Download Mosser-web

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Innate Immunity, Host Defense, and Immunopathology
David M. Mosser, Ph.D.
[email protected]
Innate Immunity
It all started here….
Fig. 5.
From Lemaitre et al. Cell 86: 973–983, 1996.
Freely available at
www.cell.com/retrieve/pii/S0092867400801725
Innate immune responses via toll-like receptors
Toll-Like Receptors
*Genetically pre-determined
*Pattern recognition receptors
*Constitutively expressed on
phagocytes
*Signaling pathway similar to IL-1Rmediated NF-κB activation
Pathogen-associated molecular
patterns (PAMPs)
*Associated with pathogen, not host
*Indispensable to pathogen survival
*Highly conserved among pathogens
NF-κB
*Nuclear transcription factor
*Contributes to IL-12, TNFα, and
iNOS transcription activation
Fig. 2.
From Medzhitov, R.
and Janeway, C, Jr. N
Engl J Med 343(5):
338-344, 2000.
Available at
www.ncbi.nlm.nih.gov
/pubmed/10922424
PAMPs and DAMPs: signal 0s that spur autophagy and immunity
Fig. 1.
From Tang et al. Immunol Rev 249(1): 158175, 2012.
Available at
onlinelibrary.wiley.com.proxygw.wrlc.org/d
oi/10.1111/j.1600-065X.2012.01146.x/full
Many TLRs
Fig. 3-11, pt. 1.
From Kindt, Goldsby, and Osborne. Kuby
Immunology (6th Ed.). 2007, New York: Freeman.
TLR structure
Fig. 3-10.
From Kindt, Goldsby, and Osborne. Kuby
Immunology (6th Ed.). 2007, New York: Freeman.
TIR = Toll, IL-1 receptor domain
Nuclear translocation of NF-kB following
bacterial infection of macrophages
Untreated (dark nuclei)
R. equi – infected
LPS-treated
Macrophages counterstained red
NF-kB (p65) stained in green
Macrophage cytokine production
TNF, IL-1, IL-6, IL-8, IL-12…
Dendritic cell maturation (following TLR ligation)
MHC Class II
CD40
CD86 (B7.2)
Immature
Mature
Increased MHC
Increased CD40
Increased co-stim
TLR ligands as adjuvants… improving CMI !/?
Fig. 5.
From Duthie et al. Immunol Rev 239: 178-196, 2011.
Available at http://onlinelibrary.wiley.com/doi/10.1111/j.1600065X.2010.00978.x/abstract
Fig. 3B & C.
From Baldwin et al J Immunol
188: 2189-2197, 2012
Available at
Fig. 6.
From Baldwin et al J Immunol
188: 2189-2197, 2012
Available at
TLR ligands as adjuvants… preventing allergy
Fig. 3A.
From De Brito et al. J Clin Immunol 30: 280291, 2010.
Available at
link.springer.com/article/10.1007%2Fs10875009-9358-9
Fig. 1, A&B, and H&L.
From Xirakia et al. Am J Respir Crit Care Med
181: 1207-1216, 2010.
Freely available at
www.ncbi.nlm.nih.gov/pmc/articles/PMC36623
18/pdf/emmm0005-0762.pdf
CpG TH 1 response
IgE
R-848 lung inflammation
Delivery of antigen and TLR agonists to APCs
using nanoparticles
Nanoparticles
Antigen + TLR ligand
Targeting molecule
DC-targeted TLRLs enhance maturation and activation
of human DCs in vitro
Fig. 2A, top.
From Tacken et al. Blood 118: 6836-6844, 2011.
Freely available at
bloodjournal.hematologylibrary.org/content/118/26/6836.full
DC maturation
Fig. 2A, bottom.
From Tacken et al. Blood 118: 6836-6844, 2011.
Freely available at
bloodjournal.hematologylibrary.org/content/118/26/6836.full
Co-stim
Fig. 2B.
From Tacken et al. Blood 118: 6836-6844, 2011.
Freely available at
bloodjournal.hematologylibrary.org/content/118/26/6836.full
Cytokines
Binding, uptake, and Ag presentation of NPs
by mouse DCs
Fig. 4A.
