Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
YOUR NAME: YOUR TEACHER: PRELIMINARY EXAMINATION 2015 GRADE 12 MATHEMATICS PAPER 2 TIME: 3 HOURS MARKS: 150 EXAMINER: M. Phungula MODERATORS: H. Botes S. Dzingwa PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY 1. Write your name on top of this front page. 2. This question paper consists of 21 pages and a separate Information Sheet. 3. Answer ALL the questions on this question paper. 4. Diagrams are not drawn to scale. 5. You may use an approved non-programmable and non-graphical calculator, unless otherwise stated. 6. Round off your answers to one decimal digit where necessary. 7. All the necessary working details must be clearly shown. 8. It is in your own interest to write legibly and to present your work neatly. DO NOT WRITE IN THIS GRID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 TOTAL GRADE 12 PRELIMINARY EXAMINATION 2015 MATHEMATICS PAPER 2 Page 2 of 21 SECTION A QUESTION 1 a) In the diagram, A is the point (0;4) and B is the point (4;12). The straight line CAT 1 has a gradient of . KAB is a straight line. 3 Determine: (1) πΆπΜπ (2) Λ ο½1 tan CTX 3 Λ ο½ 18, 40 ο CTX (2) π΅π΄ΜπΆ (4) 12 ο 4 ο½2 4 Λ ο½2 tan BKO Λ ο½ 63, 40 BKO mBAK ο½ Λ ο½ 63, 4 ο 18, 4 ο½ 450 οTAK or Λ ο½ BAC Λ ο½ 450 TAK PRELIM 2015 ext angle vert opp angles GRADE 12 PRELIMINARY EXAMINATION 2015 MATHEMATICS PAPER 2 Page 3 of 21 b) A wheel rolls down a hill represented by the straight line f. y x ο± A A f The wheel starts in position A and has equation: ο¨ x ο 0,5ο© 2 B ο« ο¨ y ο 0,3ο© ο½ 0, 25 2 The wheel rolls to a position B where its equation is then: x 2 ο« y 2 ο 4 x ο« 2 y ο« 4,75 ο½ 0 (1) State the co-ordinates of the centre of the wheel when it is in position A. (1) (2) Find the co-ordinates of the centre of the wheel when it is in position B. (3) ο¨ 0,5 ; 0,3ο© x 2 ο 4 x ο« ο¨ ο2 ο© y 2 ο« 2 y ο« ο¨1ο© ο½ ο4, 75 ο« ο¨ ο2 ο© ο« 12 2 ο¨ x ο 2 ο© ο« ο¨ y ο« 1ο© ο C ο¨ 2 ; ο 1ο© 2 (3) 2 2 2 ο½ 0, 25 Find ο± , the angle of inclination of the hill. A ο1 ο 0,3 mAB ο½ ο½ ο0,86 2 ο 0,5 tan ο± ο½ 0,86 ο± ο½ 139,10 PRELIM 2015 (4) GRADE 12 PRELIMINARY EXAMINATION 2015 MATHEMATICS PAPER 2 Page 4 of 21 (4) If the units are in metres, how far has the wheel travelled from A to B down the hill? dο½ (5) (3) ο¨ 2 ο 0,5ο© ο« ο¨ ο1 ο 0,3ο© 2 2 ο½ 1,98m Through what angle has the wheel turned about its own axis? (3) circumference of wheel : 2ο° ο΄ 0,5 ο½ 3,14 Angle : 1,98 ο΄ 3,14 ο½ 22, 60 3,14 [20] QUESTION 2 a) If sin ο± ο½ 2 6 and 90ο° ο£ ο± ο£ 270ο° , without the use of a calculator and with the use of a 5 diagram, calculate