Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
PN Junctions Theory
Dragica Vasileska
Department of Electrical Engineering
Arizona State University
1. PN-Junctions: Introduction to some
general concepts
2. Current-Voltage Characteristics of an
Ideal PN-junction (Shockley model)
3. Non-Idealities in PN-Junctions
4. AC Analysis and Diode Switching
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
1. PN-junctions - General Consideration:
• PN-junction is a two terminal device.
• Based on the doping profile, PN-junctions can be
separated into two major categories:
- step junctions
- linearly-graded junctions
ND  N A
ND  N A
ax
n-side
p-side
Step junction
p-side
n-side
Linearly-graded junction
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
(A) Equilibrium analysis of step junctions
EC
qVbi
Ei
EF
EV
p-side
(x)
n-side
p p 0  ni expEi  E F k BT 
W
+
qND
-qNA -
x
V (x)
Emax
 N AND 
k BT  p p 0 nn0 


Vbi 
ln

V
ln
T
 n2 
 n2 
q




i
i
(b) Majority- minority carrier
relationship:
Vbi
E (x)
 xp
(a) Built-in voltage Vbi:
qVbi   Ei  E F  p   E F  Ei n
nn0  ni exp E F  Ei  k BT 
x
xn
pn0  p p 0 exp Vbi / VT 
n p 0  nn0 exp Vbi / VT 
x
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
(c) Depletion region width:
 Solve 1D Poisson equation using depletion charge
approximation, subject to the following boundary conditions: V ( x p )  0, V ( xn )  Vbi , E ( xn )  E ( x p )  0
qN A

x  x p 2
p-side: V p ( x) 
2k s  0
qN D
n-side: Vn ( x)  
 xn  x 2  Vbi
2k s  0
 Use the continuity of the two solutions at x=0, and
charge neutrality, to obtain the expression for the depletion
region width W:
xn  x p  W 
V p (0)  Vn (0)   W  2k s 0 ( N A  N D )Vbi
qN A N D

N A x p  N D xn 
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
(d) Maximum electric field:
The maximum electric field, which occurs at the
metallurgical junction, is given by:
Emax
dV

dx
x 0
qN A N DW

k s 0 ( N A  N D )
(e) Carrier concentration variation:
15
N A  N D  1015 cm 3
Wcalc  1.23 mm
Emax( DC )  9.36 kV / cm
Concentration [cm-3]
10
13
10
11
10
-3
n [cm ]
-3
Emax( sim)  8.93 kV / cm
p [cm ]
9
10
7
10
5
10
0
0.5
1
1.5
2
2.5
3
3.5
Distance [mm]
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
N A  N D  1015 cm 3
Wcalc  1.23 mm, Emax( DC )  9.36 kV / cm, Emax( sim)  8.93 kV / cm
5x10
15
0
Electric field [kV/cm]
-3
(x)/q [cm ]
10
14
0
-5x10
14
-10
15
0
0.5
1
1.5
2
2.5
Distance [mm]
3
3.5
-2
-4
-6
-8
-10
0
0.5
1
1.5
2
2.5
Distance [mm]
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
3
3.5
N A  1016 cm 3 , N D  1018 cm 3
 0.328 mm, Emax( DC )  49.53 kV / cm, Emax( sim)  67 kV / cm
Wcalc
10
Electric field [kV/cm]
5x10
17
16
-3
(x)/q [cm ]
10
0
-5x10
-10
16
17
0.6
0.8
1
1.2
Distance [mm]
1.4
0
-10
-20
-30
-40
-50
-60
-70
0.6
0.8
1
1.2
Distance [mm]
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
1.4
(f) Depletion layer capacitance:
 Consider a p+n, or one-sided junction, for which:
2k s 0 Vbi  V 
W
qN D
 The depletion layer capacitance is calculated using:
dQc qN D dW
qN D ks 0
1 2(Vbi  V )
C


