Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
A Process Control Screen for Multiple Stream Processes An Operator Friendly Approach Richard E. Clark Process & Product Analysis Multiple Stream Processes • Injection Molding • Extrusion Blow Molding • Reheat Stretch Blow Molding • Thermoforming • Multilayer Sheet Extrusion • Double Seaming • Filling Machines • Heat Sealing Machines • Labelers History Year 1978 1993 Number of Stations 4 48 Production Rate 2400 48000 Number of Characteristics Monitored 6 10+ Number of Charts Monitored 24 480+ Method of Collection and Analysis Manual Computer The Object of This Paper is to Describe a System of Charts to Be Used by Operators and/or Inspectors to Control Multiple Stream Processes. The Operator Needs to Know – That the process is adjusted so that the average of the characteristic being monitored is equal to the targeted mean. – That the means and variation of the individual streams are being maintained within an acceptable range. – That the pattern of variation among streams is stable. – That the individual items from all stations are conforming to internal or customer specification limits. Process Model Yijk = + Ti + Pj + k(ij) i = 1, 2, …, t j = 1, 2, …, p K = 1, 2, …, n represents the process mean. Ti is an independently and normally distributed random variable with mean 0 and variance t2 which represents the process variation with time. By definition, TI equals 0 for an in control process. Pj is a fixed value representing the effect of station j. In order for the process average to = , the sum of the Pj over the j stations must be 0. Process Model (cont.) k(ij) is an independently and normally distributed random variable with mean 0 and variance 2 resulting from random variation in the process and measurement system. For this paper, 2 is assumed to be constant for all positions and times. Observations from an “In Control” 5 Station Machine are Shown in the Table Below Station Value 1 Yi11 = + 0 + P1 + 1(I,1) 2 Yi21 = + 0 + P2 + 1(I,2) 3 Yi31 = + 0 + P3 + 1(I,3) 4 Yi41 = + 0 + P4 + 1(I,4) 5 Yi51 = + 0 + P5 + 1(I,5) Average Computation The average value for time i is calculated using the following equation. _ Yi.. = (5* + P1 + P2 + P3 + P4 + P5 + 1(I,1) + 1(I,2) + 1(I,3) + 1(I,4) + 1(I,5))/5 By definition P1 + P2 + P3 + P4 + P5 = 0 and the expected values for 1(i,j)’s is 0. Therefore; _ Yi.. = And is an unbiased estimate of the population mean. Confidence Intervals The random component in each observation, k(ij), is independent of other observations and randomly distributed with mean 0 and variance 2 . _ Therefore, the confidence intervals for the means and observations from this process at time i are as follows. The mean at time i _ Yi.. ± 3*/√5 The mean for each position is: _ Y.j. = + Pj Confidence Intervals (cont.) And the confidence intervals for control limits for the measurements from each position for an “in control” process are: _ YK(ij) = Y.j. ± 3* Distributions Used to Generate Data for Examples Station Average Standard Deviation 19 19.0 1.00 20 20.0 1.00 21 21.0 1.00 22 22.0 1.00 23 23.0 1.00 Data Station Set 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Average