Download • Glycolysis • Gluconeogenesis • Glycogen synthesis

Document related concepts
no text concepts found
Transcript
Carbohydrate Metabolism!
Wichit Suthammarak – Department of Biochemistry, Faculty of Medicine Siriraj Hospital – Aug 1st and 4th, 2014!
•  Glycolysis
•  Gluconeogenesis
•  Glycogen synthesis
•  Glycogenolysis
•  Pentose phosphate pathway
•  Metabolism of other hexoses
Carbohydrate Digestion!
Digestive enzymes!
Polysaccharides/complex carbohydrates
Amylase
Salivary glands Pancreas Oligosaccharides/dextrins
Membrane-­‐bound Microvilli Brush border Dextrinase
Maltose
Maltase
2 glucose
Sucrose
Sucrase
1 glucose
1 fructose
Lactose
Lactase
1 glucose
1 galactose
‘Disaccharidase’ Lactose Intolerance!
Cause & Pathophysiology!
Lactose
Normal lactose digestion
Lactose intolerance
Lactose
Lactose
Glucose
X Lactase
Small
Intestine
lactase
Galactose
Bacteria
1 glucose
1 galactose
Large
Intestine
gases,
organic acid,
osmotically
active molecules
Normal stools
Lactase deficiency!
•  Primary lactase deficiency:
genetic defect, การสร้าง lactase ลด
Fermentation
อาการ!
ลงเมื่ออายุมากขึ้น, พบมากที่สุด!
ปวดท้อง, ถ่ายเหลว, คลื่นไส้อาเจียนภาย
•  Secondary lactase deficiency:
หลังจากรับประทานอาหารที่มี lactose
acquired/transient เช่น small bowel
injury, gastroenteritis, inflammatory
bowel disease!
เป็นปริมาณมาก เช่นนม!
Absorption of Hexoses!
Site: duodenum!
Intestinal lumen Membrane Transporter!
Enterocytes Blood Na+"
•  Presents at the apical membrane !
of enterocytes!
•  Co-transports Na+ and glucose/!
galactose!
Na+"
Glucose"
Galactose"
SGLT1 Glucose"
Galactose"
Fructose"
Fructose"
SGLT1: sodium-­‐glucose transporter GLUT2 GLUT5 GLUT5 •  Transports fructose from the !
intestinal lumen into enterocytes!
GLUT2 Glucose!
Galactose!
GLUT2 Glucose"
Galactose"
Fructose!
Fructose"
GLUT2 •  At the basal membrane: !
transports glucose, galactose!
and fructose from enterocytes !
into bloodstream!
GLUT2 •  Presents at the apical membrane
during high luminal [hexoses]!
•  Transports glucose, galactose, and
fructose!
The liver is the first stop for the most nutrients absorbed from !
the digestive tract!
Glucose Uptake at the Peripheral Tissues!
Glucose transporter- GLUT!
Glucose
Outside
plasma
membrane
Glucose transporter (GLUT)
Cytosol
Glucose Transport via glucose transporter (GLUT) •  GLUT: transmembrane glycoprotein on the plasma membrane!
•  Facilitated passive transport (no ATP required, downhill, protein
carrier)!
•  Conformational change!
Glucose Transporter!
Transporter Tissue(s) Role GLUT1 Ubiquitous Endothelial cells of the blood-­‐brain barrier Basal glucose uptake (every cell) Transport glucose from blood to CSF GLUT2 Liver, pancreas, intesHne Remove of excess glucose from blood GLUT3 Neuron Basal glucose uptake (neurons) GLUT4 Muscle, fat, heart AcHvity increased by insulin GLUT5 IntesHne, tesHs, kidney, sperm Primarily fructose transport GLUT6 -­‐ GLUT12 Others Currently being studied GLUT4!
Insulin-responsive glucose transporter!
GLUT4 •  Myocytes, skeletal
muscle, adipocytes!
•  Insulin-responsive GLUT!
o  Increases glucose !
uptake up to 15X!
•  Some SCL2A4 mutations
have been found to be
associated with diabetes
mellitus (DM)!
Regulation of glucose transport by insulin-­‐responsive GLUT4 (Lehninger Principle of Biochemistry, 4th edition) Kinetics of Glucose Uptake via GLUT!
Initial velocity of glucose
entry, V0 (uM/min)
Characteristic of GLUT1 vs GLUT2!
Vmax Normal plasma !
[glucose]!
= 80 - 110 mg/dl!
(4.5 - 6 mM)!
½ Vmax Kt Extracellular [glucose] (mM)
GLUT1 GLUT2 •  Every tissue!
•  Enterocyte, hepatocyte, pancreatic islet!
•  Kt of glucose ≈ 1.5 mM!
•  Kt of glucose ≈ 66 mM!
•  Basal glucose uptake!
•  Control plasma glucose!
Major Pathways of Glucose Utilizations!
Extracellular matrix and cell wall polysaccharides Glycogen, starch synthesis of !
structural polymer!
storage;!
‘Glycogen synthesis’!
GLUCOSE!
oxidation via !
‘Pentose phosphate pathway’!
Ribose 5-­‐phosphate oxidation via !
‘Glycolysis’!
Pyruvate Glycolysiszc!
Glycolysis: glykys (Greek); sweet + lysis; splitting Breakdown of glucose!
A series of enzyme-catalyzed reactions (10 reactions)- glycolytic pathway!
