Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
CITRIC ACID CYCLE Tomáš Kučera [email protected] Department of Medical Chemistry and Clinical Biochemistry 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital 2016 ENERGY amino acids METABOLISM SCHEME fatty acids alternative pathways sugars glycolysis β-oxidation NADH NAD+ lactate NADH NAD+ fermentative NAD+ regeneration pyruvate ethanol propionate butyrate butanol formate H2 CO2 acetate 2,3-butandiol succinate oxidative decarboxylation Calvin cycle citric acid cycle Ac~S–CoA CO2 NAD+ NADH ADP ATP respiratory chain oxidative phosphorylation O2 H 2O NADPH photosynthetic electron transport chain photophosphorylation NADP+ hν ADP ATP THE CYCLE OVERVIEW location C2 mitochondrial matrix the inner mitochondrial membrane (SDH) C6 C4 NADH NADH CO2 FADH2 C5 C4 CO2 zdroj NADH GTP stoichiometry 3 NAD+ + FAD + GDP + Pi + acetyl-SCoA 3 NADH + 3 H+ + 2 CO2 + FADH2 + GTP + H-SCoA + THE CYCLE OVERVIEW IMPORTANCE center of metabolism the smallest building units – the lowest level anabolism and catabolism crossing point degradation and synthesis metabolism of sugars, fats, amino acids, porphyrins source of energy in respiratory metabolism INPUT – AC-COA origin of the acetyl zdroj from fats from amino acids from glycolysis PYRUVATE – THE GLYCOLYSIS END - PRODUCT O CH3 C COOH important node point of metabolism gluconeogenesis, lipid and aminoacid synthesis... non-respiratory (“anaerobic”) processing pyruvate + NADH + H+ lactate + NAD+ pyruvate CH3 CHO + CO2 CH3 CHO + NADH + H+ CH3 CH2 OH + NAD+ respiratory (“aerobic”) processing oxidative decarboxylation ⇒ acetylcoenzyme A OXIDATIVE DECARBOXYLATION OF PYRUVATE multienzyme complex pyruvate dehydrogenase dihydrolipoyl acetyltransferase (transacetylase) dihydrolipoyl dehydrogenase advantages of a multienzyme complex little diffusion limitation minimal side reaction extent coordinated regulation coenzymes thiamin diphosphate lipoamide FAD NAD CoA DECARBOXYLATION OF PYRUVATE zdroj zdroj OXIDATIVE DECARBOXYLATION OF PYRUVATE zdroj zdroj OXIDATIVE ACID zdroj LIPOIC DECARBOXYLATION OF PYRUVATE zdroj zdroj OXIDATIVE OX . DECARBOXYLATION – REGULATION zdroj PYR CYCLE O pyruvate CH3 ‡ C COO- CoASH + NAD+ pyruvate dehydrogenase CO2 + NADH O acetyl-CoA NADH +H+ NAD+ COO- ¹⁄ ‡ CoA S ‡ COO- CH2 1. citrate synthase COO- C HO CH2 H 2O * COOcitrate 2 COOL-malate H2O C CoASH 6. malate dehydrogenase CH2 ‡ H2O O * COOoxaloacetate H C C CH3 CH2 ¹⁄2‡ HO COO - ‡ 2. aconitase ¹⁄2‡ COOCH2 5. fumarase COO- C COO- CH CH COOcis-aconitate * HC ¹⁄2‡ COOfumarate FADH2 FAD H 2O 2. aconitase Citric acid cycle 6. succinate dehydrogenase ‡ COO- CH2 ¹⁄2‡ COO- CH2 CH2 ¹⁄ ‡ 2 COOsuccinate 5. succinyl-CoA synthetase GDP + Pi ‡COO- 4. α-ketoglutarate dehydrogenase * CO2 CH2 C O CoASH S CoA succinyl-CoA NADH +H+ COO- C H 3. isocitrate dehydrogenase CoASH CH2 C * ‡COO- GTP H HO NAD+ CH2 ‡ COOCH2 H 3. isocitrate dehydrogenase C