From Tacken et al. Blood 118: 6836-6844, 2011.
Freely available at
bloodjournal.hematologylibrary.org/content/118/26/6836.full
Particle uptake
Fig. 4B.
From Tacken et al. Blood 118: 6836-6844, 2011.
Freely available at
bloodjournal.hematologylibrary.org/content/118/26/6836.full
T cell proliferation
Fig. 4C.
From Tacken et al. Blood 118: 6836-6844, 2011.
Freely available at
bloodjournal.hematologylibrary.org/content/118/26/6836.full
IFN-γ production
“Preserving the sanctity of the cytosol”
Cytosolic PRRs
Fig. 1.
From Chamaillard et al. Cell Microbiol 5: 481-592, 2003.
Freely available at
http://onlinelibrary.wiley.com/doi/10.1046/j.14625822.2003.00304.x/full
CARD domain
containing proteins
(Note: outdated nomenclature)
The NLR family
(Nucleotide-binding and oligomerization domain-like receptors)
Fig. 1.
From Yeretssian, G. Immunol Res 54: 25-36, 2012.
Available at
http://link.springer.com/article/10.1007%2Fs12026012-8317-3
Bacterial
Peptidoglycans
(top 2 NLRC)
NLRP3
(middle NLRP)
NLRP3
Inflammasome
Assembly
Fig. 3.
From Schroder, K. and Tschopp, J. Cell
140: 821-832, 2010.
Available at
www.cell.com/retrieve/pii/S0092867410000759
IL-1 and IL-18
secretion
Proteolytic cleavage to secrete IL-1, IL-18, and IL-33
Fig. 1.
From Lamkanfi, M. and Dixit, VM. Immunol Rev 227: 95-105, 2009.
Available at onlinelibrary.wiley.com/doi/10.1111/j.1600065X.2008.00730.x/abstract
NLRP3
NLRC4
NLRP1
Inflammasomes
Anthrax lethal toxin
ATP
Pore-forming
toxins
Crystals
Flagellin
T3SS and T4SS
Pseudomonas
Fig.
From Ulland, TK and Sutterwala, FS. The inflammasomes:
Activation of the inflammasome by bacterial pathogens. In:
Progress in Inflammation Research. 2011. Springer: Basel, p.
37-50.
dsDNA
Francisella
DNA: also
RIGI and MAVS
NLRP3 inflammasome
Fig. 1.
From Leemans et al. Immunol Rev 243: 152-162, 2011.
Available at http://onlinelibrary.wiley.com/doi/10.1111/j.1600065X.2011.01043.x/full
Cytosolic nucleic acid recognition by the host
Fig. 1, a-c.
From Monie, TP. Trends Biochem Sci 38: 131-139,
2013.
Available at
www.sciencedirect.com/science/article/pii/S09680004
13000029
Many ways to activate…
Fig. 1.
From Monie, TP. Trends Biochem Sci 38: 131-139,
2013.
Available at
www.sciencedirect.com/science/article/pii/S09680004
13000029
Innate immune pathways
Fig. 8.1.
From Witte et al. Adv Immunol 113: 135-156, 2012.
Available at
www.sciencedirect.com/science/article/pii/B978012394590
7000026
Inflammasomes and gut homeostasis
Fig. 2.
From Zambetti et al. Immunol Res 53: 78-90, 2012.
Available at link.springer.com/article/10.1007%2Fs12026012-8272-z
NLRP6 inflammasome regulates colonic microbial
ecology and risk for colitis
Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ,
Peaper DR, Bertin J, Eisenbarth SC, Gordon JI, Flavell RA.
Fig. 3, E-F.
From Elinav et al. Cell 145: 745-757, 2011.
Freely available at www.ncbi.nlm.nih.gov/pmc/articles/PMC3140910/
Fig. 4, G-I.
From Elinav et al. Cell 145: 745-757, 2011.
Freely available at www.ncbi.nlm.nih.gov/pmc/articles/PMC3140910/
The price of immunity
Fig. 1.
From Goldzmid, RS and Trinchieri, G. Nature Immunol 13: 932-938, 2012.