Glucose
2ADP + 2Pi
2NAD+
2ATP + 2H2O
2NADH
2Pyruvate
Final product: 2 molecules of 3-carbon compound; pyruvate!
Glycolysis provides the largest flux of carbon in most cells!
Glycolysis!
Embden-Meyerhof-Parnas pathway!
Preparatory Phase
Glucose
ADP
Glucose-6-phosphate
Phosphohexose
isomerase
Fructose-6-phosphate
Phosphofructokinase-1
ATP
ADP
Fructose-1,6-phosphate
Aldolase
Glyceraldehyde-3-phosphate
+
Dihydroxyacetone phosphate
Triosephosphate isomerase
hexokinase/
glucokinase
ATP
Glyceraldehyde-3-phosphate (x2)
2Pi
2NAD
G3P
dehydrogenase
+
2NADH + H
1,3-Bisphosphoglycerate (x2)
2ADP
Phosphoglycerate
kinase
2ATP
Glucose
2ATP
2Pi
4ADP
+
2NAD
4ATP
2NADH
2Pyruvate
3-Phosphoglycerate (x2)
Net: 2ATP, 2NADH"
Phosphoglycerate
mutase
2-Phosphoglycerate (x2)
Enolase
H2O
Phosphoenolpyruvate (x2)
2ADP
Pyruvate
kinase
2ATP
Pyruvate (x2)
Rate-determining Reaction!
•  Hexokinase/
glucokinase!
•  Phosphofructokinase!
•  Pyruvate kinase!
Glycolysis!
Flux through a metabolic pathway can be regulated in several ways!
1. Availability of substrate!
•  GLUT1 (Kt 1.5 mM) vs GLUT2 (Kt 66 mM)!
•  Insulin-responsive GLUT4!
2. Concentration of enzymes responsible for rate-limiting steps!
Insulin stimulates the transcription of the genes that encode !
•  Hexokinase!
•  Pyruvate kinase!
•  Phosphofructokinase-1!
•  PFK-2/FBPase-2!
3. Allosteric regulation of enzymes!
•  Allosteric activator/inhibitor!
4. Covalent modification of enzymes!
•  Phosphorylation!
Glycolysis!
Rate-determining reactions: hexokinase vs glucokinase!
•  Every tissue!
Relative enzymatic activity
(Vo/Vmax)
Hexokinase
•  Km ≈ 0.1 mM!
•  G6P is an allosteric
inhibitor!
normal
plasma
[glucose]
Glucokinase
•  Hepatocyte, β-cell!
•  Km ≈ 10 mM!
•  G6P does not inhibit
glucokinase!
0
5
10
[Glucose] mM
15
20
Glycolysis!
Rate-determining reactions: phosphofructokinase-1 (PFK-1)!
ATP Fructose-6"
+" ATP"
phosphate"
ADP, AMP Fructose-1,6"
bisphosphate"
PFK-­‐1 citrate +" ADP"
F26P Allosteric inhibitor: ATP, citrate!
ATP เป็น product ของกระบวนการ glycolysis!
Citrate เป็นสารตั้งต้นใน Krebs cycle!
Allosteric activators: ADP, AMP, fructose-2,6-bisphosphate (F26P)!
ADP, AMP ได้จากปฏิกิริยา ATP hydrolysis!
F26P เปลี่ยนมาจาก F6P ซึ่งเป็น glycolytic intermediate!
Glycolysis!
Formation of fructose-2,6-bisphosphate (F26P)!
ATP
Fructose-6-phosphate
(glycolytic intermediate)
PFK-2
insulin
ADP
Pi
glucagon
FBPase-2
Fructose-2,6-bisphosphate
H2O
Insulin กระตุ้น phosphofructokinase-2
Glucagon กระตุ้น fructose bisphosphatase-2
(PFK-2) เป็นผลให้ F26P มีปริมาณเพิ่มขึ้น
ทำให้ glycolysis ถูกกระตุ้น !
(ผ่านการทำงานของ PFK-1)!
(FBPase-2) เป็นผลให้ F26P มีปริมาณลดลง !
ทำให้ glycolysis ถูกยับยั้ง (ผ่านการทำงานของ
PFK-1)!
Glycolysis!
Rate-determining reactions: pyruvate kinase!
Covalent modification
(liver only)
Allosteric control
(all glycolytic tissues)
glucagon
ADP
F16BP
PEP
PEP
ATP
PKA
ADP
P
Pyruvate
kinase (L)
(inactive)
F16BP
PP
H2O
Pi
Pyruvate
kinase
(L/M)
ATP
acetyl-CoA
long-chain fatty acids
ATP
Pyruvate
Pyruva
carbox
Pyruvate
transamination
Alanine
PKA- protein kinase A!
PP- phosphoprotein phosphatase!
During fasting, glycolysis is inhibited in the liver (glucagon signal) but unaffected in the muscle !
Hormone: insulin (éF26P)!
Low energy index: ADP, AMP !
Intermediate: F16P!
Hormone: glucagon (êF26P)!
High energy index: ATP
acetyl-CoA, citrate, LCFA!
Intermediate: G6P!
Glucose
+ -­‐ 2Pyruvate
2ATP, 2NADH
Glycolysis!
Other clinical significance- formation of 2,3BPG in RBC!