 2
dV
dV
2(Vbi  V )
qN D ks 0
C
1 C2
Measurement setup:
1
slope 
ND
Reverse
bias
vac ~
Forward bias
Vbi  V
W
V
V
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
dW
(B) Equilibrium analysis of linearly-graded junction:
12k s 0 Vbi  V 
W 

qa


1/ 3
(a) Depletion layer width:
(c) Maximum electric field: Emax
(d) Depletion layer capacitance:
qaW 2

8k s 0
1/ 3


C

12

V

V

bi


qaks202
Based on accurate numerical simulations, the depletion
layer capacitance can be more accurately calculated if Vbi
is replaced by the gradient voltage Vg:
 a 2 k s 0VT 
2
Vg  VT ln 
3 
3
 8qni 
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
(2) Ideal Current-Voltage Characteristics:
Assumptions:
• Abrupt depletion layer approximation
• Low-level injection  injected minority carrier density
much smaller than the majority carrier density
• No generation-recombination within the space-charge
region (SCR)
(a) Depletion layer:
W
EC
qV
E Fn
E Fp
np  ni2 exp V / VT 
n p (  x p )  n p 0 exp V / VT 
pn ( xn )  pn 0 exp V / VT 
EV
 xp
xn
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
(b) Quasi-neutral regions:
• Using minority carrier continuity equations, one arrives at
the following expressions for the excess hole and electron
densities in the quasi-neutral regions:
V / VT
pn ( x )  pn 0 (e
V / VT
n p ( x )  n p 0 (e
 1)e
 ( x  xn ) / L p
 1)e
n p ( x)
( x  x p ) / Ln
pn (x )
Forward bias
Space-charge
region W
pn 0
n p0
 xp
xn
x
Reverse bias
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
• Corresponding minority-carriers diffusion current densities
are:
diff
J p ( x)
J ndiff ( x )

qD p pn 0

qDn n p 0
Lp
Ln
V / VT
(e
V / VT
(e
 1)e
 1)e
 ( x  xn ) / L p
( x  x p ) / Ln
Shockley model
diff
J tot  J diff
p ( xn )  J n (  x p )
majority J ndiff  J ndrift
drift
majority J diff

J
p
p
J tot
minority J diff
p
minority J ndiff
 xp
xn
x
No SCR generation/recombination
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
(c) Total current density:
• Total current equals the sum of the minority carrier diffusion currents defined at the edges of the SCR:
I tot 
I
diff
diff
I p ( xn )  I n (  x p )

Ge Si GaAs

 D p pn 0 Dn n p 0  V / V
 e T 1
 qA

 L

L
p
n 

• Reverse saturation current IS:
 D p pn 0 Dn n p 0 
 Dp

D
2
n
  qAni 

I s  qA


 L

L N

L
L
N
p
n 
n A

 p D
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
V
(d) Origin of the current flow:
Reverse bias:
Forward bias:
W
EC
Ln
qVbi  V 
qV
E Fp
EC
E Fn
qV
qVbi  V 
E Fp
EV
E Fn
EV
Lp
W
Reverse saturation current is
due to minority carriers being
collected over a distance on the
order of the diffusion length.
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
(e) Majority carriers current:
• Consider a forward-biased diode under low-level injection
conditions:
Quasi-neutrality requires:
nn (x )
nn 0

nn ( x )  pn ( x )
This leads to:
pn (x )
pn 0
x
xn
J ndiff ( x )
Dn diff

J p ( x)
Dp
• Total hole current in the quasi-neutral regions:
tot
J p ( x)

diff
J p ( x) 
drift
J p ( x)

diff
J p ( x)
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
• Electron drift current in the quasi-neutral region:
J ndiff ( x )
 Dn
 diff
1


