Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Math 154 :: Elementary Algebra Chapter 9 — Answers Section 9.1 Section 9.2 Section 9.3 Section 9.4 Section 9.5 Section 9.6 Chapter 9 — Answers Caspers Math 154 :: Elementary Algebra Section 9.1 1. 2. 3. 4. 5. 6. 7. 8. Chapter 9 — Answers Introduction to Square Roots This answer should be in your own words. This answer should be in your own words. No, the square root of a negative number does NOT have a real number value. The expression under the square root sign is called the radicand. 6 1 12 5 2 9. 10. 11. 12. 13. 10 0 not a real number 14 14. 15. 9 83 16. 17. 18. 19. 15 not a real number 20 20. 21. 22. a) b) c) d) e) f) g) h) i) 6 2 4 16 x 4 9 x (The negative sign in front of the x makes the negative x-value positive.) 4 3 x 1 7 1 300 Section 9.1 — Answers Caspers 1 Math 154 :: Elementary Algebra Section 9.2 1. 2. 3. 4. 5. 6. 7. Chapter 9 — Answers Simplifying Radical Expressions — Part I This answer should be in your own words. When factors are “pulled out from a square root”, multiplication is between those factors and the factors that remain under the square root. If the radicand in a square root expression has a variable raised to an exponent, the short cut rule for simplifying the square root for that variable is to divide the exponent by 2. This answer should be in your own words. a) True b) True c) False d) False e) True f) True g) False h) True i) False When multiplying two single-term square root expressions, it’s “easiest” to write the expression under one radical sign first. Assuming all variables are nonnegative, the simplified answer for a problem that “squares a square root” or “square roots a square” is the radicand. In other words, “squaring” and “square rooting” are inverses. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 3 2 2 5 3 5 10 2 not a real number 9 2 12 2 4 7 15 7 11 3 12 3 6 11 10 3 20 7 21 6 x x z5 z k4 k n200 p 200 p 28. y2 5 29. 30. 31. 32. 2a 4 2 4m8 7c6 d 4 2d 33. 8 p3q 4 3q 34. 35. 36. 37. 8a10c8 d 5c 18v10u16 2v 38. 5a75 6 6 y12 z 5 3 y 2n4 2m 7 x25 y 21 10 z Section 9.2 —Answers Caspers 2 Math 154 :: Elementary Algebra 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 6c18 d12 15d 5 16 8 11 2 3 6 5 6 21 22 30 53. 54. 55. 56. 3a 4 10 9z 4 2z 10m2 n2 6 57. 58. 5a 2 c3 14 59. 60. 61. 62. 63. 25w6 11k 5 3a9b 64. 65. 15m2 16c2 d 2 Chapter 9 — Answers 7 10 42 3x 2 5y 2y 4xy3 yz 24 p6 q 4 2 36x18 14y 3 z Section 9.2 —Answers Caspers 3 Math 154 :: Elementary Algebra Section 9.3 1. 2. 3. Chapter 9 — Answers Addition, Subtraction, and Multiplication of Radical Expressions Only add square root expressions that have like-radicands. The explanation should be in your own words. This answer should be in your own words. 9 2 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 5 11 5 10 12 2 8 14 13 5 3 6 6 3 7 2 7 3 5 5 5 3 10 2 11 7 40 3 12 5 9 6 11 3 2 15 12 3 12 5 11 39 2 34 5 22 13 7 13 5 2 10 12 9 11 22 18 5 12 32 3 48 x2 x 6 y2 y y 6a a 2a 2 15 4 5 6 14 42 40 11 165 12 7 20 42 6 5 20 2 72 21 12 14 8x 1 3 x 9a a 9a 1 6z z 1 6z2 5c 5c 5c 5 1 4n 1 4n 7n 18 6 5 3 2 10 8 8 7 3 21 40 4 3 10 6 3 2 57 16 2 Section 9.3 — Answers Caspers 4 Math 154 :: Elementary Algebra 45. 