Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chapter 5 Joint Probability Distributions and Random Samples 5.1 - Jointly Distributed Random Variables 5.2 - Expected Values, Covariance, and Correlation 5.3 - Statistics and Their Distributions 5.4 - The Distribution of the Sample Mean 5.5 - The Distribution of a Linear Combination Suppose Z is a third discrete random variable that depends on X and Y, i.e., there exists a joint pmf z p ( x, y ) for every ordered pair (x, y)… Y Suppose X and Y are two discrete random variables with pmfs pX(x) and pY(y) respectively: x pX(x) y pY(y) x1 pX (x1) y1 pY(y1) x2 pX (x2) y2 pY(y2) xr pX (xr) yc pY(yc) 1 p X ( xi ) 0 r p i 1 X ( xi ) 1 1 pY ( y j ) 0 c p j 1 Y (yj) 1 y1 y2 … x1 p(x1, y1) p(x1, y2) ... p(x1, yc) pX (x1) x2 p(x2, y1) p(x2, y2) ... p(x2, yc) pX (x2) ... ... ... p(xr, y1) p(xr, y2) ... pY (y1) pY (y2) X xr c p( x , y ) 1 i 1 j 1 ... p(xr, yc) pX (xr) pY (yc) p( xi , y j ) 0 r yc i j 1 Suppose Z is a third discrete random variable that depends on X and Y, i.e., there exists a joint pmf z p ( x, y ) for every ordered pair (x, y)… Y Suppose X and Y are two discrete random variables with pmfs pX(x) and pY(y) respectively: x pX(x) y pY(y) x1 pX (x1) y1 pY(y1) x2 pX (x2) y2 pY(y2) yc pY(yc) xr pX (xr) 1 p X ( xi ) 0 r p i 1 X ( xi ) 1 1 pY ( y j ) 0 c p j 1 Y (yj) 1 y1 y2 … x1 p(x1, y1) p(x1, y2) ... p(x1, yc) pX (x1) x2 p(x2, y1) p(xp2,(yx2i ), y j ) ...0 p(x2, yc) pX (x2) X r ... xr c yc ... p( x , y...) 1 ... i 1 j 1 p(xr, y1) p(xr, y2) pY (y1) pY (y1) i j ... p(xr, yc) pX (xr) pY (yc) 1 Suppose Z is a third discrete random variable that depends on X and Y, i.e., there exists a joint pmf z p ( x, y ) for every ordered pair (x, y)… Y Suppose X and Y are two discrete random variables with pmfs pX(x) and pY(y) respectively: x pX(x) y pY(y) x1 pX (x1) y1 pY(y1) x2 pX (x2) y2 pY(y2) yc pY(yc) xr pX (xr) 1 p X ( xi ) 0 r p i 1 X ( xi ) 1 1 pY ( y j ) 0 c p j 1 Y (yj) 1 y1 y2 … x1 p(x1, y1) p(x1, y2) ... p(x1, yc) pX (x1) x2 p(x2, y1) p(xp2,(yx2i ), y j ) ...0 p(x2, yc) pX (x2) X r ... xr c yc ... p( x , y...) 1 ... i 1 j 1 p(xr, y1) p(xr, y2) pY (y1) pY (y1) i j ... p(xr, yc) pX (xr) pY (yc) 1 marginal pmf of X Suppose X and Y are two discrete random variables with pmfs pX(x) and pY(y) respectively: x pX(x) y pY(y) x1 pX (x1) y1 pY(y1) x2 pX (x2) y2 pY(y2) yc pY(yc) xr pX (xr) 1 p X ( xi ) 0 r p i 1 X ( xi ) 1 1 pY ( y j ) 0 c p j 1 Y (yj) 1 c p X ( x) p( xi , y j ) z p ( x, y ) j 1 Y y1 y2 … x1 p(x1, y1) p(x1, y2) ... p(x1, yc) pX (x1) x2 p(x2, y1) p(xp2,(yx2i ), y j ) ...0 p(x2, yc) pX (x2) X r ... xr c yc ... p( x , y...) 1 ... i i 1 j 