1,3-Bisphosphoglycerate (x2)
Phosphoglycerate
kinase
Bisphosphoglycerate
mutase
2ADP
2ATP
3-Phosphoglycerate (x2)
2Pi
2,3-Bisphosphoglycerate (x2)
2,3-Bisphosphoglycerate
phosphatase
2,3-­‐bisphophoglycerate (2,3-­‐BPG) 2,3-BPG มีผลต่อการจับกับ O2 ของ hemoglobin (O2 affinity): มีมาก จับน้อย ปล่อยง่าย!
[2,3-BPG] in normal RBC ≈ 5 mM!
[2,3-BPG] > 5 mM (eg. pyruvate kinase deficiency)- O2 delivery ไปยัง peripheral tissue !
[2,3-BPG] < 5 mM (eg. hexokinase deficiency)- O2 delivery ไปยัง peripheral tissue!
Glycolysis!
Other clinical significance- fluoride can inhibit enolase!
O
Glyceraldehyde-3-phosphate (x2)
2Pi
2NAD
G3P
dehydrogenase
+
2NADH + H
1,3-Bisphosphoglycerate (x2)
P
O
CH 2
CH
O
P
O
CH 2
CH
C
O
OH
P
Fluoride ion (F-)!
2+) (cofactor ของเอนไซม์)!
Magnesium
ion
(Mg
O
P
O
CH 2
CH
C
Phosphoglycerate
mutase
HO
Inorganic phosphate (Pi) !
O
OH
2-Phosphoglycerate (x2)
Dental carries (ฟันผุ)!
Common pathogen: Streptococcus mutans!
2ATP
3-Phosphoglycerate (x2)
H
OH
2ADP
Phosphoglycerate
kinase
C
EnolaseO Ÿ Mg2Ÿ F2 ŸPi- inhibitory complex!
CH 2
CH
O
Enolase
C
O
ทำให้
2PG เข้าถึง active site ไม่ได้!
P
H2O
O
Phosphoenolpyruvate (x2)
2ADP
Pyruvate
kinase
2ATP
CH 2
Pyruvate (x2)
CH3
C
C
O
O
P
O
C
O
C
O
Metabolic Fate of Pyruvate!
NADH must be reoxidized!
Glucose
NAD+
NAD+
2 Ethanol + 2CO2
NADH
Anaerobic condition
Yeast
2 Lactate
NADH
2 Pyruvate
Anaerobic condition
Vigoriously contracting muscle
RBC
NADH
4CO2
2 Acetyl-CoA
Krebs cycle
4CO2 + 4H2O
ETC
Aerobic condition
NAD+
Anaerobic Glycolysis!
Lactic and ethanol fermentation!
Skeletal muscle, RBC!
O
O
C
C
NADH + H+
O
O
NAD+
C
HO
lactate
dehydrogenase (LDH)
CH3
O
C
H
CH3
Pyruvate
Lactate
Baker yeast!
O
CH3
C
O
C
O
Pyruvate
CO2
pyruvate
decarboxylase
O
CH3
C
H
Acetaldehyde
NADH
NAD+
alcohol
dehydrogenase
OH
CH3
C
H
H
Ethanol
Anaerobic Glycolysis!
Energy harvesting efficiency!
Lactic Fermentation +
2NAD 2NADH
Glucose
2ADP
Ethanol Fermentation +
2NADH 2NAD
2Pyruvate
2Lactate
+
2NAD 2NADH
Glucose
2Pyruvate
2ADP
2ATP
ΔG’° = -196 kJ/mol of glucose !
Efficiency! =!
2ATP!
196 kJ/mol!
+
2NADH 2NAD
2EtOH + 2CO 2
2ATP
ΔG’° = -235 kJ/mol of glucose !
Efficiency! =!
2ATP!
235 kJ/mol!
=!
2(30.5 kJ/mol)!
196 kJ/mol!
=!
2(30.5 kJ/mol)!
235 kJ/mol!
=!
32%!
=!
26%!
Anaerobic Glycolysis!
Rapid energy extraction!
Anaerobic glycolysis Aerobic glycolysis + OXPHOS • 
Ethanol fermentation (2 ATP)
26%!
• 
Lactic fermentation (2 ATP)
32%!
• 
Glucose + 6O2!
34% (ΔG’° = -2,840 kJ/mol, 32 ATP)!
Glucose
2 Ethanol + 2CO2
NADH
Anaerobic condition
Yeast
Glucose
NAD+
NAD+
6CO2 + 6H2O!
2 Lactate
NADH
2 Pyruvate
Anaerobic condition
Vigoriously contracting muscle
RBC
2 Pyruvate
NADH
4CO2
Anaerobic glycolysis (2 ATP) !
สามารถเกิดได้เร็วกว่า !
aerobic glycolysis + OXPHOS (32 ATP) !
ถึง 100 เท่า!
2 Acetyl-CoA
Krebs cycle
4CO2 + 4H2O
ETC
Aerobic condition
NAD+
Anaerobic Glycolysis!
Fast-twitch vs slow-twitch muscles fiber!
Fast-­‐twitch fiber (type II) Slow-­‐twitch fiber (type I) Fast!
Slow!
Metabolism Mainly anaerobic
glycolysis!
OXPHOS dependent!
Fatigability Quickly!
Relatively more
slowly!
Pale (pinkish)!
Red (hemes in
cytochromes)!
Spinners!
Marathoners!
Rate of contraction Muscle histology Sport type Slow-Twitch Muscle Fiber in PGC-1α Transgenic Mice!
