Download Data Warehouse and Business Intelligence

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts

Big data wikipedia, lookup

Data Protection Act, 2012 wikipedia, lookup

Data model wikipedia, lookup

Data center wikipedia, lookup

Database model wikipedia, lookup

Forecasting wikipedia, lookup

Data analysis wikipedia, lookup

3D optical data storage wikipedia, lookup

Information privacy law wikipedia, lookup

Data vault modeling wikipedia, lookup

Business intelligence wikipedia, lookup

Transcript
AUSFÜLLHILFE: BEWEGEN SIE DEN MAUSZEIGER ÜBER DIE ÜBERSCHRIFTEN. AUSFÜHRLICHE HINWEISE: LEITFADEN MODULBESCHREIBUNG
Data Warehousing and Business Intelligence
Module code
1
2
3
Workload
Credits/CP
Semester
180 h
6
1
Module
Teaching
Language
Frequency of module
Winter Semester
Contact hours
Self-study
Data Warehousing and Business
English
4 SWS / 45 h
Intelligence
Learning outcomes
After passing this module successfully, students are able to …
135 h
Duration
1 Semester
Class size
15
Knowledge (1)
 Differentiate the concepts of data warehousing and business intelligence
 Give an overview on important types of data warehouse architecture and BI functionality
 Describe the role of information and communication technology to meet the challengeces of international acting
enterprizes
Understanding (2)
 Understand process characteristics of data warehouse and BI systems
 Classify the relevant types of technological and business aspects and drivers
Practice (3)
 Define business case for BI prototype
 Select and apply appropriate methodological and architectural needs to define business case and BI prototype
Analysis (4)
 Analyse selected data warehouse and BI needs, described in a case studies (As-is and to-be concept, Excel
prototype).
Synthesis (5)
 Implementing business case concept by using Business Intelligence Software
Evaluation (6)
 Evaluate opportunities and threads of BI usage and implementation
Individual component content


Introduction/Overview
 Data Warehousing
 Fundamentals (e.g.: ETL, OLAP, Data Mining)
 Application areas (e.g.: Controlling, marketing)
The architecture of a Data Warehouse
 ROLAP and MOLAP
 SQL and Data Warehouse
 Semantic data models
 Data Warehouse-configurations
 Examples of configurations and software-tools
Version
1.3
Erstellt von
jr
Freigabe (Datum/Kürzel)
QM-Board 11.4.2012, 16.01.2013
04.06.2013/jr
Gültig ab
04.06.2013


4
Applications for a Data Warehouse
Business Intelligence (BI)
 Steps to Business Intelligence
 Data Warehouse and Operational Data Store (ODS)
 Development of integrated BI-Application-Systems
 BI project (Business case definition; as-is and to-be analysis; prototyping)
Teaching methods
Lectures style, exercises and practices (case study), presentations
5
Prerequisites


6
Basic principles in business administration and business information systems
Basic principles in database systems
Methods of assessment
Final written exam, presentation, written term paper
7
Applicability of module
Mandatory in Business Consulting Masters course
8
Person responsible for module/ lecturer
Prof. Dr. Monika Frey-Luxemburger
9
Reading list

Imhoff, C.; Galemmo, N.; Geiger, J. G.: Mastering Data Warehouse Design – Relational and Dimensional
Techniques. New York 2003.

Inmon, W. H.: Building the Data Warehouse. 4. Auflage, Indianapolis 2005.

Inmon, W. H.: Building the Operational Data Store. 2. Auflage, New York u.a. 1999.

Kimball, R.; Caserta, J.: The data warehouse ETL toolkit – Practical techniques for extracting, cleaning,
conforming, and delivering data. Indianapolis 2004.

Kimball, R.; Reeves, L.; Ross, M.; Thornthwaite, W.: The Data Warehouse Lifecycle Toolkit – Expert Methods for
Designing, Developing, and Deploying Data Warehouses. New York u.a. 1998.

Kimball, R.; Ross, M.: The data warehouse toolkit – The complete guide to dimensional modelling. New York u.a.
2002.

Moss, L.; Atre, S.: Business Intelligence Roadmap – The Complete Project Lifecycle for Decision-Support
Version
1.3
Erstellt von
jr
Freigabe (Datum/Kürzel)
QM-Board 11.4.2012, 16.01.2013
04.06.2013/jr
Gültig ab
04.06.2013
Applications. Boston u.a. 2003

Thomsen, E.: OLAP Solutions – Building Multidimensional Information Systems. 2. Auflage, New York u.a. 2002.
Version
1.3
Erstellt von
jr
Freigabe (Datum/Kürzel)
QM-Board 11.4.2012, 16.01.2013
04.06.2013/jr
Gültig ab
04.06.2013