R-bar MR(2) 19 19.4 18.6 20.6 17.4 21.8 20.6 19 19.4 19.4 18.2 18.6 18.6 19.4 20.2 17 19.8 19.8 18.6 18.2 18.6 18.6 19 17.8 17.8 19 19.4 19.4 19 18.6 19 17.8 20.2 21 18.2 19 19.4 18.2 18.2 17.4 20.6 20.2 18.2 19.4 19.8 18.2 19 19 17.8 17.8 18.984 1.05 20 20.2 21 19.4 20.6 21 19.8 19.4 20.2 20.2 21 19.4 21 20.6 21.4 19 20.2 21 20.6 18.6 19.4 18.2 19 19.4 19 19.8 20.2 19.8 19.4 20.6 20.6 19.4 20.2 20.2 19.4 19.4 20.6 19.8 19.4 20.6 19.8 20.6 19.8 19 19.8 21 19.8 21.4 19 20.2 19.988 0.9 21 20.4 20.8 20.8 19.2 21.6 20.4 19.2 22.6 19.2 22.8 20.4 20.4 21.6 22.8 20 21.2 20 20 21.2 20 20 20.4 20.8 20.8 20.8 20 22.4 22 21.6 20.8 20 22.4 21.6 22.4 21.2 20.8 19.6 19.6 20.8 22 21.2 19.6 21.2 20 21.6 21.6 20.8 20 21.6 20.861 1.15 22 22.6 22.2 22.2 22.2 22.6 22.2 23 23 21 22.6 22.2 20.2 21.4 22.6 23 22.2 22.2 22.2 22.6 22.6 23.8 23 22.6 22.2 24.2 21.4 23.8 23.4 20.2 20.6 22.6 23 21.4 21.8 21.8 22.2 23.8 21.8 23 23 24.6 20.6 23.4 23.4 21.8 21.8 22.2 23.4 21.8 22.396 1.02 23 Ave. Range 22.8 21.08 3.4 23.2 21.16 4.6 22.4 21.08 3 24 20.68 6.6 23.2 22.04 2.2 23.6 21.32 3.8 22.8 20.68 4 22.8 21.6 3.6 21.2 20.2 2 21.2 21.16 4.6 21.6 20.44 3.6 25.2 21.08 6.6 22 21 2.6 22.4 21.88 2.6 22.8 20.36 6 24.4 21.56 4.6 23.6 21.32 3.8 22.4 20.76 3.8 22 20.52 4.4 23.2 20.76 4.6 22.4 20.6 5.6 24 21.08 5 22.8 20.68 5 23.2 20.6 5.4 22.8 21.32 5.2 21.6 20.52 2.2 22.8 21.64 4.4 23.2 21.4 4.4 20.8 20.36 3 23.2 20.84 4.2 24 20.76 6.2 23.2 21.8 3 20.4 20.92 1.4 22.8 20.92 4.6 22 20.68 3 24 21.4 4.6 22 20.68 5.6 23.2 20.44 5 22 20.76 5.6 24.4 21.96 4.6 25.6 22.44 5.4 25.6 20.76 7.4 22 21 4.4 23.6 21.32 3.8 23.2 21.16 5 24 21.24 5 23.6 21.4 4.6 23.6 20.76 5.8 23.2 20.92 5.4 22.980 21.042 1.17 1.058 Data Set 38 39 40 41 42 43 44 45 46 Station 19 18.2 18.2 17.4 20.6 20.2 18.2 19.4 19.8 18.2 20 19.8 19.4 20.6 19.8 20.6 19.8 19 19.8 21 21 19.6 19.6 20.8 22 21.2 19.6 21.2 20 21.6 22 23.8 21.8 23 23 24.6 20.6 23.4 23.4 21.8 23 Ave. Range 22 20.68 5.6 23.2 20.44 5 22 20.76 5.6 24.4 21.96 4.6 25.6 22.44 5.4 25.6 20.76 7.4 22 21 4.4 23.6 21.32 3.8 23.2 21.16 5 Note: Sample 42 – All Values above mean with two by more Than 2 std. Dev. 27 25 23 21 19 17 15 23.0 22.5 22.0 21.5 21.0 20.5 20.0 19.5 19.0 Lid Holes Demonstration Data Summary A UCL CL LCL 10 20 Summary M in. & M ax. Values 30 USL CLS LSL 4 8 12 16 20 24 28 32 36 40 44 48 Values Ind. Average Proposed Screen 27 25 23 21 19 17 15 40 Box Plot by M old (Station) 19 20 21 22 23 Parameters Required to Calculate Control Limits for the Proposed Charts • Within Station Standard Deviation Inherent in the Process • Position Allowance for Maximum Position • Position Allowance for Minimum Position Estimation of Within Position Inherent Standard Deviation • Estimate from Within Position Moving Range Data • Estimate from Analysis of Variance Residual after Removing Effects of Time and Position • Estimate from Analysis of Sample Means • Compare to Historical Data Estimates of Standard Deviation Based on Within Positon Moving Range Estimate of Standard Deviation based on Range Parameter 19 20 21 22 Average 18.984 19.988 20.861 22.396 R-bar MR(2) 1.05 0.9 1.15 1.02 d2 1.128 1.128 1.128 1.128 