1 p(xr, y1) p(xr, y2) pY (y1) pY (y1) j ... marginal pmf of Y r pY ( y ) p( xi , y j ) i 1 p(xr, yc) pX (xr) pY (yc) 1 p p p p p p( xi , y j ) 0 r c p( x , y ) 1 Joint Probability Mass Function i i 1 j 1 j marginal pmf of X c p X ( x ) p ( x, y j ) pmf z p ( x, y ) p Y j 1 X ( x) 1 x y1 y2 … x1 p(x1, y1) p(x1, y2) ... p(x1, yc) pX (x1) x2 p(x2, y1) p(x2, y2) ... p(x2, yc) pX (x2) X xr yc p( xi , y j ) p X ( xi ) pY ( y j ) i 1, 2, , r j 1, 2, , c ... ... ... ... p(xr, y1) p(xr, y2) ... p(xr, yc) pX (xr) pY (y1) pY (y2) … pY (yc) 1 marginal pmf of Y r pY ( y ) p( xi , y ) p Y y i 1 ( y) 1 Def: X and Y are statistically independent if i.e., each cell probability is equal to the product of its marginal probabilities. p( x, y) pX ( x) pY ( y) Joint Probability Mass Function pmf z p ( x, y ) Y y1 y2 … yc x1 p(x1, y1) p(x1, y2) ... p(x1, yc) x2 p(x2, y1) p(x2, y2) ... p(x2, yc) ... ... ... ... p(xr, y1) p(xr, y2) ... p(xr, yc) X xr Joint Probability Mass Function pmf z p ( x, y ) Z In principle, one can construct a probability histogram much as before, with the height of each rectangle centered at the point (x, y) equal to the pmf z = p(x, y). What happens as the partition of the X and Y axes becomes arbitrarily small (i.e., the number of rows and columns ∞)? Recall… Time intervals intervals = 1.0 = 5.0 2.0 1.0 secs secs Time 0.5 “Density” Interval widths can be made arbitrarily small, i.e, the scale at which X is measured can be made arbitrarily fine, since it is continuous. f ( x) p ( x) (height) (area) | x x (width) pmf P( X x) p( x) f ( x) x As x 0 and # rectangles ∞, this “Riemann sum” approaches the area under the density curve f(x), expressed as a definite integral. pdf f ( x) dxx 1 Total Area b P(a X b) f ( x)) dxx b a a Similarly… . 14 p( xi , y j ) 0 r c p( x , y ) 1 Joint Probability Mass Function i i 1 j 1 j pmf z p ( x, y ) Y x1 x2 X xr y1 y2 … p(x1, y1) p(x1, y2) ... p(x2, y1) ... p(x2, y2) yc p(x1, yc) pX (x1) p(x2, yc) pX (x2) ... ... ... p(xr, y1) p(xr, y2) ... p(xr, yc) pX (xr) pY (y1) pY (y2) … pY (yc) 1 r pY ( y ) p( xi , y ) p Y y i 1 ( y) 1 c p X ( x ) p ( x, y j ) p ... marginal pmf of Y marginal pmf of X x j 1 X ( x) 1 r pf( x( ix,,yyj)) 00 c 1 1 f (px(,xy,)ydy) dx Joint Joint Probability Probability Density Function Mass Function i i 1 j 1 j ppmf df zz fp((xx,, yy)) Y x1 x2 X y1 y2 … p(x1, y1) p(x1, y2) ... p(x2, y1) ... p(x2, y2) yc p(x1, yc) pX (x1) marginal of X X marginal pmf pdf of p(x2, yc) pX (x2) fpX ( x( x) )f p((xx, ,yy) dy ) c j 1 X xr f p( x()xdx ) 11 ... ... ... ... p(xr, y1) p(xr, y2) ... p(xr, yc) pX (xr) pY (y1) pY (y2) … pY (yc) 1 marginal pmf ofYY pdf