the value of : 5 2 6 ο± (1) tan ΞΈ (3) tan ο± ο½ ο2 6 (2) cos 2ΞΈ (3) 1 ο 2sin 2 ο± ο¦2 6οΆ 1 ο 2 ο΄ ο§ο§ ο·ο· ο¨ 5 οΈ ο23 25 PRELIM 2015 2 GRADE 12 PRELIMINARY EXAMINATION 2015 MATHEMATICS PAPER 2 Page 5 of 21 b) Simplify the following to a single trigonometric ratio of ΞΈ. 1 ο« tan 2 ο± . cos( οο± ). cos(180ο° ο ο± ) if ΞΈ β (0°; 90°) 1ο« (5) sin 2 ο± ο¨ cos ο± ο©ο¨ ο cos ο± ο© cos 2 ο± 1 ο sin 2 ο± cos 2 ο± cos ο± c) Evaluate ο½ ο½ 4sin15ο° cos15ο° without the use of a calculator. Show all working out.(4) 2 cos 405ο° 4 ο΄ 2sin 30 2 ο΄ cos 45 4 ο΄ 2 ο΄ 0.5 1 2ο΄ 2 ο½4 [15] PRELIM 2015 GRADE 12 PRELIMINARY EXAMINATION 2015 MATHEMATICS PAPER 2 Page 6 of 21 QUESTION 3 A portable metal tubing support for a basketball net is to be constructed for an indoor court with dimensions as shown in the diagram. a) Show that distance AC is 3, 26 m. (2) AC 1 ο½ 3,1 sin 72 AC ο½ 3, 26 b) If π΅πΆΜ π΄ = 92° find the length of tubing needed for AB. Λ ο½ 60 BAC (3) ο BΛ ο½ 820 sin 82 sin 92 ο½ 3, 26 AB AB ο½ 3,3 [5] PRELIM 2015 GRADE 12 PRELIMINARY EXAMINATION 2015 MATHEMATICS PAPER 2 Page 7 of 21 QUESTION 4 1) In the diagram, O is the centre of the circle. PWSR is a cyclic quadrilateral. PS, WO and OS are drawn. PW||OS and πΜ1 = 36°. W 2 1 1 1 P 2 36ο° S 3 2 1 O R Calculate the sizes of the following angles with reasons: a) πΜ1 OΛ1 ο½ 720 (2) Angle @ centre ο½ 2 ο΄ π) πΜ2 SΛ2 ο½ 360 (2) alt ο ' s , PW / / SO c) ππΜπ (3) Λ isos OWS WΛ ο½ OSW WΛ ο½ 540 d) π Μ WΛ1 ο« WΛ2 ο½ 72 ο« 54 ο½ 126 ο RΛ ο½ 540 opp ο ' s of cyclic quad sup PRELIM 2015 (3) GRADE 12 PRELIMINARY EXAMINATION 2015 MATHEMATICS PAPER 2 Page 8 of 21 2) In the figure O is the centre of the circle. Use the sketch to prove that the angle subtended by an arc at the centre of the circle is double the size of the angle subtended by the same arc at any point on the circumference of the circle. (6) R 1 1 2 2 O K P Q Let RΛ 2 ο½ x QΛ ο½ x and RΛ1 ο½ y PΛ ο½ y OΛ ο½ 2 y radii radii 3 OΛ 4 ο½ 2 x ext ο ' s OΛ ο« OΛ ο½ 2 ο¨ x ο« y ο© 3 4 [16] PRELIM 2015 GRADE 12 PRELIMINARY EXAMINATION 2015 MATHEMATICS PAPER 2 Page 9 of 21 QUESTION 5 The data below shows the marks of the Grade 12 trial examination and the corresponding final examination marks for 11 learners. Trial examination marks(x) Final examination marks(y) 80 68 94 72 74 83 58 68 65 75 88 72 71 96 77 82 72 58 83 78 80 92 a) Draw a scatter plot of the data above on the grid (3) b) Calculate the values of the point P ( x ; y ) (4) x ο½ 75 y ο½ 78,3 c) Give the equation of line of best fit. (2) y ο½ 24, 6 ο« 0, 7 x [9] PRELIM 2015 GRADE 12 PRELIMINARY