Freely available at www.nature.com/ni/journal/v13/n10/full/ni.2422.html
Autophagy and host defense
Fig. 2. From Kuballa et al. Annu. Rev. Immunol. 30: 611646, 2012.
Available at
www.annualreviews.org/doi/abs/10.1146/annurev-immunol020711-074948
Granuloma formation – inflammation!
Figure courtesy of Professor Wagner Tafuri, UFMG, Brazil.
Chemotaxis (margination)
Molecules involved in margination
Fig. 13-8.
From Kindt, Goldsby, and Osborne. Kuby
Immunology (6th Ed.). 2007. New York: Freeman.
Chemokine
Chemokine binding
to its receptor
Fig. 2.32.
From Janeway’s
Immunobiology
(5th ed). 2001.
New York: Garland
Sci.
IL-8
Chemokine receptor
(actually rhodopsin
from bacteria)
From
en.wikipedia.org/wiki
/Chemotaxis
CC Chemokines
Fig. 3.22.
From Janeway’s
Immunobiology (5th ed). 2001.
New York: Garland Sci.
CXC Chemokines
Fig. 3.22.
From Janeway’s
Immunobiology (5th ed). 2001.
New York: Garland Sci.
Chemoattractants (3)
1.
Formylated peptides
fMet-leu-phe
2.
Complement anaphylotoxins
C5a, C3a
3.
Chemokines
CC Chemokines - many
CXC Chemokines - many
Simplified signal transduction
G protein-coupled receptors
Fig. 13-2.
From Kindt, Goldsby, and Osborne. Kuby
Immunology (6th Ed.). 2007. New York: Freeman.
Chemokine receptors as activation markers
Fig. 13-3.
From Kindt, Goldsby, and Osborne. Kuby
Immunology (6th Ed.). 2007, New York: Freeman.
CCR5 and CXCR4 chemokine receptors as coreceptors for HIV
Fig 2.
From Tilton JC and Doms RW. Antiviral Res 85:95-100, 2010.
Available at
www.sciencedirect.com/science/article/pii/S0166354209003945
Monocytes
Fig. 1.
From Strauss-Ayali et al. J. Leukocyte Biol. 82: 244-252, 2007.
Freely available at http://www.jleukbio.org/content/82/2/244.long
GR1+ Monocytes Produce O2and Kill Leishmania major
Fig. 5, E & F.
From Goncalves et al. J Exp Med 208: 1253-1265, 2011.
Freely available at http://jem.rupress.org/content/208/6/1253.full
Fig. 3A.
From Goncalves et al. J Exp Med 208: 1253-1265, 2011.
Freely available at http://jem.rupress.org/content/208/6/1253.full
Exploring the full spectrum of macrophage activation
Fig. 1.
From Mosser, D.M. and Edwards, J.P. Nature Rev Immunol 8:
958-969, 2008.
Available at www.nature.com/nri/journal/v8/n12/abs/nri2448.html
IFN
LPS
2˚ (Ag-Ab)
IFN
LPS
Regulatory M (R-M)
Anti-inflammatory
IL-4/13
High Class II and APC function
Low TNF, IL-12/23
High IL-10
Classically activated (Ca-M)
Alternatively activated (AA-M)
MHC Class II – Antigen presentation
High O2- and NO production - microbicidal
IL-12/23 – Th1 response
TNF, IL-1, IL-6 – inflammation
Relatively low IL-10 production
Low MHC Class II – Poor APC
Low or absent NO production – Arginase
Lectin-like receptors and chitinases
Low to absent IL-12/23 production
Host Defense
Immune regulation
Wound healing
Regulatory Macrophages Rescue Mice
From Lethal Endotoxemia
Cold-induced metabolic adaptations require
alternatively activated macrophages
Fig. 2, a & d.
From Nguyen et al. Nature 480: 104-108, 2011.
Available at
www.nature.com/nature/journal/v480/n7375/full/nature10653.html
Mosser Lab – University of Maryland
Xia Zhang, MD/Ph.D.
Ricardo Goncalves, DVM/PhD
Justin Edwards
Ziyan Yang
Heather Cohen
Rahul Suresh
Bryan Flemming
Bess Gerhart
Related documents