of r fYp( y()y) f p ( x(,xy,)ydx ) Y i 1 i f p( y()ydy) 11 Y Y y x X X j a x A X y P ( X , Y ) A ? b d c P( a X b Y b d p ( x, y ) c Y d ) lim f ( x, y ) y x x 0 y 0 x a y c b x a d y c f ( x, y ) dy dx P ( X , Y ) A f ( x, y) dA Z Joint Probability Density Function A Volume under density f(x, y) over A. pdf z f ( x, y ) f ( x, y ) 0 for all ( x, y ) 2 , f ( x, y) dy dx 1 “area element” dA dy 2 dx f ( x, y ) Y 0 ( x, y ) X Area A 2 dA dy dx or dA dx dy Example: Uniform Distribution Joint Probability Density Function Z Recall for one r.v. X… 1 3, 0 x 3 f ( x) otherwise 0, pdf z f ( x, y ) f ( x, y ) 0 for all ( x, y ) 2 , f ( x, y) dy dx 1 13 1 3 0 2 0 Y 2 X Example: Uniform Distribution 1 Z joint pdf f ( x, y ) 6 ( x, y) | 0 x 3, 0 y 2 Joint Probability Density Function pdf z f ( x, y ) 1 6 f ( x, y ) 0 for all ( x, y ) 2 , f ( x, y) dy dx 1 2 0 3 X 2 Y 2 (0 else) Joint Probability Density Function pdf z f ( x, y ) Example: Uniform Distribution 1 joint pdf f ( x, y ) 0 6 ( x, y) | 0 x 3, 0 y 2 (0 else) Confirm pdf... f ( x, y) dydx 1? 2 y2 y0 | x 1 xx0? y 0? 6 dy dx x 3? y 2? 3 2 1 6 1 6 y 1 6 1 6 x 0 y 0 1 dy dx 3 2 x 0 0 3 x 0 1 6 2 3 dx 2 dx 2x 0 3 16 (6 0) 1 Example: Joint Probability Density Function pdf z f ( x, y ) 1x y jointpdf pdf f f((xx, ,yy)) 0 6 15 ( x, y) | 0 x 3, 0 y 2 (0 else) Confirm pdf... f ( x, y) dydx 1? 2 y x, z0 Example: x y 0 15 ( x, y) | 0 x 3, 0 y 2 (0 else) joint pdf f ( x, y) Joint Probability Density Function pdf z f ( x, y ) f ( x, y) dydx 1? Confirm pdf... 2 x y x0 y 0 15 dy dx x 3 y 2 1 15 1 15 3 2 x 0 y 0 ( x y ) dy dx 3 1 15 3 1 15 x 2 x 151 (9 6 0) 1 0 2 x y y dx y 0 x 0 x 0 2 1 2 2 (2 x 2) dx 3 Example: x y 15 ( x, y) | 0 x 3, 0 y 2 (0 else) joint pdf f ( x, y) Joint Probability Density Function pdf z f ( x, y ) P ( X , Y ) A ? x2 x 0 y 1 A x2 1 15 1 15 2 x 0 2 1 y 0 ( x y ) dy dx 1 x y y dx y 0 x 0 2 1 2 2 2 1 x (1) (1) 0 dx 2 x0 2 1 1 15 x 12 dx x 0 5 A ( x, y) | 0 x 2, 0 y 1 x y y 0 15 dy dx y 1 1 15 Example: x y 15 ( x, y) | 0 x 3, 0 y 2 (0 else) joint pdf f ( x, y) Joint Probability Density Function pdf z f ( x, y ) P ( X , Y ) A ? x x y y dxdx dy x0? y ?0 1515 dy x 3? 2 2 y x 9 y ?92 x 2 151 3 151 3 2 x2 9 x 0 y 0 ( x y ) dy dx 2 x2 9 x y 12 y dx y 0 x 0 A | x A ( x, y ) | 0 x 3, 0 y x 2 9 2 2 3 1 15 2 2 1 2 2 2 x ( x ) 2 ( 9 x ) 0 dx x0 9 1 15 3 x 0 2 9 x3 812 x4 dx 19 50 0.38 Example: P ( X , Y ) A f ( x, y) dA A 6 1 2 dy dx x0.5 y 0 1 xy A 1 1 2x 1 ln 2 dx 2 x 0.5 x 6 1 2x 1 1 ln 1 xy dy dx 2 x 0.5 x y 0 6 ln 2 1 1 ln 0 dx 2 x 0.5 x 2 6 ln 2 6 (ln 2) 2 6 6 1 1 1 2 ln 21 dx x 0.5 x 6 1 2 2 2 1 x0.5 x dx 1 ln | x | 1 1 2 0.2921 26 p( xi , y j ) 0 