Lin, et al., Nature 2002 WT = wild-type mice!
Tg = PGC-1α transgenic mice !
PGC-1α is a transcriptional co-activator which promotes mitochondrial biogenesis!
Acetyl-CoA Formation!
•  Aerobic condition!
•  Pyruvate is transported into the mitochondrial matrix!
•  Enzyme: pyruvate dehydrogenase complex (PDH complex)!
Pyruvate dehydrogenase complex &Multienzyme Complexes •  Catalytic core &
&E1: pyruvate dehydrogenase!
&
E2: dihydrolipoyl transacetylase!
&
E3: dihydrolipoyl dehydrogenase!
•  Regulatory subunits &
&Pyruvate dehydrogenase kinase!
&
&Pyruvate dehydrogenase phosphatase!
Acetyl-CoA Formation!
PDH complex deficiency- Wernicke-Korsakoff syndrome!
O
O
C
O
C
CH3
CoA-SH
TPP
NADH
lipoate
FAD
pyruvate dyhydrogenase
complex (E1 + E2 + E3)
Pyruvate
PDH complex deficiency • 
• 
• 
• 
+
NAD
S-CoA
O
C
CH3
+ CO2
Acetyl-CoA
Wernicke-­‐Korsakoff syndrome Mutation- inborn error of metabolism!
•  Thiamine deficiency- chronic alcoholism!
Pyruvate is converted into lactic acid!
•  Neurons- OXPHOS dependent!
Metabolic acidosis, coma, death!
•  Wernicke encephalopathy + !
Treatment!
Korsakoff psychosis!
§  Ketogenic diet (fat > protein > CHO)!
§  Thiamine (B1), dichloroacetate!
Acetyl-CoA Formation!
PDH complex deficiency- Wernicke-Korsakoff syndrome!
Thiamine pyrophosphate (TPP) Thiamine deficiency "Chronic alcoholism "Malnutrition, malaborption!
&Liver- loss ability to store B1!
Brain (neurons)-­‐ mainly aerobic glycolysis + OXPHOS Shrinkage of the cerebral cortex !
and atrophy of basal forebrain regions!
Wernicke encephalopathy Confusion!
Loss of muscle coordination!
Vision changes!
Korsakoff psychosis Amnesia!
Confabulation!
Hallucination!
Regulation of the PHD complex!
Product inhibition!
To control ‘carbon flux’ (acetyl unit)
that enters the Krebs’ cycle !
FAD
NAD+
[NADH]!
[NAD+]!
SH
NADH+H
SH
CO2
O
CH3
C
O
C
Pyruvate
O
OH
S
CH3 C TPP
HydroxyethylTPP
S
pyruvate
dehydrogenase (E1)
dihydrolipoyl
dehydrogenase
(E3)
FAD
R
Lipoamide
S
S
HS
dihydrolipoyl
HS
transacetylase (E2)
R
O
O
TPP
CH3
C
S
HS
R
Acetyl-dihydrolipoamide
CH3
C S CoA
Acetyl-CoA
CoA
[acetyl-CoA]!
[CoA]!
+
Regulation of the PHD complex!
Covalent modification!
P
Pyruvate
dehydrogenase
complex
(inactive)
ADP
ADP
CoA
NAD+
Pyruvate
2+
PDK
ATP
Acetyl-CoA
NADH
ATP
[NADH]!
[NAD+]!
H2O
[acetyl-CoA]! [ATP]!
[ADP]!
[CoA]!
PDP
Pyruvate
dehydrogenase
complex
(active)
Ca
2+
Mg
Pi
Phosphorylation at E1 !
PDH complex !
is inhibited!
Regulation of the PHD complex!
Summary!
1) Product inhibition E2 (dihydrolipoyl transacetylase) is inhibited by!
[acetyl-CoA]!
[CoA]!
E3 (dihydrolipoyl dehydrogenase) is inhibited by increased ! [NADH]!
[NAD+]!
2) Covalent modification-­‐ phosphorylation of E1 E1- (pyruvate dehydrogenase) is inactive when phosphorylated!
PDK- activated by ATP, acetyl-CoA, NADH !
PDP- activated by Ca2+ and Mg2+!
The Krebs Cycle!
Glucose!
Glycolysis 2 Pyruvate!
PDH complex 2 Acetyl-CoA!
6 NADH!
2 FADH2!
2 GTP (ATP)!
Krebs cycle Oxidative Phosphorylation (OXOHOS)!
1 NADH!
1 FADH2!
ETC"
2.5 ATP!
1.5 ATP!
ATP from Complete Oxidation of Glucose!
Gluconeogenesis!
Gluco; glucose, neo; new, genesis; synthesis"
Gluconeogenesis: a metabolic pathway that regenerates glucose form !
&
&
&
non-carbohydrate carbon substrates !
Pyruvate Lactate Glucose Glycerol Glucogenic amino acid Gluconeogenesis!
