Xanth.3 PC5 x x x x x x x x x x x x x PE6 x x x x x = Chlorophyll; 2Car. = Carotenoids; 3Xanth. = Xanthophylls; 4PB = Phycobilins (Phycobiloproteins); 5PC = Phyocyanin; 6PE = Phycoerythrin x Cyanobacteria as HABs Cyanobacteria as HABs First Scientific Report of Toxic Cyanobacteria: George Francis (1878) Nature Lake Alexandria, Murray River, Australia “thick scum like green oil paint, some two to six inches thick, and as thick and pasty as porridge” “Unwholesome” for cattle and other livestock that drink at the water Nodularia spumigens Cases of Acute Poisoning by Toxic Cyanobacteria in Drinking Water 1878 L. Alexandria, Australia Livestock Poisoning Nodularia spumigens 1931 Charleston, WV (Ohio River) Acute Gastroenteritis Unknown (9,000 cases/60,000 pop.) 1966 Harare, Zimbabwe Gastroenteritis (children) Microcystis aeruginosa 1975 Sewickley, PA Acute Gastroenteritis (62% of 8,000 pop.) Schizothrix calcicola 1983 Armidale, Australia Liver damage (elevated g-glutamyltransferase) M. aeruginosa 1983 Palm Island, Australia Hepatoenteritis (139 children) C. raciborskii (cylindrospermopsin) 1993 Itaparica Dam, Brazil Gastroenteritis (88 deaths, children) Anabaena, Microcystis 1996 Caruaru, Brazil Liver failure (63 deaths) Aphan., Oscillatoria (microcystins) Toxins from Cyanobacterial HABs Neurotoxins Hepatotoxins Dermatotoxins Neurotoxins from Cyanobacteria: Anatoxin-a 1950s-1960s Paul Gorham and Colleagues Cultured Anabaena flos-aquae Isolated “Very Fast Death Factor” HN H3C O Anatoxin-a O CH3 CH3 H3C O N H CH3 Acetylcholine (in vesicles) Synapse Anatoxin-a Irreversibly Binds Acetylcholine Receptors and Inhibits Acetylcholinesterases Acetylcholine Receptor (AChR) Anatoxin-a Irreversibly Binds Acetylcholine Receptors and Inhibits Acetylcholinesterases + + + + + + + + - - - - - - ++ -K+ Na+ Ca2+ Anatoxin-a Irreversibly Binds Acetylcholine Receptors and Inhibits Acetylcholinesterases + + + + + + + + - - - - - - ++ -K+ Na+ Ca2+ Anatoxin-a Irreversibly Binds Acetylcholine Receptors and Inhibits Acetylcholinesterases Ca2+ Na+ + + + + + + + + - - - - - - ++ -- SR Ca2+ K+ PKC Na+ Ca2+ Anatoxin-a Irreversibly Binds Acetylcholine Receptors and Inhibits Acetylcholinesterases Anatoxin-a Irreversibly Binds Acetylcholine Receptors and Inhibits Acetylcholinesterases Ca2+ Na+ + + + + + + + + - - - - - - ++ -- SR Ca2+ K+ PKC Na+ Ca2+ Anatoxin-a Irreversibly Binds Acetylcholine Receptors and Inhibits Acetylcholinesterases Na+ + + + + + + + + - - - - - - ++ -Acetylcholinesterase K+ Na+ Ca2+ Anatoxin-a Irreversibly Binds Acetylcholine Receptors and Inhibits Acetylcholinesterases Anatoxin-a Ca2+ Na+ + + + + + + + + - - - - - - ++ -- SR Ca2+ K+ PKC Na+ Ca2+ Anatoxin-a Irreversibly Binds Acetylcholine Receptors and Inhibits Acetylcholinesterases Neurotoxins from Cyanobacteria: Anatoxin-a(s) CH3 N CH3 HN N O O P NH -O O Anatoxin-a(s) CH3 Anatoxin-a(s) Inhibits Cholinesterases LD50 = 20 µg/kg (in mice) vs. LD50 of Anatoxin-a = 200 µg/kg (in mice) Neurotoxins from Cyanobacteria: Saxitoxin R4 O NH 2 O NHSO3 R4: H O H N R1 N NH2+ N H OH +H 2N OH R2 R3 Saxitoxin (STX) and Other “PSP Toxins” R1 H H H OH OH OH R2 H H OSO3H H OSO3- R3 H OSO3H H OSO3H STX GTX2 GTX3 NeoSTX GTX1 GTX4 O GTX5 C1 C2 GTX6 C3 C4 STX Binds and Blocks Voltage-Gated Sodium Channels = STX (or TTX) Hepatotoxins from Cyanobacteria: