Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Electrical Transients in Power System January 2009 Mehdi Vakilian Text Books: 1-Transients in Power Systems by: Lou van der Slius, 2001 2- Electrical Transients in Power System by: Allan Greenwood, 1991 COURSE OUTLINE Fundamental Notions About Electrical Transients Basic Concepts and Simple Switching Transients Damping Effect on Switching Transients Abnormal Switching Transients Testing of Circuit Breakers Transient Analysis of 3Ph Power Systems Course Outline …..continued Transient Analysis of 3Ph Power Systems Traveling Waves and Other Transients on Transmission Line Modeling Power Equipments for Transients Numerical Simulation of Elec. Transients Lightning and its Induced Transients Insulation Coordination Protection Against Over Voltages Evaluation System Assignments Mid Term One (items 1 to 4) Mid Term Two (items 5 to 7) Final Class Project : 10% : 10% : 10% : 60% : 10% Chapter One : Fundemental Notions about Electrical Transients Time Scale in Power System Studies: planning, Load Flow, Dynamic Stability Switching, external disturbances Frequency Content Differential Equations Solution Distributed and Lumped Parameters Calculatable,Controllable, Preventable Tools for Study CCT Parameters In Steady State and Transient Mathematical Presentation & Physical Interpretation Simple RC Circuit, Closing Ideal Sw. Equations of RC Circuit 1 dQ dV 1 C V IR Idt I dt dt C dV 1 V RC V1 dt dV 1 dt V V 1 RC RC Circuit Response t ln( V V1 ) Cons. RC V 1 V Ae t / RC V 1 V [V V 1(0)]e t / RC RC Circuit Discharge dV 1 RC V1 0 dt V 1 V 1(0)e t / RC Capacitor Voltage of RC CCT Simple Circuits Characteristic (thumbprint) RC , RL , LC Circuits Thumbprints: RC CCT: Time Constant ; RC RL CCT : Time Constant ; L/R LC CCT : Period of Oscillation ; 2 LC Principle of Superposition If stimulus s1 produces R1 & s2 produces R2 applying s1+ s2 simultaneously responds R1+R2 in Linear System Linear System: response proportional to : stimulus S.P. Application in Switching CCT Detail I1: Pre-opening current I2: Superposed current to simulate current cease S.P. application in Closing switch V1 : voltage across contacts pre-closing Therefore: -V1 fictitious stimulus superposed simulating the closing action The LaplaceTransform Method F (t ) F (t ) e dt st 0 lim ,a0 F (t ) e st dt Laplace Transform Continued s j F (t ) f ( s ) I (t ) i ( s ) V (t ) v( s) [ F 1(t ) F 2(t )] F 1(t ) F 2(t ) Transform of Simple Functions cons.V st e V V e dt V e dt V s 0 0 st st I (t ) I t ' ' I I 't I 't e st dt I ' te st dt 2 s 0 0 0 V s Laplace Transform continued e jt e jt sin t 2j 1 1 1 sin t ( ) 2 2 2 j s j s j s s cos t 2 2 s Laplace Transform Application F (t ) s F (t ) F (0) ' F (t ) s F (t ) sF (0) F (0) '' 2 ' F (t ) s F (t ) s F (0) s F (0) ... F (0) ( n) n n 1 n2 ' n 1 Laplace Transform Continued t 0 1 1 [ F (t )dt ] F (t ) F ( )d s s t 0 1 1 [ I (t )dt ] I (t ) I (t )dt Q(t ) s s t i ( s) Q(0) [ I (t )dt ] q( s) s s Solving RC problem with Lap. Trans. In terms of I in the CCT: dI I 0 dt RC Applying L.P. : i( s) si( s) I (0) 0 RC V Vc (0) I (0) R Continuing RC CCT solution The L.T. solution: V Vc (0) 1 i(s) R s 1 RC The time solution: V Vc (0) t RC I (t ) [ ]e R RL CCT excited by Battery V Solving for I in CCT The L.T. of Eq.: dI RI L V dt V Ri ( s) Lsi( s) LI (0) s The response: V 1 i ( s) ........I (0) 0 L s[s R ] L RL Time solution 1 1 1 1 [ ] s( s ) s s 1 1 1 [1 e t ] s( s ) V Rt I (t ) [1 e L ] R I (0) 0, add : I (0)e R t L Example: 377 MVA Gen field winding L=0.638H, Exciter noload:1.2 MW(480V) Energy stored in F.W.: 1.2 106 I 2500 A 480 1 2 1 E LI 0.638 2.52 106 1.994MJ 2 2 How must the exciter voltage be changed to reduce the field current to zero in 5 Sec R f .W . 480 0.192 2500 L 0.638 3.323s R 0.192 V 5 I (5) 2500 (1 e 3.323 ) 0(Vexciter V ) 0.192 V 617......Volts Example on LC CCT Transient Two energy stored elements Second order O.D.E. dI L Vc V dt dI 1 L dt C Idt V i ( s) Qc (0) V Lsi ( s) LI (0) sC sC s Qc (0) where : Vc (0) C LC CCT solution Ass. I(0)=0 V Vc (0) 1 i ( s) 2 L s (1 Vc (0) 0, 1 LC s I (0) 2 ) s ( 1 LC ) C 12 0 i( s) V ( ) LC L s 2 02 2 0 C 12 I (t ) V ( ) sin 0t L LC CCT cont. solving for Vc Surge Imp. L 12 Z0 ( ) C 2 d Vc 2 2 0 Vc 0 V 2 dt ( s )vc ( s) 2 2 0 V 2 0 s sVc (0) V (0) ' c If I(0)=0 then: V`c(0)=0 and Vc(0) 1 02 s( s ) 2 2 0 1 cos 0t V sVc (0) vc ( s) 2 2 2 2 s( s 0 ) s 0 2 0 Vc (t ) V (1 cos 0t ) Vc (0)cos 0t V [V Vc (0)]cos 0t Vc characteristic Vc Osc. Amp depend on V-Vc(0) Vc starts at Vc(0) as expected Response for : 1-Vc(0)=-V 2-Vc(0)=0 3-Vc(0)=+V/2 Voltage and Current Relation Solution of an RL CCT Stimulated by an Exp. Drive (Ass. I(0)=0) U (t ) V e t V R i ( s) Lsi ( s) LI (0) s V i( s) ( R Ls)( s ) Exp. Stimulated RL CCT, Cont. If R/ L V 1 1 i( s) ( ) L( ) s s V t t I (t ) (e e ) L( )