Glucose
ATP
Glycolysis
hexokinase/
glucokinase
Pi
glucose-6phosphatase
Glucose-6-phosphate
ADP
Gluconeogenesis
H2O
phosphogluco
isomerase
Fructose-6-phosphate
ATP
Pi
FBPase-1
PFK-1
ADP
Fructose-1,6-bisphosphate
H2O
aldolase
G3P
triosephosphate isomerase
2NAD+ + 2Pi
G3PDH
2NADH
2NAD+ + 2Pi
DHAP
2NADH
1,3-Bisphosphoglycerate (x2)
2ADP
2ADP
2ATP
2ATP
PGK
3-Phosphoglycerate (x2)
phosphoglycerate
mutase
2-Phosphoglycerate (x2)
enolase
2ADP
Phosphoenolpyruvate (x2)
pyruvate kinase
2ATP
2GDP
Pyruvate (x2)
PEP carboxykinase
2GTP
Oxaloacetate (x2)
2ADP
2ATP
pyruvate carboxylase
Gluconeogenesis!
Hydrolysis of G6P by glucose-6-phosphatase in the ER!
•  An active site of glucose-6-phosphatase faces towards the ER lumen!
•  Separation of gluconeogenesis and glycogenolysis from glycolysis!
•  Plays a key role in homeostatic regulation of blood sugar levels!
Gluconeogenesis!
Cori cycle- synthesis of glucose from lactate!
Liver
Muscle
blood glucose
Glucose
Glucose
ADP + Pi
NAD+
NAD+
ADP + Pi
ATP
NADH
NADH
ATP
2Pyruvate
NADH
NAD+
2Pyruvate
lactate
dehydrogenase
lactate
dehydrogenase
2Lactate
blood lactate
NADH
NAD+
2Lactate
Sources of lactate !
•  Red blood cell!
•  Fast-twitch muscle fiber!
Gluconeogenesis!
Synthesis of glucose from glycerol!
Fat mobilization •  Shortage of liver glycogen (long starvation)!
•  Glycerol kinase!
o  Primarily expressed in liver!
•  Dihydroxyacetone phosphate (DHAP) is!
used to synthesize glucose in order to!
maintain blood glucose levels !
Gluconeogenesis!
Synthesis of glucose from glucogenic amino acids!
Protein mobilization Gluconeogenesis
Oxaloacetate
•  Most dietary amino acid!
•  Structural protein (muscle
protein) is the last source of
The
Krebs
Cycle
material for gluconeogenesis
(after glycogen and fat)!
•  Glucogenic amino acids!
Gluconeogenesis!
Glucose-alanine cycle!
Ammonia (NH4+) •  Toxic product from protein degradation!
•  Glutamate transfers ammonia to pyruvate!
Alanine •  Transport ammonia from muscle to the liver!
Glycolysis vs Gluconeogenesis!
Futile cycle- uneconomical process!
Glycolysis
Gluconeogenesis
Glucose
Glucose
4ADP + 2GDP
6Pi
2NAD+
2ADP + 2Pi
2NAD+
2ATP + 2H2O
4ATP + 2GTP
6H2O
2NADH
2Pyruvate
Net reaction:!2ATP + 2GTP + 4H2O
2NADH
2Pyruvate
2ADP + 2GDP + 2Pi!
Coordinated Regulation of Glycolysis & Gluconeogenesis!
Coordinated Regulation of Glycolysis & Gluconeogenesis!
Gene expression control- hexokinase/glucose-6-phosphatase!
Increased gene expression of the enzymes in the pathways!
•  High energy demand!
o  low [ATP]!
•  A need to increase production of
glucose!
o  high [AMP]!
o  low blood [glucose]!
o  vigorous muscle contraction!
o  glucagon signaling!
•  Greater glucose consumption!
o  high blood [glucose]!
o  insulin signaling!
Hexokinase Glucose-­‐6-­‐phosphatase Coordinated Regulation of Glycolysis & Gluconeogenesis!
Allosteric control- PFK-1/FBPase-1!
Gluconeogenesis
ATP
Fructose-6-phosphate
Pi
ATP
ADP
PFK-1
FBPase-1
AMP
citrate
F26F
ADP
H2O
Fructose-1,6-bisphosphate
Glycolysis
High energy utilization !
• 
ATP hydrolysis: [ADP] and [AMP]!
Low energy utilization!
• 
ATP hydrolysis: [ATP]!
•  OXPHOS slows down: [citrate]!
ATP
Fructose-6-phosphate
(glycolytic intermediate)
PFK-2
insulin
ADP
Pi
glucagon
FBPase-2
Fructose-2,6-bisphosphate
H2O
Coordinated Regulation of Glycolysis & Gluconeogenesis!
Mixed mechanism- pyruvate kinase/pyruvate carboxylase!
Covalent modification
(liver only)
Allosteric control
(all glycolytic tissues)
glucagon
ADP
F16BP
PEP
PEP
ATP
PKA
ADP
P
Pyruvate
kinase (L)
(inactive)
F16BP
PP
H2O
Pi
Pyruvate
kinase
(L/M)
ATP
acetyl-CoA
long-chain fatty acids
ATP
Pyruvate
transamination
Alanine
Pyruvate
carboxylase
Pyruvate
Coordinated Regulation of Glycolysis & Gluconeogenesis!
Acetyl-CoA- antagonistic effect on glucose metabolism!
Glucose
Gluconeogenesis
Oxaloacetate
pyruvate
carboxylase
Pyruvate
Glycolysis
pyruvate kinase
pyruvate DH
complex
Acetyl-CoA
Kerbs cycle
Energy
Glucose
Coordinated Regulation of Glycolysis & Gluconeogenesis!
Summary!
Hexokinase/glucose-­‐6-­‐phosphatase •  Alteration in gene expression!
•  Insulin, glucagon and other signals that reflect cellular energy requirement !