Microcystins CO2H CH3 O N HN NH H3C O OCH 3 CH2 H3C O O NH CH3 CH3 H N CH3 HN H N CH 3 O O e.g. Microcystin-LR HN HN NH2 CO2 H CH 3 O Microcystin Structural Diversity COOR4 R3 O N HN NH H3C O OR1 CH2 O H3C R2 O X N H R1, R2 , R3 and R4 = -CH3 or -H X and Z = variable amino acid CH3 NH Z CH3 O COOH Over 70 Variants of MIcrocystins! Microcystin Diversity CO2H CH3 O N HN NH H3C O OCH 3 CH2 H3C O O NH CH3 CH3 H N CH3 HN H N CH 3 O O Microcystin-LR HN HN NH2 CO2 H CH 3 O Hepatotoxins from Cyanobacteria: Nodularin O H COOH H3C H CH3 CH3 OCH3 O NH H3C H O H CH3 H N CH3 NH O H Nodularin NH HN NH2 O COOH Microcystins (and Nodularin) Accumulate in Liver Approximately 50% of Microcystin in Liver ATP-Dependent Carrier-Mediated Transport Microcystins and Primary Liver Cancer (PLC) Nandong District, Jiangsu Province, China Pond/ditch vs. Well as Drinking Water Supply ~ 24-Fold Higher Rate of PLC with Pond/Ditch Water 100.13 cases per 100,000 (pond/ditch) 4.28 cases per 100,000 (well) Microcystin Levels: Pond/Ditch: 60% samples positive, avg. 160 pg/mL Well: None detected Calculated 0.19 pg/day Seasonal Intake (4 mo./yr.) Yu, 1989, Primary Live Cancer, pp. 30-37; Harada et al., 1996, China Nat. Toxins, 4: 27783; Ueno et al., 1996, Carcinogenesis 17: 1317-21 Microcystins (and Nodularins) are PP1/2a Ser/Thr Protein Phosphatase Inhibitors MacKintosh et al. (1990) FEBS Lett. 264: 187-92. Non-Ribosomal Peptides are Characteristic of Cyanobacterial Toxins Methyl-dehydro-Ala (Mdha) Iso-D-Glu CO2H CH3 O N Adda HN NH H3C O OCH 3 D-Ala CH2 H3C O O NH CH3 CH3 H N CH3 HN CH 3 H N CH 3 O O Arg Iso-MeAsp HN HN CO2 H NH2 O Leu Non-Ribosomal Peptide Synthetases (NRPSs) are Modular Enzymes A = Adenylation Domain C = Condensation Domain T (PCP) = Thiolation (Peptidyl Carrier) Domain Mixed NRPS/PKS Pathway for Synthesis of Microcystins Dermatotoxins from Cyanobacteria: Lyngbya Toxins Lynbyatoxin Aplysiotoxin Dermatotoxins from Cyanobacteria: Lyngbya Toxins Drugs from Cyanobacteria: Curacin-A OCH3 N Curacin A S Curacin A Binds Colchicine Site of Tubulin and Inhibits TubulinPolymerization Drugs from NON-MARINE Cyanobacteria: Cryptophycin O O O O HN Cl O O N H O Cryptophycin 52 (LY355703) OCH3 Cryptophycin Inhibits Tubulin Polymerization Cryptophycin 52 in Clinical Trials (Phase II) Clinical Response of Women with Ovarian Cancer Treated with LY355703 (n=24) Response Complete Remission Partial Remission Stable Disease Progressive Disease No. 0 3 7 14 % 0 12.5 29.2 58.3 D’Agostino et al. (2006) Intl. J. Gyn. Cancer 16: 71-76. Drugs from Cyanobacteria: Spirulina? Bioactive Compounds from Heterotrophic Marine Bacteria Monera (“Prokaryotes”) Protista Plantae Fungi Animalia Bacteria: Kingdom Monera Shape Cocci = Sphere-Shaped Bacilli = Rod-Shaped Spirilla = Spiral-Shaped “Growth Form” Staph = Bacteria in Clusters Strep = Bacteria in Chains Classification of the Bacteria (i.e. Kingdom Monera) Gram-Negative Gram-Positive Classification of the Bacteria (i.e. Kingdom Monera) Eubacteria Gram-Positive Bacteria w/ Cell-Walls Gram-Negative Bacteria w/ Cell-Walls Bacteria w/o Cell-Walls (Mycoplasma) Archaebacteria Cyanobacteria are Eubacteria Gram-Stained Cyanobacteria NEGATIVE Lipopolysaccharides (LPSs) from Cell-Wall of Gram-Negative Bacteria are “Endotoxin” “O-Region”: Repeating tri-, tetra- or pentasaccharides (up to 