Download Congruent Figures

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Congruent Triangles
Geometry (Holt 4-4)
K. Santos
Congruent Geometric Figures
Congruent Geometric Figures
* have the same size and shape
Congruent Figures/Triangles (Definition)
Congruent Figures----have congruent corresponding sides
and congruent corresponding angles
A
B
R
S
D
C
U
T
A corresponds with S
B corresponds with R
C corresponds with U
D corresponds with T
<A corresponds with <S 𝐴𝐡 corresponds with 𝑆𝑅
<B corresponds with <R 𝐡𝐢 corresponds with π‘…π‘ˆ
<C corresponds with <U 𝐢𝐷 corresponds with π‘ˆπ‘‡
<D corresponds with <T 𝐷𝐴 corresponds with 𝑇𝑆
all the corrresponding parts are congruent---so ABCD β‰… SRUT
Congruent Corresponding Parts
The statement: βˆ†ABC β‰… βˆ†DEF tells you a lot of information.
It tells you about corresponding congruent angles….
<A≅<D
<B≅<E
<C≅<F
It tells you about corresponding congruent sides…
𝐴𝐡 β‰… 𝐷𝐸
𝐡𝐢 β‰… 𝐸𝐹
𝐴𝐢 β‰… 𝐷𝐹
Exampleβ€”Corresponding parts
Given: βˆ†PQR β‰… βˆ†STW. Identify all pairs of congruent
corresponding parts.
<P β‰… <S
<Q β‰… <T
<R β‰… <W
𝑃𝑄 β‰… 𝑆𝑇
𝑄𝑅 β‰… π‘‡π‘Š
𝑃𝑅 β‰… π‘†π‘Š
Exampleβ€”Finding a missing side
8
Given: βˆ†ABC β‰… βˆ†DEF.
B
D
F
53
2x – 2
A
Find x.
AB = DE
2x - 2 = 6
2x = 8
x=4
Find m<F.
m<F = m<C
Find m<C first
53 + 90 = 143
180 – 143 = 57°
So m< F = 57°
6
C
E
10
Exampleβ€”Finding missing angles
Given: βˆ†ABC β‰… βˆ†DBC.
A 50°
B
Find x.
2x – 16 = 90
2x = 106
x = 53°
Find m < D
m<D = m<A
m<A = 50°
So m<D = 50°
Find m<DBC.
90+ 50 =140
180-140=40
m<FBC = 40°
2x - 16
C
D
Proving two triangles
congruent (using definition)
Given: 𝐢𝐺 β‰… 𝐷𝐺
N is a midpoint of 𝐢𝐷
< C β‰…< D
βˆ†GNC π‘Žπ‘›π‘‘ βˆ†GND are right triangles
Prove: βˆ†GNC β‰… βˆ†GND
G
C
N
D
Proof
Statements
1. 𝐢𝐺 β‰… 𝐷𝐺
2. N is a midpoint of 𝐢𝐷
3. 𝐢𝑁 β‰… 𝐷𝑁
4. 𝐺𝑁 β‰… 𝐺𝑁
5. < C β‰… < D
6. βˆ†GNC π‘Žπ‘›π‘‘ βˆ†GND
are right triangles
7. <GNC and <GND
are right angles
8. <GNC β‰… < GND
9. <CGN β‰… < DGN
10. βˆ†GNC β‰… βˆ†GND
Reasons
1. Given
2. Given
3. definition of a midpoint
4. Reflexive Property
5. Given
6. Given
7. definition of a right
triangle
8. all right angles are congruent
(Right angles congruent Theorem)
9. Third angles theorem
10. Definition of congruent
triangles
Related documents