PFK-­‐1/FBPase-­‐1 •  Alloteric control!
•  ATP, ADP, AMP, citrate, F26P!
•  Insulin and glucagon influence the formation of F26P Pyruvate kinase/pyruvate carboxylase •  Allosteric control and covalent modification!
•  Acetyl-CoA!
Glycogen!
Structure of Glycogen •  Polymers of glucose !
•  α(1 4) glycosidic (linked) and α(1 6) glycosidic bonds (branched)!
•  Cytosolic granules (β-particle) !
Function of Glycogen •  Endogenous major storage reserve of glucose!
o  Muscle glycogen (1-2% of FW) !
²  & Important fuel during prolonged strenuous exercise (4-6 hr)!
o  Liver glycogen (10% of FW)!
²  & Regulate plasma glucose (8-10 hr)!
•  Regulate osmotic pressure inside the cell !
o 
10% of FW of the liver: 40,000x reduce in osmotic pressure !
Glycogen Synthesis!
A starting point of a glycogen chain- glycogenin!
Glycogenin
OH
+
H
HO
Tyr 194
OH H
H
glucosyl
transferase
(intrinsic activity of glycogenin)
Glycogenin
Glycogenin CH2OH
O
H
H
UDP
O
OH
UDP-glucose
UDP
+
H
HO
Tyr 194
glucosyl
transferase (x7 more times)
(chain extending)
CH2OH
O
H
H
OH H
H
O
OH
UDP-glucose
UDP
Glycogenin
Tyr 194
Glycogen primer
UDP
Liver, muscle!
Glycogen Synthesis!
Elongation- glycogen synthase**!
CH2 OH
O H
H
H
4 OH
H 1
HO
O
UDP
CH2 OH
CH2 OH
O H
O H
H
H
H
H
4
1
4
1
OH H
OH H
HO
O
O
+
H
OH
UDP-glucose
H
OH
H
OH
Nonreducing end of a glycogen chain
(glucose residue > 4)
UDP
glycogen
synthase
CH2 OH
CH2 OH
CH2 OH
O H
O H
O H
H
H
New
H
H
H
H
1 4
1 4
1
nonreducing 4
H
OH H
OH
OH H
end
HO
O
O
O
H
OH
H
OH
H
OH
Elongated glycogen
Glycogen synthase activated by G6P, insulin (after meal)!
inhibited by glucagon, epinephrine (during meal, sympathetic) !
Glycogen Synthesis!
Branching- glycogen-branching enzyme!
Glycogen
core
glycogen-branching
enzyme
point
Glycogen
core
•  branching- a glycogen chain has at least 11 glucose residues!
•  transfer of 6-7 glucose residues from the nonreducing end to an interior
position!
Glycogen Synthesis!
Summary!
•  Start!
ü  Glycogenin!
ü  Glucosyl transferase (intrinsic activity of glycogenin)!
ü  Glycogenin + 8 glucose residues = glycogen primer!
•  Elongation!
ü  Nonreducing end + UDP-glucose!
ü  Glycogen synthase***!
•  Branching !
ü  Transfer of a terminal fragment of 6-7 glucose residues !
from nonreducing end!
ü  Forming α(1
6) glycosidic bond!
ü  Glycogen-branching enzyme!
Glycogenolysis!
Step 1- glycogen phosphorylase**!
Nonreducing
ends
Glycogen
glycogen
phosphorylase
P
P
P
P
P
P
Glycogen phosphorylase activated by glucagon, epinephrine, Ca2+!
inhibited by insulin, glucose!
Glycogenolysis!
Step 2- glycogen debranching enzyme!
glycogen
debranching
enzyme
Glucose
Unbranched glycogen
(
Oligo α(1
6) to α(1 4) glucan-transferase!
α(1 6) glucosidase !
Glycogenolysis!
Step 3- phosphoglucomutase, glucose-6-phosphatase (liver only)!
O
O
P
O
P
O
O
P
P
O
P
P
Glucose-1-phosphate
phophoglucomutase
P
O
P
P
O
O
P
P
O
O
P
O
Glucose-6-phosphate
Muscle
glucose-6-phosphatase
Pi
Glycolysis
Free glucose
GLUT2
Plasma glucose
Liver
Glycogenolysis!
Summary!
•  Glycogen phosphorylase***!
ü  Removes the terminal glucose residue of a glycogen chain as G1P!
ü  Rate-limiting step of glycogenolysis!
•  Glycogen debranching enzyme!
ü  Oligo α(1 6) to α(1 4) glucan-transferase!
ü  α(1 6) glucosidase, resulting in a free glucose!
•  Phosphoglucomutase/ glucose-6-phosphatase (liver only)!
ü  Muscle: G1P
G6P
glycolysis!
ü  Liver: G1P
G6P
free glucose
blood!
Control of Glycogen Metabolism!
Allosteric control!
Glycogen
synthase a
(active)
Glycogen
phosphorylase b
(inactive)
AMP
ATP
G6P
Glucose
Glycogen
phosphorylase a
(active)
Glycogen
synthase b
(inactive)
Glycogen phosphorylase (liver):!
‘glucose sensor’!
Glycogen synthase:!
‘G6P sensor’!
Glycogenolysis
Glycogen
synthesis
Control of Glycogen Metabolism!
Hormonal control- glycogen phosphorylase!