Est. Sigma 0.931 0.798 1.020 0.904 23 Ave. 22.980 21.042 1.17 1.058 1.128 1.128 1.037 0.938 Analysis of Variance for Values - Type III Sums of Squares -------------------------------------------------------------------------------Source Sum of Squares Df Mean Square F-Ratio P-Value -------------------------------------------------------------------------------MAIN EFFECTS A:Set 56.5433 48 1.17799 1.34 0.0868 B:Station 537.441 4 134.36 152.80 0.0000 RESIDUAL 168.831 192 0.87933 -------------------------------------------------------------------------------TOTAL (CORRECTED) 762.815 244 -------------------------------------------------------------------------------All F-ratios are based on the residual mean square error. Since Time is not significant, the SS for Time and Error can be pooled to improve the estimate of s. Factor Error Time Pooled Error SS df MS s 168.831 192 0.87933 0.938 56.5433 48 225.3743 240 0.939059583 0.969 Moving Range Chart for Sample Averages M oving Range Chart Summary Moving Range 2.0 1.888 1.5 1.0 0.578 0.5 0.000 0.0 10 20 30 40 50 Sep 27, 2002 11:08:54 Estimate of Standard Deviation Based on Analysis of Sample Averages R-bar - Moving Rande Set Averages d2 sy-bar y-bar UCLy-bar LCLy-bar Sample Size s 0.578 1.128 0.512 21.043 22.580 19.506 5.000 1.146 Individuals Control Chart of Sample Averages Ite m Chart Summary 23 22.580 MV.Mean 22 21.042 21 20 19.504 19 10 20 30 40 Oct 6, 2002 16:39:38 Estimation of Position Effects PMax & PMin • Historical Position Averages when Process is Stable • Analysis of Variance – Position Means • Engineering Judgment of Reasonable Ranges Mean = 21.0 = 1 Pmin = Pmax = 2 Chart Parameters Parameter Calculation Value Center Line Y-double bar 21.00 UCL Average Y-double bar + 3*/?5 22.34 LCL Average 19.66 Y-double bar 3*/?5 UCL Individual Y-double bar Pmax + 3* 26 LCL Individual 16 Y-double bar+Pmin - 3* 27 25 23 21 19 17 15 23.0 22.5 22.0 21.5 21.0 20.5 20.0 19.5 19.0 Lid Holes Demonstration Data Summary A UCL CL LCL 10 20 Summary M in. & M ax. Values 30 USL CLS LSL 4 8 12 16 20 24 28 32 36 40 44 48 Values Ind. Average Data from “In Control” Process 27 25 23 21 19 17 15 40 Box Plot by M old (Station) 19 20 21 22 23 27 25 23 21 19 17 15 23.0 22.5 22.0 21.5 21.0 20.5 20.0 19.5 19.0 Lid Holes Demonstration Data Summary A A UCL Out of Control CL LCL 10 20 Summary M in. & M ax. Values 30 USL CLS LSL 4 8 12 16 20 24 28 32 36 40 44 48 Values Ind. Average Average for All Stations Increased by 1 for the Last Point 27 25 23 21 19 17 15 40 Box Plot by M old (Station) 19 20 21 22 23 27 25 23 21 19 17 15 23.0 22.5 22.0 21.5 21.0 20.5 20.0 19.5 19.0 Lid Holes Demonstration Data A A Summary A UCL CL LCL 10 20 Summary M in. & M ax. Values 30 USL CLS LSL 4 8 12 16 20 24 28 32 36 40 44 48 Values Ind. Average Average for All Stations Increased by 1 for the Last 10 Points 27 25 23 21 19 17 15 40 Box Plot by M old (Station) 19 20 21 22 23 27 25 23 21 19 17 15 23.0 22.5 22.0 21.5 21.0 20.5 20.0 19.5 19.0 Lid Holes Demonstration Data Summary A UCL CL LCL 10 20 Summary M in. & M ax. Values 30 USL CLS LSL 4 8 12 16 20 24 28 32 36 40 44 48 Values Ind. Average Std. Dev. For Station 20 