25) Outside Cell Polysaccharide “Core” Cell Wall HO OH O CH2 P O Lipid A Inside Cell O O CH2 OH O O O NH C O C OH HO CH2 O NH O OH CH2 CH C O O C O CH (CH2) 10 O O C CH3 O (CH2) 10 CH2 CH2 (CH2) 10 C HC OH HC CH3 (CH2) 10 CH3 CH3 (CH2) 10 CH3 P (CH2) 10 CH3 OH O Actinomycetes: A Rich Source of Bioactive Compounds Approximately Half of Bioactive Metabolites!! Approximately 60% of Antibiotics Streptomyces spp. Actinomycetes: A Rich Source of Bioactive Compounds Antibiotics from Streptomyces Antibiotic Amphotericin B Erythromycin Neomycin Streptomycin Tetracycline Vancomycin Rifamycin Source Streptomyces nodosus S. erythreus S. fradiae S. griseus S. rimosus S. orientalis S. mediterranei Marine Actinomycetes H OH O Salinospora spp. HN O O CH3 Cl Salinosporamide A (NPI-0052) Feling et al. (2003) Agnew Chem Int Ed Engl, 42:355-7 Are Salinospora “True” Marine Bacteria? Jensen et al. (1991) Appl. Environ. Microbiol., 57: 1102-8. Salinosporamide A Inhibits the Proteasome H OH OH O O HN HN O O O O CH3 CH3 H 3C Cl Salinsporamide A Omuralide Macherla et al. (2005) J. Med. Chem. 48: 3684-7. Salinosporamide A Inhibits the Proteasome Macherla et al. (2005) J. Med. Chem. 48: 3684-7. The Proteasome Degrades ShortLived and Abnormal Proteins 19S “Caps” (Regulatory) 26S Proteasome 20S Proteasome (Proteolytic) Proteins Marked for Degradation by Ubiquitinylation -Helix b-Strands Ubiquitin (Ubq) 76 Amino Acids (Mol. Mass 8500) Two C-Terminal Gly -> Bind to Lys of Proteins Gly Bind Lys of Other Ubq = Polyubiquitinylation The Ubiquitin-Proteasome Pathway Salinosporamide A Inhibits NF-kB Activation Macherla et al. (2005) J. Med. Chem. 48: 3684-7. Proteasome Degrades IkB and Activates NF-kB Bioactive Compounds from Salinospora and Marine Actinomycetes Taken from Jensen et al. (2005) Bioactive Compounds from Marine Fungi Fungi: The First Source of Antibiotics 1928 - Alexander Fleming Discovers Inhibition of Bacteria by Penicillum notatum Penicillin G Fleming (1929) Br. J. Exp. Pathol. 10: 226 1939 - Florey and Chain Cure Mice of Bacterial Infection with Penicillin Injection …by the end of World War II, U.S. companies were making 650 billion units/month Antibacterial Compounds from Marine Fungi: Pestalone Inhibit methicillin- and vancomycin-resistant Enterococcus faecium (MIC = 37 and 78 ng/mL, respectively) OH O Cl HO O H3 CO OH H Pestalone (from Pestalotia sp.) CH3 Cl Antiviral Compounds from Marine Fungi: Halovirs Anti-HSV Activity C6 C10 C14 C16 C18 Antimalarial Compounds from Marine Fungi: Aigialomycin D HO O O Aigialus parvus (isolated from mangrove) Aigialomycin D CH 3 Antimalarial Compounds from Marine Fungi: Aigialomycin D Compound Aigialomycin A Aigialomycin B Aigialomycin C Aigialomycin D Aigialomycin E P. falciparum K1 (IC50, µg/mL) >20 >20 >20 6 >20 Antimalarial Compounds from Marine Fungi: Ascosalipyrrolidinone A H3C H 3CO H N O O CH3 H Ascochyta salicorniae (symbiont with green alga, Ulva) H H H3C H Ascosalipyrrolidinone A Culture of Bacteria (and other microbes) “Non-Culturability” of Bacteria Approximately 99% of Heterotrophic Bacteria are Non-Culturable Required Nutrients, Conditions and Other Factors Unknown Metagenomics – NRPS, PKS Metagenomic Analysis of Bacteria from Discodermia dissoluta PKS NRPS Filamentous Unicellular Shirmer et al. (2005) Appl. Environ. Microbiol., 71:4840-9.