Glycogen
phosphorylase b
(inactive)
phosphorylase a
phosphatase
P
2Pi
2ATP
2H2O
2ADP
Glycogen
phosphorylase a
(active)
glucagon
(liver)
phosphorylase b
kinase
epinephrine, Ca2+
(muscle)
P
Control of Glycogen Metabolism!
Hormonal control: glycogen synthase!
Insulin
3ADP
3ATP
GSK3
P
Glycogen
synthase b
(inactive)
P
Glycogen
synthase a
(active)
P
phosphorylase a
phosphatase
3Pi
Insulin
Glucogan (liver)
Ephinephrine (muscle)
Control of Glycogen Metabolism!
Summary!
To increase plasma glucose To decrease plasma glucose ✓ Glycogenolysis!
✗ Glycogenolysis!
✗ Glycogen synthesis!
✓ Glycogen synthesis!
+ Glycogen phosphorylase:"
-­‐ + Glycogen synthase"
glucagon, epinephrine!
insulin!
AMP, Ca2+!
G6P!
Glycogen synthase"
glucagon, epinephrine!
-­‐ Glycogen phosphorylase"
insulin, glucagon!
glucose, ATP!
Hyperglycemia: high plasma [glucose]!
•  Fasting hyperglycemia (at least 8 hours after meal)!
plasma [glucose] > 130 mg/dl!
•  Postprandial hyperglycemia (2 hours after meals)!
plasma [glucose] > 180 mg/dl!
อาการของ hyperglycemia!
•  Temporary hyperglycemia- asymptomatic!
•  Chronic hyperglycemia- diabetes mellitus!
Polyphagia, polydipsia, polyuria!
Macrovascular and microvascular complications!
 NORMAL plasma [glucose] = 80 - 110 mg/dL !
Hypoglycemia: low plasma [glucose]!
Plasma [glucose] < 60 mg/dl หรือตำ่จนมีอาการ!
..Metabolic emergency..
อาการของ hypoglycemia!
Adrenergic manifestation: palpitating, sweating, tachycardia !
Glucagon manifestation: hunger, nausea, vomiting, headache!
Neuroglycopenia: impaired judgment, confusion, seizure, coma!
 NORMAL plasma [glucose] = 80 - 110 mg/dL !
Plasma [glucose]
mg/dL
Glycolysis!
350
Gluconeogenesis!
Glycogen synthesis!
300
Glycogenolysis!
250
200
150
100
Normal
50
0
0
1
2
3
4
5
6 Hours
Plasma [glucose]
mg/dL
350
300
250
DM"
200
150
100
Normal
50
0
0
1
2
3
4
5
6 Hours
Diabetes mellitus!
A defining characteristic of DM is chronic hyperglycemia!
Plasma [glucose]
mg/dL
Cause Inability to lower blood
glucose!
350
300
250
DM
Classic symptoms Polydipsia, polyphagia,
polyuria!
200
150
100
Normal
50
0
0
1
2
3
4
5
6 Hours
Diabetes mellitus!
World major metabolic disease!
WHO- 346 million people worldwide (August 2011)!
Diabetes mellitus!
Type 1 DM!
β-cells are destroyed!
Diabetes mellitus!
Type 2 DM!
Genetic factor!
•  มีความผิดปกติของ gene ทำให้การ!
ตอบสนองของเซลล์ต่อ insulin ลดลง!
Environment!
•  Sedentary lifestyle (ไม่ออกกำลังกาย)!
Genetic + Environment!
•  Too much fat/sugar intake!
Diabetes mellitus!
Main symptoms!
Pentose Phosphate Pathway!
Overview!
Nonoxidative
phase
Oxidative
phase
Glucose-6-phosphate
+
NADP
2GSH
glutathione reductase
NADPH
6-Phosphogluconate
+
transketolase,
transaldolase
NADP
CO2
NADPH
Ribulose-5-phosphate
Ribose-5-phosphate
Nucleotides, coenzymes,
DNA, RNA
GSSG
Fatty acids,
sterols, etc.
reductive
biosynthesis
Precussors
Pentose Phosphate Pathway!
Role of PPP!
Ribose-­‐5-­‐phosphate and NADPH &Nucleic acid synthesis!
&Rapidly dividing cells: bone marrow, skin, intestinal mucosa !
NADPH Reductive biosynthesis: fatty acids, steroid hormones, neurotransmitters!
Fat tissue, liver, lactating mammary glands, adrenal gland, testis/ovaries!
&Potent antioxidant: recycle GSH!
Pentose Phosphate Pathway!
Control of PPP: G6P is partitioned between glycolysis and PPP!
Glucose
Glycolysis
Glucose-6-phosphate
+
NADP
G6PD
NADPH
6-Phosphogluconate
+
NADP
CO2
NADPH
Ribulose-5-phosphate
2GSH
glutathione reductase
GSSG
Fatty acids,
sterols, etc.
reductive
biosynthesis
Precussors
Ribose-5-phosphate
NADP+ is an allosteric activator of G6PD!
Pentose Phosphate Pathway!
G6PD deficiency- epidemiology!
•  Most common enzyme defect!
•  Affected > 400 million people worldwide (2008)!
•  Distribution of G6PD deficiency resembles that of malaria !
Glucose-6-phosphate
glucose-6-phosphate
dehydrogenase
NADP +
NADPH
6-phosphoglucono
lactonase
6-Phosphogluconate
phosphogluconate
dehydrogenase
CO2
NADP +
NADPH
Ribulose-5-phosphate
phosphopentose
isomerase
Ribose-5-phosphate
M a l a r i a l B a n d
Pentose Phosphate Pathway!
