Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
GEOMETRY MODULE 1 LESSON 25 CONGRUENECE CRITERIA FOR TRIANGLES βAAS and HL OPENING EXERCISE Write a proof for the following question. You may work in groups. Given: π·πΈ = π·πΊ, πΈπΉ = πΊπΉ Prove: Μ Μ Μ Μ π·πΉ is the angle bisector of β πΈπ·πΊ. STEP JUSTIFICATION 1 π·πΈ = π·πΊ Given 2 πΈπΉ = πΊπΉ Given 3 π·πΉ = π·πΉ Reflexive Property 4 βπ·πΈπΉ β βπ·πΊπΉ SSS 5 β πΈπ·πΉ β β πΊπ·πΉ Property of Congruent Triangles 6 Μ Μ Μ Μ is the angle bisector of β πΈπ·πΊ π·πΉ Definition of Angle Bisector DISCUSSION Today, we consider three possible triangle congruence criteria: AAS, SSA, AAA. ο· Angle- Angle-Side Triangle Congruence Criteria (AAS): Given two triangles βπ΄π΅πΆ and βπ΄β²π΅β²πΆβ². If πβ π΅ = πβ π΅β² (Angle), πβ πΆ = πβ πΆβ² (Angle), and π΄π΅ = π΄βπ΅β (Side), then the triangles are congruent. MOD1 L25 1 If you knew that two angles of one triangle corresponded to and were equal in measure to two angles of the other triangle, what conclusions can you make about the third angle of each triangle? The AAS criterion is actually an extension of the ASA triangle congruence criterion. Do SSA and AAA guarantee triangle congruence? SSA? Observe the triangles below. Each triangle has a set of adjacent sides and a non-included angle of 23°. Yet, the triangles are not congruent. AAA? In Problem Set Lesson 20, a similar question was posed. The triangles below have corresponding angles of 60°. Yet, the triangles are not congruent. MOD1 L25 2 ο· Hypotenuse-Leg Triangle Congruence Criteria (HL): Given two right triangles βπ΄π΅πΆ and βπ΄β²π΅β²πΆβ² with right angles π΅ and π΅β². If π΄π΅ = π΄β²π΅β² (Leg) and π΄πΆ = π΄β²πΆβ² (Hypotenuse), then the triangles are congruent. Imagine that a congruence exists so that triangles have been brought together such that π΄ = π΄β² (common vertex) and πΆ = πΆβ² (common vertex). The hypotenuse AC Μ Μ Μ Μ Μ . acts as a common side. We will add a construction and draw π΅π΅β² STEP 1 π΄π΅ = π΄β²π΅β² JUSTIFICATION Given β π΅ = β π΅ β² = 90° 2 π΄πΆ = π΄πΆ Reflexive Property 3 βπ΄π΅π΅β² is isosceles Definition of Isosceles 4 πβ π΄π΅π΅ β² = πβ π΄π΅β²π΅ The measures of base angles of isosceles triangles are equal. 5 β πΆπ΅π΅ β² + β π΄π΅π΅ β² = 90° Angle Addition β πΆπ΅β²π΅ + β π΄π΅β²π΅ = 90° 6 β πΆπ΅π΅ β² = 90° β β π΄π΅π΅ β² Subtraction β πΆπ΅β²π΅ = 90° β β π΄π΅β²π΅ 7 πβ πΆπ΅π΅ β² = πβ πΆπ΅β²π΅ Substitution from Line 4/Transitive 8 βπ΅πΆπ΅β² is isosceles Definition of Isosceles (Line 7 Base Angles) 9 π΅πΆ = π΅β²πΆβ² Property of Isosceles 10 βπ΄π΅πΆ β βπ΄β²π΅β²πΆβ² SSS (Line 1, 2, 9) We have all the triangle congruencies now: SSS, SAS, ASA, AAS, HL. MOD1 L25 3 PRACTICE Μ Μ Μ Μ β₯ πΆπ· Μ Μ Μ Μ , π΄π΅ Μ Μ Μ Μ β₯ π΄π· Μ Μ Μ Μ , πβ 1 = πβ 2 Given: π΅πΆ Prove: βπ΅πΆπ· β βπ΅π΄π· STEP Μ Μ Μ Μ β₯ πΆπ· Μ Μ Μ Μ , π΅πΆ 1 Μ Μ Μ Μ β₯ π΄π· Μ Μ Μ Μ , π΄π΅ JUSTIFICATION πβ 1 = πβ 2 Given 2 π΅π· = π΅π· Reflexive Property 3 πβ 1 + πβ πΆπ·π΅ = 180° Liner pairs are supplementary. 4 πβ 2 + πβ π΄π·π΅ = 180° Liner pairs are supplementary. 5 πβ πΆπ·π΅ = πβ π΄π·π΅ If two angles are equal in measure, then their supplements are equal in measure. 6 πβ π΅πΆπ· = πβ π΅π΄π· = 90° Definition of β₯ line segments 7 βπ΅πΆπ· β βπ΅π΄π· AAS Μ Μ Μ Μ , π΄π΅ = πΆπ· Given: Μ Μ Μ Μ π΄π· β₯ Μ Μ Μ Μ π΅π·, Μ Μ Μ Μ π΅π· β₯ π΅πΆ Prove: βπ΄π΅π· β βπΆπ·π΅ STEP 1 Μ Μ Μ Μ π΄π· β₯ Μ Μ Μ Μ π΅π·, Μ Μ Μ Μ , Μ Μ Μ Μ π΅π· β₯ π΅πΆ JUSTIFICATION π΄π΅ = πΆπ· Given 2 βπ΄π΅π· is a right triangle. Definition of β₯ line segments 3 βπΆπ·π΅ is a right triangle. Definition of β₯ line segments 4 π΅π· = π·π΅ Reflexive Property 5 βπ΄π΅π· β βπΆπ·π΅ HL MOD1 L25 4