r c p( x , y ) 1 Joint Probability Mass Function i i 1 j 1 j marginal pmf of X c p X ( x ) p ( x, y j ) pmf z p ( x, y ) p Y j 1 X ( x) 1 x y1 y2 … x1 p(x1, y1) p(x1, y2) ... p(x1, yc) pX (x1) x2 p(x2, y1) p(x2, y2) ... p(x2, yc) pX (x2) ... ... ... ... p(xr, y1) p(xr, y2) ... p(xr, yc) pX (xr) pY (y1) pY (y2) … pY (yc) 1 X xr marginal pmf of Y r pY ( y ) p( xi , y ) p Y y i 1 ( y) 1 yc p( xi , y j ) 0 r c p( x , y ) 1 Joint Probability Mass Function i i 1 j 1 j marginal pmf of X c p X ( x ) p ( x, y j ) pmf z p ( x, y ) p Y j 1 X ( x) 1 x y1 y2 … x1 p(x1, y1) p(x1, y2) ... p(x1, yc) pX (x1) x2 p(x2, y1) p(x2, y2) ... p(x2, yc) pX (x2) ... ... ... ... p(xr, y1) p(xr, y2) ... p(xr, yc) pX (xr) pY (y1) pY (y2) … pY (yc) 1 X xr yc marginal pmf of Y r pY ( y ) p( xi , y ) p Y y i 1 ( y) 1 Extend this to the continuous scenario…. Z Joint Probability Density Function z f ( x, y*) pdf z f ( x, y ) fY ( y*) marginal pdf of X y y* marginal pdf of Y fYfY( (yy*)) X ff ((x, y*) ) dx dx Fix y y* y y* Y f X ( x) f ( x, y ) dy Example (revisted): x y 15 ( x, y) | 0 x 3, 0 y 2 (0 else) joint pdf f ( x, y) Joint Probability Density Function pdf z f ( x, y ) marginal pdf of Y fY ( y ) f ( x, y ) dx 3 x y 1 1 2 x x y dx 15 2 x 0 x 0 15 1 10 (3 2 y ) x 3 marginal pdf of X f X ( x) f ( x, y ) dy x y 1 x y 1 y2 2 dy 15 2 y 0 y 0 15 y 2 2 15 ( x 1) Example (revisted): x y 15 ( x, y) | 0 x 3, 0 y 2 (0 else) joint pdf f ( x, y) Joint Probability Density Function pdf z f ( x, y ) fY ( y) dy 1 10 2 1 10 0 (3 2 y ) dy 2 3 y y 1 0 2 Check? marginal pdf of Y fY ( y) 101 (3 2 y) 0 marginal pdf of X f X ( x) 152 ( x 1) f X ( x) dx Exercise =1 Example (revisted): x y 15 ( x, y) | 0 x 3, 0 y 2 (0 else) joint pdf f ( x, y) Joint Probability Density Function pdf z f ( x, y ) Calculate cdf FY ( y ) P(Y y ) y fY (ty))dtdy 1 10 0 y2 1 10 (3 2ty))dt dy 3tyt y 1011 3 y y 2 00 2 2 2y Note: As y increases from 0 to 2, this increases continuously and monotonically from 0 to 1. marginal pdf of Y fY ( y) 101 (3 2 y) marginal pdf of X f X ( x) 152 ( x 1) f X ( x) dx Exercise =1 Example (revisted): x y 15 ( x, y) | 0 x 3, 0 y 2 (0 else) joint pdf f ( x, y) Joint Probability Density Function pdf z f ( x, y ) cdf FY ( y) P(Y y) 1 10 (3 y y 2 ) P(Y 1) F ?Y (1) 4 10 2 5 marginal pdf of Y fY ( y) 101 (3 2 y) marginal pdf of X f X ( x) 152 ( x 1) f X ( x) dx Exercise =1 Example (revisted): x y 15 ( x, y) | 0 x 3, 0 y 2 (0 else) joint pdf f ( x, y) Joint Probability Density Function pdf z f ( x, y ) cdf FY ( y) P(Y y) 1 10 (3 y y 2 ) P(Y 1) F ?Y (1) 4 10 2 5 Exercise: cdf FX ( x) P( X x) 1 15 ( x 2 2 x) P( X 2) FX (2) 8 15 marginal pdf of Y