 J tot 
 1 J p ( x ), E ( x ) 
J ndiff ( x )
D

qn( x )m n
p


J ndrift (x )
J tot
J ntot ( x )  J ndiff ( x )  J ndrift ( x )
J ndiff ( x )  J diff
p ( x)
J diff
p (x )
x
J ndiff (x )
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
(f) Limitations of the Shockley model:
• The simplified Shockley model accurately describes IVcharacteristics of Ge diodes at low current densities.
• For Si and Ge diodes, one needs to take into account
several important non-ideal effects, such as:
 Generation and recombination of carriers within the
depletion region.
 Series resistance effects due to voltage drop in the
quasi-neutral regions.
 Junction breakdown at large reverse biases due to tun-
neling and impact ionization effects.
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
3. Non-Idealities in PN-junctions:
(A) Generation and Recombination Currents
J scr
 Continuity equation for holes:
p
1 J p

 Gp  Rp
t
q x
 Steady-state and no light genera-
tion process: p t  0 , G p  0
• Space-charge region recombination current:
xn
xn
xp
xp
 dJ p ( x ) J p ( xn )  J p (  x p )   q  R p dx
xn
J scr  q  R p dx
xp
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
Reverse-bias conditions:
• Concentrations n and p are negligible in the depletion
region:
 ni2
ni
 Et  Ei 
 Ei  Et 
   n exp

R
  ,  g   p exp
 p n1   n p1
g
 k BT 
 k BT 
Generation lifetime
• Space-charge region current is actually generation current:
J scr   J gen
qniW
qniW

 J gen 
 Vbi  V
g
g
• Total reverse-saturation current:

V / VT
J  Js e


 1  J scr    J s  J gen
V VT

EEE 531: Semiconductor Device Theory I – Dragica Vasileska
• Generation current dominates when ni is small, which is
always the case for Si and GaAs diodes.
I (log-scale)
AJ s
V (log-scale)
AJ gen
IV-characteristics
under reverse bias conditions
EC
E Fp
EV
E Fn
W
Generated carriers are
swept away from the
depletion region.
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
Forward-bias conditions:
• Concentrations n and p are large in the depletion region:
np
2 V / VT
 ni e

V /V

ni2 e T  1
R
 p n  n1    n  p  p1 
• Condition for maximum recombination rate:
V / 2VT
Recombination lifetime
n  p  ni e
V /V
ni2 e T
ni V / 2VT
Rmax 

e
,  rec   p   n
n p  p n  rec
• Estimate of the recombination current:
max
J scr
qniW V / 2VT

e
 rec
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
• Exact expression for the recombination current:
J scr
qni  V / 2VT

1
qN D 2Vbin  V 

e
, 
VT
, Enp 
rec
2
Enp
k s 0
• Corrections to the model:
J scr
qni  V / mrVT

e
 rec
• Total forward current:

V / VT
J  Js e



qni  V / mrVT
V / VT
1 
e
 J s,eff e
1
 rec
  ideality factor. Deviations of  from unity represent
an important measure for the recombination current.
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
• Importance of recombination effects:
Low voltages, small ni  recombination current dominates
Large voltages  diffusion current dominates
log(I)
AJ scr
AJ
V
AJ d
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
(B) Breakdown Mechanisms
• Junction breakdown can be due to:
 tunneling breakdown
 avalanche breakdown
• One can determine which mechanism is responsible for the
breakdown based on the value of the breakdown voltage
VBD :
 VBD < 4Eg/q  tunneling breakdown
 VBD > 6Eg/q  avalanche breakdown
 4Eg/q < VBD < 6Eg/q  both tunneling and
avalanche mechanisms are responsible
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
Tunneling breakdown:
• Tunneling breakdown occurs in heavily-doped pnjunctions in which the depletion region width W is about
10 nm.
Zero-bias band diagram:
EF
EC
W
EV
Forward-bias band diagram:
EFn
EFp
EC
EV
W
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
• Tunneling current (obtained by
using WKB approximation):
Reverse-bias band diagram:
* 3/ 2 

