Download Notes 26 3318 Electric Stored Energy

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
ECE 3318
Applied Electricity and Magnetism
Spring 2017
Prof. David R. Jackson
ECE Dept.
Notes 26
1
Stored Energy
Goal:
Calculate the amount of stored electric energy in
space, due to the presence of an electric field.
(Recall that the electric field is produced by a
charge density.)
2
Stored Energy (cont.)
Charge formulas:
1
U E   v  dV
2V
1
U E   s  dS
2S
(volume charge density)
(surface charge density)
Note:
We don’t have a linecharge version of the
charge formulas, since a
line charge would have an
infinite stored energy (as
would a point charge).
The charge formulas require      0
Electric-field formula:
1
U E   D  E dV
2V
Note:
The charge and electric field formulas will
give the same answer, provided that the
region V includes all places where there is a
charge or a field.
Please see the textbook for a derivation of these formulas.
3
Example
Find the stored energy.
A  m 2 
V0
+
-
r
h
x
We assume an ideal parallel-plate capacitor (no fields outside).
 V0 
ˆ
E  x 
h
Method #1
V 
D   0 r xˆ  0 
h
Use the electric field formula:
UE 
1
D  E dV

2V
so
2
1
V 
U E    0 r  0  dV
2V
h
4
Example (cont.)
Hence
1
 V0 
U E   0 r  
2
h
2
 Ah   J 
We can also write this as
1
A
U E    0 r  V02
2
h
Recall that
A
C   0 r
h
Therefore, we have
1
U E  CV02
2
5
Example (cont.)
Method #2
A  m 2 
SA
Use charge formula:
+++++++++++++
1
U E    s dS
2S
------------------
r
h
x
SB
(We use the surface-charge form of the formula.)
We then have
1
1
U E   A   s dS   B   s dS
2
2
SA
SB
6
Example (cont.)
1
1
U E   AQA   B QB
2
2
1
1
  A Q A   B QA
2
2
1
 Q  A  B 
2
so
1
U E  QV0
2
A  m 2 
SA
+++++++++++++
r
h
------------------
x
SB
Also, we can write this as
1
U E  QV0
2
1
  CV0  V0
2
or
1
U E  CV02
2
Note: This same derivation (method 2) actually holds for any shape capacitor.
7
Alternative Capacitance Formula
Using the result from the previous example, we can write
2U E
C 2
V
where
UE = stored energy in capacitor
V = voltage on capacitor
This gives us an alternative method for calculating capacitance.
8
Alternative Capacitance Formula (cont.)
Find C (using the alternative formula).
A  m 2 
A
r
Ex 0
h
x
B
Ideal parallel plate capacitor
Assume:
E  xˆ Ex 0
B
h
h
A
0
0
V  VAB   E  dr   Ex dx   Ex 0 dx
 Ex 0 h
9
Alternative Capacitance Formula (cont.)
A  m 2 
A
r
h
Ex 0
x
B
UE 
1
1
1
1 2
2
D

E
dV


E

E
dV


E
dV

 Ex 0  Ah 





2V
2V
2V
2
Therefore
1

2   Ex20  Ah  
2U E
2

C 2  
2
V
E
h
 x0 
so
C
A
h
10
Example
Find the stored energy.
a
1
U E   D  E dV
2V
0
E  E  r   rˆ Er  r 
 v 0  C/m 3 
Solid sphere of uniform
volume charge density
(not a capacitor!)
Gauss’s Law:
r<a

4 3

 v0  3  r  


E  rˆ 
2
 4 0 r





r>a
4 3


 v0 3  a 
E  rˆ 
2 
 4 0 r 


11
Example (cont.)
UE 
0
2 
E dV 
2
V


0
2
0
2
0
2
2
E
 r  r  dV
a
V
 v 0  C/m 3 
2  

2
2
E
r
r
sin  dr d d


 r
0
0 0 0

 2  2   Er2  r  r 2 dr
0
Hence we have
2
2
4 3
4 3


a v0
 v0
r 
a 


2
2
3
3
U E  2 0  
r
dr

2

r
dr
0
2 
2 
4 0 r 
4 0 r 
0
a




12
Example (cont.)
Result:
v20  4  5
UE 

a
 0  15 
Denote
This is the energy that it takes to
assemble (force together) the charges
inside the cloud from infinity.
4 3
Q  v 0   a 
3

so that
 3 
v 0  Q 
3 
 4 a 
We then have
1  Q2   3 
UE  


a   0   20 
J
13
Example (cont.)
Final result:
1Q
UE  
a  0
2
 3 


20



a
J
Q  C
0
Note:
UE  
as
a0
It takes an infinite amount of energy to make
an ideal point charge!
14
Example
Find the “radius” of an electron.
1  Q2   3 
UE    

a   0   20 
Q2  3 
 a


U E  20 0 
Q  qe  1.6022 1019 [C]
Assume that all of the stored energy is in the form of electrostatic energy:
U E  mc 2
We have:
m  9.1094 1031 [kg]
c  2.99792458 10 [m/s]
8
Hence
a  1.69 1015 [m]
U E  mc 2  8.1871  1014 [J]
This is one form of the “classical electron radius.”
15
Related documents