Increased to 2 for last 5 points 27 25 23 21 19 17 15 40 Box Plot by M old (Station) 19 20 21 22 23 27 25 23 21 19 17 15 23.0 22.5 22.0 21.5 21.0 20.5 20.0 19.5 19.0 Lid Holes Demonstration Data A Summary UCL CL LCL B 10 20 30 Summary M in. & M ax. Values USL HFI Out of Spec. Low CLS BLSL 4 8 12 16 20 24 28 32 36 40 44 48 Values Ind. Average Std. Dev. For Station 20 Increased to 2 for last 23 points 27 25 23 21 19 17 15 40 Box Plot by M old (Station) 19 20 21 22 23 27 25 23 21 19 17 15 23.0 22.5 22.0 21.5 21.0 20.5 20.0 19.5 19.0 Lid Holes Demonstration Data A Summary UCL CL LCL 10 20 Summary M in. & M ax. Values 30 USL CLS LSL 4 8 12 16 20 24 28 32 36 40 44 48 Values Ind. Average Average for Station 21 Increased to 22 for last 10 points 27 25 23 21 19 17 15 40 Box Plot by M old (Station) 19 20 21 22 23 27 25 23 21 19 17 15 23.0 22.5 22.0 21.5 21.0 20.5 20.0 19.5 19.0 Lid Holes Demonstration Data A Summary UCL CL LCL 10 20 Summary M in. & M ax. Values 30 USL CLS LSL 4 8 12 16 20 24 28 32 36 40 44 48 Values Ind. Average Average for Station 21 Increased to 22 for last 24 points 27 25 23 21 19 17 15 40 Box Plot by M old (Station) 19 20 21 22 23 27 25 23 21 19 17 15 23.0 22.5 22.0 21.5 21.0 20.5 20.0 19.5 19.0 Lid Holes Demonstration Data A Summary A UCL Out of Control CL LCL 10 20 Summary M in. & M ax. Values 30 USL CLS LSL 4 8 12 16 20 24 28 32 36 40 44 48 Values Ind. Average Average for Station 21 Increased by 3 for last 6 points 27 25 23 21 19 17 15 40 Box Plot by M old (Station) 19 20 21 22 23 27 25 23 21 19 17 15 23.0 22.5 22.0 21.5 21.0 20.5 20.0 19.5 19.0 Lid Holes Demonstration Data A A Summary A UCL Out of Control CL LCL 10 20 Summary M in. & M ax. Values 30 USL CLS LSL 4 8 12 16 20 24 28 32 36 40 44 48 Values Ind. Average Average for Station 21 Increased by 3 for last 24 points 27 25 23 21 19 17 15 40 Box Plot by M old (Station) 19 20 21 22 23 17.0 A A Average 16.5 A AA 16.0 Summary A UCL CL 15.5 15.0 B 14.5 18.0 17.5 17.0 16.5 16.0 15.5 15.0 14.5 14.0 We igtht A A LCL B 10 Summary M in. & M ax. Values A A A AA AA 4 8 12 16 20 24 28 32 20 18.0 17.5 17.0 USL 16.5 16.0 CLS 15.5 15.0 LSL 14.5 14.0 30 Box Plot by M old (Station) weight Ind. “Real World” Chart 1 2 3 4 5 6 19.5 19.0 18.5 18.0 17.5 17.0 16.5 16.0 AA A A A We ight A A AA Out A of Control A A A 10 20 20 Summary M in. & M ax. Values AAA A A USL 18 CLS LSL 16 14 4 8 12 16 20 24 28 32 20 BaseWt Ind. Average Data Through Set 35 A AA Summary AAA A A AA A A UCL CL LCL 30 Box Plot by M old (Station) 18 16 14 1 2 3 4 5 6 7 8 9 10 19.5 19.0 18.5 18.0 17.5 17.0 16.5 16.0 We ight AA A A A A Out A A AA A A A A B 10 BB B 20 20 Summary M in. AAA & M ax. Values USL 18 CLS 16 14 Summary of Control LSL BBBBB BBBBBBBB BBBBB B B B 4 8 12 16 20 24 28 32 36 40 44 48 B BB B 30 20 BaseWt Ind. Average Last 48 Data Sets A B B A A UCL CL LCL BB 40 Box Plot by M old (Station) 18 16 14 1 2 3 4 5 6 7 8 9 10 Average Fill 1200.0 1199.5 1199.0 1198.5 1198.0 1197.5 1197.0 1196.5 1196.0 1206 1204 1202 1200 1198 1196 1194 1192 1190 A Out A of Control A Summary A A A A A UCL CL B B B 10 A Summary M in. & M ax. Values 4 8 12 16 20 24 28 32 36 40 LCL B 20 30 40 Box Plot by M