COO- C O NADH +H+ * COO- CH2 C NAD+ COOisocitrate oxalosuccinate O * COO- α-ketoglutarate CO2 zdroj THE CYCLE zdroj GLYOXYLATE CYCLE – REGULATION pyruvate Ca2+ acetyl-CoA oxalacetate citrate malate fumarate isocitrate NADH Ca2+, ADP succinate GTP succinyl-CoA α-ketoglutarate Ca2+ ATP zdroj TCA CYCLE – THE CORE OF METABOLISM CO2 amino acids pyruvate acetyl-CoA fatty acids glucose oxalacetate malate aspartate phenylalanine tyrosine cholesterol citrate fumarate isocitrate succinate succinyl-CoA porphyrins isoleucine methionine valine α-ketoglutarate amino acids odd chain fatty acids zdroj TCA CYCLE zdroj REVERSE TCA ANAPLEROTIC REACTIONS glutamate dehydrogenase L-glutamate + H2 O + NAD(P)+ 2-oxoglutarate + NH3 + NAD(P)H + H+ pyruvate carboxylase pyruvate + HCO− + ATP 3 oxaloacetate + ADP + Pi + H+ aspartate transaminase pyruvate + L-aspartate L-alanine + oxaloacetate purine nucleotide cycle THE END KONEC – THE END Thank you for your attention! O pyruvate CH3 ‡ C COO- CoASH + NAD+ pyruvate dehydrogenase CO2 + NADH O acetyl-CoA COOC CH3 ‡ C CoA S H2O O ‡ COO- CoASH CH2 CH2 COOoxaloacetate * e rogenase 1. citrate synthase HO COO- C CH2 * COOcitrate 2. aconitase H 2O ‡ COO- O ‡ COO- CoASH CH2 2 Ocetate 1. citrate synthase ase Citric acid cycle HO COO- C CH2 H 2O * COOcitrate ‡ 2. aconitase COOCH2 COO- C CH COOcis-aconitate * H 2O 2. aconitase ‡ COO- CH2 citrate ‡ 2. aconitase COOCH2 COO- C CH COOcis-aconitate * H 2O 2. aconitase Citric acid cycle ‡ COO- CH2 H C COO- HO C H * 3. isocitrate dehydrogenase COOisocitrate + ‡ COO- CH2 H C COO- HO C H * 3. isocitrate dehydrogenase ‡COO- ketoglutarate ehydrogenase COOCH2 H 3. isocitrate dehydrogenase COO- C O NADH +H+ * COO- CH2 C C oxalosuccinate O * COO- α-ketoglutarate CO2 droj NAD+ NAD+ CH2 ‡ CoASH COOisocitrate 6. succinate dehydrogenase FAD ¹⁄2‡ COO- CH2 CH2 ¹⁄2‡ COOsuccinate 5. succinyl-CoA synthetase CoASH ‡COO- GTP GDP + Pi 4. α-ketoglutarate dehydrogenase * CO2 CH2 CH2 C O CoASH S CoA succinyl-CoA NADH +H+ ‡ COOCH2 3. isocitr dehyd CH2 C NAD + O * COO- α-ketoglutarate CO ¹⁄2‡ COOL-malate H2O 5. fumarase ¹⁄2‡ COO - CH HC ¹⁄2‡ COOfumarate FADH2 FAD 6. succinate dehydrogenase ¹⁄2‡ COO- CH2 CH2 ¹⁄2‡ COOsuccinate 5. succinyl-CoA synthetase CoASH Citric acid cycle NADH +H+ NAD+ ¹⁄2‡ COO HO C - H CH2 ¹⁄2‡ COOC H2O O CoASH CH2 * COOoxaloacetate 1. citrate synthase 6. malate dehydrogenase COOL-malate H2O 5. fumarase ¹⁄2‡ COO - CH HC ¹⁄2‡ COOfumarate FADH2 6. succinate dehydrogenase Citric acid cycle C2 C6 C4 NADH NADH CO2 FADH2 C5 NADH GTP C4 CO2 pyruvate Ca2+ acetyl-CoA oxalacetate citrate malate fumarate isocitrate NADH Ca2+, ADP succinate GTP succinyl-CoA α-ketoglutarate Ca2+ ATP CO2 amino acids pyruvate acetyl-CoA fatty acids glucose oxalacetate malate aspartate phenylalanine tyrosine cholesterol citrate fumarate isocitrate succinate succinyl-CoA porphyrins isoleucine methionine valine α-ketoglutarate amino acids odd chain fatty acids