G6PD deficiency: genetic defects!
X-linked recessive!
Most are missense mutations!
Pentose Phosphate Pathway!
G6PD deficiency: clinical manifestation!
•  Most G6PD-deficient individuals are asymptomatic!
•  Severe infection, some drugs, fava beans induce acute hemolysis !
Jaundice Dark urine •  Deposition of bilirubin!
•  Hemoglobinuria!
Pentose Phosphate Pathway!
G6PD deficiency: molecular mechanism of acute hemolysis!
Molecular oxygen
Oxidative stress
fava beans
infection
some drugs
O2
e
.
Superoxide anion
Induce oxidative damage
to hemoglobin
and RBC membrane
(lipid peroxidation),
resulting in HEMOLYSIS
O2
2H +
e
GPx or catalase
Hydrogen peroxide H2O2
2H
+
H2O
Hydroxyl radical
e
2GSH
H2O
GSSG
.
OH
GR
NADP
Glucose
6-phosphate
+
NADPH
6-phospho-
G6PD
Metabolism of Hexoses other than Glucose!
Fructose metabolism!
Fructose
ATP
Muscle
fructokinase
ATP
ADP
fructose-1phosphate
aldolase
hexokinase
ADP
Fructose-6phosphate
NADH
NAD+
ATP
ADP
GAP
GLYCOLYSIS
Liver
Fructose-1phosphate
Glyceraldehyde alcohol DH
glyceraldehyde
kinase
glycerol
kinase
+
triosephosphate
isomerase
DHAP
Glycerol
glycerol
phosphate DH
NAD+ NADH
GAP
ATP
ADP
Metabolism of Hexoses other than Glucose!
Defect in fructose metabolism: hepatic fructokinase deficiency!
Fructose
fructokinase
ATP
Fructose-1phosphate
ADP
(essential fructosuria)
Rare genetic disorder, mutations in KHK gene
Mode of inheritance: autosomal recessive
Defect: liver cannot convert fructose to F1P
Finding: fructosuria
Sign and symptom: benign, mostly, asymptomatic
Liver
Metabolism of Hexoses other than Glucose!
Defect in fructose metabolism: hereditary fructose intolerance!
Fructose
fructokinase
ATP
ADP
Fructose-1phosphate
Liver
fructose-1phosphate
aldolase
Glyceraldehyde
+ DHAP
Hereditary fructose intolerance
Severe form of defect in fructose metabolism, ALDOB gene
Mode of inheritance: autosomal recessive
Defect: liver cannot metabolize F1P
Finding: accumulation of F1P, liver damage
Treatment: avoid fructose and sucrose
Metabolism of Hexoses other than Glucose!
Galactose metabolism!
CH2 OH
ATP ADP
O H
HO
H
OH H
Galactokinase
H
OH
H
OH
Galactose
CH2 OH
O H
HO
H
OH H
2OPO3
H
H
OH
Galactose-1-phosphate
CH2 OH
O H
H
H
OH H
HO
O
H
OH
UDP-Glucose
O
O
P
O
P
O
O
O
Galactose-1-phosphate
uridylyl transferase
CH2 OH
O H
H
H
OH H
2HO
OPO3
H
OH
Glucose-1-phosphate
CH2 OH
O H
HO
H
OH H
O
H
H
OH
UDP-Galactose
Uridine
UDP-galactose4-epimerase
O
O
P
O
O
P
O
O
Uridine
Metabolism of Hexoses other than Glucose!
Defect in galactose metabolism: galactosemia!
CH2 OH
ATP ADP
O H
HO
H
OH H
Galactokinase
H
OH
H
OH
Galactose
CH2 OH
O H
HO
H
OH H
2OPO3
H
H
OH
Galactose-1-phosphate
CH2 OH
O H
H
H
OH H
HO
O
H
OH
UDP-Glucose
O
O
P
O
P
O
O
O
Galactose-1-phosphate
uridylyl transferase
CH2 OH
O H
H
H
OH H
2HO
OPO3
H
OH
Glucose-1-phosphate
CH2 OH
O H
HO
H
OH H
O
H
H
OH
UDP-Galactose
Uridine
UDP-galactose4-epimerase
O
O
P
O
O
P
O
Uridine
O
Galactosemia •  most cases are caused by defect in galactose-1-phosphate uridylyl !
transferase deficiency (genetics)!
•  failure to thrive, mental retardation, death from liver damage!
Metabolism of Hexoses other than Glucose!
Galactosemic cataract!
CH2 OH
ATP ADP
O H
HO
H
OH H
Galactokinase
H
OH
H
OH
Galactose
CH2 OH
O H
HO
H
OH H
2OPO3
H
H
OH
Galactose-1-phosphate
Galactosemia •  galactose-1-phosphate is an allosteric inhibitor of galactokinase!
•  galactose can be reduced to galactitol!
•  accumulation of galactitol in the lens of the eye causes cataract!
(ต้อกระจก)!
CH2OH
H C
OH
HO C
H
HO C
H
H C
OH
CH2OH
Galactitol
Metabolism of Alcohol!
Consequences of Excessive Alcohol Consumption •  alcohol induced hypoglycemia!
•  fatty liver!
•  liver cirrhosis!
Related documents