4
2
m
Eg 
2m q FcrVA

It 
exp 
2 2 1/ 2

3qFcr 
4  E g


* 3
EF
p
EFn
EC
EV
Fcr  average electric field in
the junction
• The critical voltage for
tunneling breakdown, VBR, is
estimated from:
I t (VBR )  10I S
• With T, Eg and It .
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
Avalanche breakdown:
• Most important mechanism in junction breakdown, i.e. it
imposes an upper limit on the reverse bias for most diodes.
• Impact ionization is characterized by ionization rates an and
ap, defined as probabilities for impact ionization per unit
length, i.e. how many electron-hole pairs have been
generated per particle per unit length:

Ei 

ai  exp 
 qlFcr 
- Ei  critical energy for impact ionization to occur
- Fcr  critical electric field
- l  mean-free path for carriers
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
Avalanche mechanism:
EF
p
EFn
EC
EV
Generation of the excess electron-hole
pairs is due to impact ionization.
Expanded view of the
depletion region
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
• Description of the avalanche process:
Jn
J p  an J n dx
dx
J n  an J n dx
Jp
Impact ionization initiated by electrons.
Jn
J p  a p J p dx
dx
J n  a p J p dx
Jp
Impact ionization initiated by holes.
dJ p
dJ n
 0,
0
dx
dx
dJ p
dJ n
dx
dx

J  J n  J p  const.
Multiplication factors for
electrons and holes:
J p (0)
J n (W )
Mn 
, Mp 
J n (0)
J p (W )
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
• Breakdown voltage  voltage for which the multiplication
rates Mn and Mp become infinite. For this purpose, one
needs to express Mn and Mp in terms of an and ap:
x

  an  a p dx '
W
1
1 
0
 dJ n

a
e
dx


a
J

a
J
n
 M
n n
p p
 dx
0
n

 dJ

x
  an  a p dx '
W
 p  an J n  a p J p

1
 dx
  a pe 0
dx
1 
 M p 0
The breakdown condition does not depend on which
type of carrier initiated the process.
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
• Limiting cases:
(a) an=ap (semiconductor with equal ionization rates):
W

1
1
 1  M   a n dx  M n  W
0
n

1   a n dx

0

W
1
1
1 
  a p dx  M p  W
 Mp 0
1   a p dx


0
(b) an>>ap (impact ionization dominated by one carrier):
W
 an dx
Mn  e 0
W
 1   an dx
0
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
Breakdown voltages:
• For one sided junction we can make
the following approximation:
(a) Step p+n-junction
p
W  Wn  W p  Wn

• Voltage drop across the depletion
region on the n-side:
n
 Wp
 Fmax
1
1
Vn  FmaxWn  VBD  FmaxW
2
2
Wn
• Maximum electric field:
k s 0 2
qN DW
Fmax 
 VBD 
Fmax
k s 0
2qN D
• Empirical expression for the
breakdown voltage VBD:
 F (x )
x
VBD
 Eg 

 60
 1.1 
3/ 2
 ND 
 16 
 10 
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
 kV 
 cm 
(b) Step p+-n-n+ junction
• Extension of the n-layer large:
p

n
n
VBD

1
 FmaxWm
2
• Extension of the n-layer small:
 Wp
 Fmax
1
1
VP  FmaxWm  F1 Wm  W1 
2
2
W1 Wm
 F (x )
• Final expression for the punchthrough voltage VP:
 F1
x
W1 
W1 
 2 

VP  VBD
Wm  Wm 
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
(4) AC-Analysis and Diode Switching
(a) Diffusion capacitance and small-signal equivalent
circuit
• This is capacitance related to the change of the minority
carriers. It is important (even becomes dominant) under
forward bias conditions.
• The diffusion capacitance is obtained from the device
impedance, and using the continuity equation for minority
carriers:
dp
d 2 p
p
n
dt
 Dp
n
dx
2

n
p
• Applied voltages, currents and solution for pn:
V (t )  V0  V1eit , V1  V0
it
J (t )  J 0  J 1e , J 1  J 0
pn ( x, t )  pns ( x )  pn1 ( x )e
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
it
• Equation for pn1(x):
d 2 pn1 1  i p
d 2 pn1 pn1 ( x )

pn1 ( x )  0 
 2 0
2
2
Dp p
dx
dx
L p'
• Boundary conditions:
pn (, t )  pn 0  pn1 ()  0
 V0  V1eit 
pn 0V1
 V0 


pn (0, t )  pn 0 exp
 pn1 (0) 
exp 


V
VT
 VT 
T


• Final expression for pn1(x):
 x 
pn 0V1
 V0 

pn1 ( x, t ) 
exp  exp 


VT
V
L
 T
p' 