fY ( y) 101 (3 2 y) marginal pdf of X f X ( x) 152 ( x 1) f X ( x) dx Exercise =1 Example (revisted): x y 15 ( x, y) | 0 x 3, 0 y 2 (0 else) joint pdf f ( x, y) Joint Probability Density Function pdf z f ( x, y ) P(Y 1) F ?Y (1) 4 10 2 5 P( X 2) FX (2) 8 15 P (Both) P( X 2 y 1 A P ( X , Y ) A 1 5 (see slide 24) x2 marginal pdf of Y fY ( y) 101 (3 2 y) marginal pdf of X f X ( x) 152 ( x 1) Y 1) ? f X ( x) dx Exercise =1 Joint Probability Density Function marginal cdf of Y FY ( y ) P(Y y ) X pdf z f ( x, y ) f ( x, y ) dy dx 1 f(x2, y1x) f(xy 2, y2) Y ... ... f(x2, yc) P ... ( X , Y ) ... A ... A f(xr, y1) f(x1, yc) f(xr, y2) ...f ( x, yf(x) dA, y ) A r marginal pdf of X f X ( x) f ( x, y ) dy marginal cdf of X x FX ( x) P( X x) f X (t ) dt marginal pdf of Y f(x1,fy(2x) , y ) ... 0 f(x1, y1) y fY (t ) dt Integrate fY from to y fY ( y ) f ( x, y ) dx c 1 Integrate fY from to + Integrate f X from to + Integrate f X from to x Example x2 y3 joint pdf f ( x, y) 36 ( x, y) | 0 x 3, 0 y 2 Joint Probability Density Function pdf z f ( x, y ) Confirm pdf... (0 else) f ( x, y) dydx 1 Exercise 2 marginal pdf of Y fY ( y ) marginal pdf of X f X ( x) f ( x, y ) dy f ( x, y ) dx 2 4 2 x y x x y x dy y 3 dy y 0 36 36 y 0 36 4 9 y 0 2 2 3 2 2 2 Example x2 y3 joint pdf f ( x, y) 36 ( x, y) | 0 x 3, 0 y 2 Joint Probability Density Function pdf z f ( x, y ) Confirm pdf... (0 else) f ( x, y) dydx 1 Exercise 2 NOTE: For "standard rectangles" f ( x, y) f X ( x) fY ( y) X and Y are statistically independent! marginal pdf of Y fY ( y ) marginal pdf of X f X ( x) x2 f ( x, y ) dy 9 y3 f ( x, y ) dx 4 Exercise Example x2 y3 joint pdf f ( x, y) 36 ( x, y) | 0 x 3, 0 y 2 Joint Probability Density Function pdf z f ( x, y ) (0 else) P ( X , Y ) A ? NOTE: For "standard rectangles" f ( x, y) f X ( x) fY ( y) y 1 X and Y are statistically independent! marginal pdf of Y x0 A x2 Exercise P ( X , Y ) A P( X 2 y0 marginal pdf of X f X ( x) fY ( y ) yy33 f ( x, y ) dx 44 xx2 2 f ( x, y ) dy 99 222 xx112 2 x 21 yy3 3y 31 y3 dy dydy dx dx dx dx dy xx y9 0 9 x0 0 9 y 0 y 0 364 4 4 Y 1) Example x2 y3 joint pdf f ( x, y) 36 ( x, y) | 0 x 3, 0 y 2 Joint Probability Density Function pdf z f ( x, y ) (0 else) P ( X , Y ) A ? NOTE: For "standard rectangles" f ( x, y) f X ( x) fY ( y) y 1 X and Y are statistically independent! marginal pdf of Y x0 A x2 Exercise P ( X , Y ) A P( X 2 y0 marginal pdf of X f X ( x) fY ( y ) yy33 f ( x, y ) dx 44 x2 f ( x, y ) dy 9 22 2 x1x12 2 x 21 y y3 3y 31 y3 dy dydy dx dx dx dx dy xxx0 09 y9 0 9 y 0 y 0 364 4 4 Y 1) Example x2 y3 joint pdf f ( x, y) 36 ( x, y) | 0 x 3, 0 y 2 Joint Probability Density Function