old (Station) 1206 USL 1204 1202 1200 CLS 1198 1196 1194 LSL 1192 1190 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 1 11 1 1 11 1 1 12 2 2 22 Fill Ind. 24 Station Machine Average 1197 1196 1195 1194 1193 1192 1191 1190 1189 Fill A Out of Control A A UCL CL LCL B 1 2 3 4 5 Summary M in. & M ax. Values A 1201 1197 1193 6 USL 7 1201 8 9 B 10 11 12 Box Plot by M old (Station) 1197 CLS 1193 1189 1185 Summary Fill Ind. 24 Station Rotary Machine LSL 4 8 12 1189 1185 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 1 11 1 1 11 1 1 12 2 2 22 Evaluation of Screen Change • • • • • Robust Container Relatively Low Production Rate Stable Process with Minimal Problems Before ~ 3300 Observation After 1 Year ~ 3300 Observations Comparison of Probability Distributions Section B Before and After Probability Plot Normal Probability After SectionB Theoretica .99 .95 .90 .75 .50 .25 .10 .05 .01 10.0 Test for Normality: Not applicable Before SectionB Theoretica 12.5 15.0 Se ctionB 17.5 20.0 Comparison of Frequency Histograms Section B Before Frequency 400 300 200 100 0 10.0 12.5 15.0 17.5 20.0 Frequency After 600 500 400 300 200 100 0 10.0 12.5 15.0 17.5 20.0 Comparison of Statistics for Section B Statistic Before After Average 15.98 16.003 Q3 16.65 16.5 Q1 15.4 15.55 Q3-Q1 Range 1.25 0.95 Std. Dev. (Not 0.943 Normal) 0.749 Cpk Normal) 1.003 (Not 0.787 Comparison of Probability Distributions Section A Probability Plot Normal Probability After SectionA Theoretica .99 .95 .90 .75 .50 .25 .10 .05 .01 Before SectiionA Theoretica 9 10 11 Se Se ctiionA ctionA 12 13 Comparison of Frequency Histograms Section A Before Frequency 400 300 200 100 0 9 10 11 12 13 After Frequency 800 600 400 200 0 9 10 11 12 13 Comparison of Statistics for Section A Statistic Before After Average 11.013 11.232 Q3 11.25 11.35 Q1 10.75 11.1 Q3-Q1 Range 0.5 0.25 Std. Dev. (Not 0.393 Normal) 0.232 Cpk Normal) 1.123 (Not 0.477 Compare Probability Distributions Height Probability Plot Normal Probability Before height Theoretical .99 .95 .90 .75 Test for Normality: Not applicable .50 .25 .10 .05 .01 9.800 After Height Theoretical 9.825 9.850 9.875 Height he ight 9.900 9.925 Frequency 600 500 Before 400 300 200 100 0 9.800 9.825 9.850 9.875 9.900 9.925 Frequency 600 500 After 400 300 200 100 0 9.800 9.825 9.850 9.875 9.900 9.925 Comparison of Statistics for Height Statistic Before After Average 9.888 9.872 Q3 9.896 9.879 Q1 9.881 9.865 Q3-Q1 Range 0.015 0.014 Std. Dev. (Not 0.00118 Normal) 0.01169 Cpk Normal) 1.208 (Not 0.907 Conclusion • Process control has improved substantially since the new screen was introduced on this line. • Since there is no control, it is not possible to determine how much if any of the improvement was due to the change. • “Hawthorne” Effect Other Areas to Consider • Add Hidden Tests to Determine when a Change Occurs Between or Within Stations. Display Message when an “Out of Control” Condition Occurs • Replace Capability Index with and Index of Potential Process Improvement • Statistics for Measurement and Control of Contaminates in Post-Consumer Flake Process & Product Analysis Richard E. Clark (630) 584 0566 [email protected]