46. 47. 48. 49. 50. 51. 52. 53. 21 8 14 40 20 5 12 2 6 10 36 91 3 62 114 3 82 21 14 26 8 10 42 3 3x 2 7 x x 2 x y2 2 y z z 58. 2n2 9n 3n 1 2n 11 22 w2 6 4w 8a 1 6a2 59. 60. z2 This answer should be in your own words. 54. 55. 56. 57. Chapter 9 — Answers Section 9.3 — Answers Caspers 5 Math 154 :: Elementary Algebra Section 9.4 1. 2. 3. 4. 5. Chapter 9 — Answers Division of Radical Expressions When simplifying a square root whose radicand is a quotient, usually it’s “easiest” to simplify/reduce the fraction first, before taking the square root. When simplifying an expression that consists of a quotient of square roots (without an addition or subtraction), simplify the fraction first. The three conditions that must be met in order for a square root expression to be considered “simplified” are: a) No radicand can contain a factor that is a perfect square. b) The radicand is not a quotient. c) There are no radicals in the denominator. This answer should be in your own words. Expressions that require rationalizing the denominator are expressions with a single radical term in the denominator and expressions with two terms (at least one of which has a radical term). The next part of the answer should be in your own words. 6. 5 3 7. 8. 9. 5 2 3 10. 2 11. 2 2 5 2 12. 13. 14. 1 2 3 5 15. 16. 7 3 17. 11 3 18. 2 2 19. x2 20. 2m 2 5 21. 2a 3 1 9 y4 22. 23. z 4 13 z 2 w2 24. 5q 4 3p 25. 26. m11n2 5n 27. 11c3d12 c 28. 8 3 3 29. 14 2 30. 15 5 31. 2 5 5 32. 1 8xy 2 2 33. 2 2 34. 5y y 35. 5a 5a Section 9.4 — Answers Caspers 6 Math 154 :: Elementary Algebra 36. 2 p p 37. x x2 38. m 2m 6 39. z 2 40. 3c6 2c 8d 3 41. 2xy xy 4 42. 3p 3 pq 43. m8 6 n 4 n2 44. 3a 4 5 a 5 45. 6 xy 3 x2 y3 46. 5 2 3 47. 3 7 2 48. 49. 50. 51. 52. 53. 54. 55. Chapter 9 — Answers 2 1 6 5 2 3 5 4 10 3 2 7 2 3 x 8 x 8 5 64 x 11 11 y 11 y 2 a a c a c xy x y x2 y Section 9.4 — Answers Caspers 7 Math 154 :: Elementary Algebra Section 9.5 1. 2. Chapter 9 — Answers Simplifying Radical Expressions — Part II This answer should be in your own words. This answer should be in your own words. 4. 3 5 2 1 4 5. 3 10 6. 5 2 1 2 7. 75 2 2 8. 4 1 1 5 9. 2 1 0 2 10. 1 3. Section 9.5 — Answers Caspers 8 Math 154 :: Elementary Algebra Section 9.6 1. a) b) Chapter 9 — Answers Radical Equations 4x 2 4x x2 4 x 4 d) x 4 x 4 The first part of this answer should be in your own words. The inverse of square rooting is squaring. It is necessary to check your answers when solving a square root equation. The rest of this answer should be in your own words. x 64 y 16 a 81 m 100 w8 p9 no solution; 12 is an extraneous solution. n 22 q 106 k 41 w 12 c) 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. d 3 y 11 x4 k 4 no solution a2 p 1 n 3 no solution; 32 is an extraneous solution. 24. 25. 26. 27. 28. 29. 30. x 1 6 ; 9 is an extraneous solution. k 4 ; –7 is an extraneous solution. w 5 ; –4 is an extraneous solution. y 4 ; –9 is an extraneous solution. z 3 ; 0 is an extraneous solution. a 9 ; 1 is an extraneous solution. c 4 ; 89 is an extraneous solution. 31. m 32. 33. no solution; 1 are extraneous solutions. x 3 ; 11 is an extraneous solution. 1 2 and m 7 Section 9.6 — Answers Caspers 9