pdf z f ( x, y ) (0 else) P ( X , Y ) A ? NOTE: For "standard rectangles" f ( x, y) f X ( x) fY ( y) y 1 X and Y are statistically independent! marginal pdf of Y x0 A x2 fY ( y ) y3 f ( x, y ) dx 4 Exercise P ( X , Y ) A P( X 2 y0 marginal pdf of X f X ( x) 2 x f ( x, y ) dy 9 P( X 2) P(Y 1) Y 1) Example x2 y3 joint pdf f ( x, y) 36 ( x, y) | 0 x 3, 0 y 2 Joint Probability Density Function pdf z f ( x, y ) (0 else) P ( X , Y ) A ? NOTE: For "standard rectangles" f ( x, y) f X ( x) fY ( y) y 1 X and Y are statistically independent! marginal pdf of Y x0 A x2 fY ( y ) y3 f ( x, y ) dx 4 Exercise P ( X , Y ) A P( X 2) P(Y 1) y0 t2 8 FX (2) P( X 2) dt 0 9 27 3 1t 1 FY (1) P(Y 1) dt 0 4 16 2 marginal pdf of X f X ( x) x2 f ( x, y ) dy 9 1 54 Example x2 y3 joint pdf f ( x, y) 36 ( x, y) | 0 x 3, 0 y 2 Joint Probability Density Function pdf z f ( x, y ) (0 else) P ( X , Y ) A ? NOTE: For "standard rectangles" f ( x, y) f X ( x) fY ( y) yx 2 x0 X and Y are statistically independent! marginal pdf of Y A x2 fY ( y ) y3 f ( x, y ) dx 4 Exercise P ( X , Y ) A P( X 2 2) P(YY 1) 1) y0 2 marginal pdf of X f X ( x) x2 f ( x, y ) dy 9 2t x 2 FX (2) P2x( X x 1 x 2 y x4222)y33 0 9 8 dt 1 27 dydx dx 36 y 1dydx t3 1 0 x 0 36 y 0 y4 FY (1) P(Y 1) 00 dt 16128 4 16 1 54 Example x2 y3 joint pdf f ( x, y) 36 ( x, y) | 0 x 3, 0 y 2 Joint Probability Density Function pdf z f ( x, y ) (0 else) P ( X , Y ) A ? NOTE: For "standard rectangles" f ( x, y) f X ( x) fY ( y) X and Y are not independent if don’t have “standard” rectangles! X and Y are statistically independent! marginal pdf of Y fY ( y ) y3 f ( x, y ) dx 4 P ( X , Y ) A P( X 2 f X ( x) x2 f ( x, y ) dy 9 Y 1) 1 x y 1 4 dx 16128 x 0 36 54 0 1 marginal pdf of X x 2 Exercise 2 4 Example x2 y3 joint pdf f ( x, y ) 36 ( x, y) | 0 x 3, 0 y mx Joint Probability Density Function pdf z f ( x, y ) y m x, where 4 84 m 1.009133 3 andY Yare are XXand statistically dependent independent statistically ! ! marginal pdf of Y fY ( y ) f X ( x) (0 else) NOTE: For "standard rectangles" f ( x, y) f XX ( x) fYY ( y) X and Y are not independent if don’t have “standard” rectangles! marginal pdf of X Exercise y3 f ( x, y ) dx 4 Exercise mx 2 7 x6 x x y x x y 3 dy y dy f ( x, y ) dy 9y 0 36 y 0 36 36 4 36 y 0 2 2 2 3 2 mx 2 2 4 P ( X 1 , , X n ) A P ( X , Y ) Af( x1 , f (,xx, ny))dA dA Joint Probability Density Function A pdf z f ( x, y ) “Hypervolume” Volume under under density f(x, f y) over Aover . A. dA dx1 dx2 dxn or any permutation Definition of statistical independence of X and Y f ( x, y) f X ( x) fY ( y) can be extended to any number of variables. A X1 Area A X2 X3 X4 XY n