EEE 531: Semiconductor Device Theory I – Dragica Vasileska
• Small-signal hole current:
AqD p pn 0V1
dpn1
 V0 
I1   AqD p

1  i p exp   YV1
dx x 0
L pVT
 VT 
• Low-frequency limit for the admittance Y:
Y
AqD p pn 0
L pVT
 V0  1
exp 1  i p   Gd  iCdif

 VT  2
 V0  I s eV0 / VT
I
dI
Gd 
exp  


, I  Forward current
L pVT
VT
VT dV
 VT 
 V0  1 I
1 AqD p pn0
Cdif 
 p exp  
p
2 L pVT
 VT  2 VT
AqD p pn0
• RC-constant:
Rd Cdif 
p
2
The characteristic time constant is on
the order of the minority carriers lifetime.
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
• Equivalent circuit model for forward bias:
Cdepl
Rs
Cdif
Rd 
• Bias dependence:
Ls
1
Gd
C
Cdif
Cdepl
Va
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
(b) Diode switching
• For switching applications, the transition from forward bias
to reverse bias must be nearly abrupt and the transit time
short.
• Diode turn-on and turn-off characteristics can be obtained
from the solution of the continuity equations:
dpn
1
1 J p pn
1D
    J p  R p  

dt
q
q x
p

dQ p
Qp
dQ p Q p
 I p (t ) 
 I (t )  I p (t ) 

dt
p
dt
p
Qp(t) = excess hole charge
Valid for p+n diode
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
Diode turn-on:
• For t<0, the switch is open, and
the excess hole charge is:
p+

Q p ( t  0)  Q p ( 0 )  0
• At t=0, the switch closes, and
we have the following boundary
condition:
t=0
IF
Q p (0  )  Q p (0  )  0
• Final expression for the excess hole charge:
Q p (t )  A  Be
t /  p
t /  p 

 pIF 1 e


EEE 531: Semiconductor Device Theory I – Dragica Vasileska
n
• Graphical representation:
Q p (t )
pn ( x, t )
pIF
Slope almost constant
t increasing
pn 0
x
t
• Steady state value for the bias across the diode:

Va / VT
pn ( x )  pn 0 e

 IF 
Va  VT ln 1  
IS 


1 e
 x / Lp

Va / VT
 Q p  Aqpn 0 L p e
EEE 531: Semiconductor Device Theory I – Dragica Vasileska

1
Diode turn-off:
• For t<0, the switch is in position
1, and a steady-state situation is
established:
VF
IF 
R
p+
t=0
1
• At t=0, the switch is moved to
position 2, and up until time t=t1
we have:
VF
R
2
VR
R
pn (0, t )  pn 0  Va  0
• The current through the diode
until time t1 is:
VR
IR  
R
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
n
• To solve exactly this problem and find diode switching
time, is a rather difficult task. To simplify the problem, we
make the crucial assumption that IR remains constant even
beyond t1.
• The differential equation to be solved and the initial
condition are, thus, of the form:
 IR 
dQ p
dt

Qp
p
, Q p (0  )  Q p (0  )   p I F
• This gives the following final solution:
Q p (t )   p I R   p I F  I R e
t /  p
• Diode switching time:
Q p (trr )  0  trr
 IF 
  p ln 1  
 IR 
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
• Graphical representation:
Va (t )
pn ( x, t )
t
Slope almost
constant
t=0
pn 0
 VR
t=ts
ttrr
ts  switching time
trr  reverse recovery time
IF
x
 0.1I R
ts
 IR
EEE 531: Semiconductor Device Theory I – Dragica Vasileska
trr
t