EXAMINATION 2015 MATHEMATICS PAPER 2 Page 10 of 21 QUESTION 6 The following data is collected in a Curro High School. It depicts the results of Mathematics Portfolio marks of 100 learners. (a) Complete the Cumulative frequency column. Mark Intervals 30 β€ π₯ < 40 40 β€ π₯ < 50 50 β€ π₯ < 60 60 β€ π₯ < 70 70 β€ π₯ < 80 80 β€ π₯ < 90 90 β€ π₯ < 100 (b) PRELIM 2015 Number of learners 3 15 18 19 28 15 2 (2) Cumulative Frequency 3 18 36 55 83 98 100 Draw an ogive representing the given data on the following graph. (4) GRADE 12 PRELIMINARY EXAMINATION 2015 MATHEMATICS PAPER 2 Page 11 of 21 Cumulative Frequency Graph 110 100 90 Final Examination Mark 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 Portfolio Marks (c) Show on the curve where you would find the median, lower quartile and upper quartile. Give the estimated values on the graph. (3) Q1 ο½ 54 Q2 ο½ 68 Q3 ο½ 77 ο¨ ο±3 up or down ο© (d) Determine the estimated mean and standard deviation. Mean ο½ 65% (3) ST ο½ ο€ ο½ 20% [12] TOTAL FOR SECTION A = 77 MARKS PRELIM 2015 GRADE 12 PRELIMINARY EXAMINATION 2015 MATHEMATICS PAPER 2 Page 12 of 21 SECTION B QUESTION 7 a) Prove the identity: ο½ sin 2 x ο cos x cos x ο½ sin x ο cos 2 x sin x ο« 1 (5) 2sin x cos x ο cos x sin x ο ο¨1 ο 2sin 2 x ο© cos x ο¨ 2sin x ο 1ο© ο¨ 2sin x ο 1ο©ο¨ sin x ο« 1ο© cos x sin x ο« 1 b) Find the general solution for π if π‘ππ²π + 3 πππ π +3=0 (6) sin 2 ο± 3 ο« ο«3ο½ 0 2 cos ο± cos ο± sin 2 ο± ο« 3cos ο± ο« 3cos 2 ο± ο½ 0 1 ο cos 2 ο± ο« 3cos ο± ο« 3cos 2 ο± ο½ 0 2 cos 2 ο± ο« 3cos ο± ο« 1 ο½ 0 ο¨ 2 cos ο± ο« 1ο©ο¨ cos ο± ο« 1ο© ο½ 0 cos ο± ο½ ο1 2 or ο± ο½ 60 ο± ο½ 120 ο« k 360 or ο± ο½ 240 ο« k 360 cos ο± ο½ ο1 ο± ο½ 180 ο« k 360 kοZ [11] GRADE 12 PRELIMINARY EXAMINATION 2015 MATHEMATICS PAPER 2 Page 13 of 21 QUESTION 8 In the diagram below, A, B and P lie on a circle centred at O. The tangents to the circle at A and B meet at the point T and π΄πΜπ΅ = π. Express π΄πΜπ΅ in terms of π. (5) A P O T π B Join AO and OB Λ ο½ OBT Λ ο½ 90 OAT ο¨Tand ο rad ο© AOBT Cyclic quad ο¨ opp ο ' s sup ο© Λ ο½ 180 ο ο± AOB 1 PΛ ο½ ο¨180 ο ο± ο© 2 1 ο PΛ ο½ 90 ο ο± 2 ο¨ ο @ centre 2 ο΄ο© [5] PRELIM 2015 GRADE 12 PRELIMINARY EXAMINATION 2015 MATHEMATICS PAPER 2 Page 14 of 21 QUESTION 9 In the diagram O is the centre of circle CNEL. KE is a tangent at E. N and T are points on KO. KO // EL. Complete the following table: Statement Μ3 = 90° a) πΈ Reason Subt by a Diameter LC β΄ πΜ2 = 90° Co-int angles, KO//EL β΄ πΆπ = ππΈ Rad perpendicular chord, bisect chord (3) Statement Μ1 + πΈ Μ2 = πΏΜ b) πΈ Μ3 but πΏΜ = π Reason Tan-Chord Corresp angles, KO//EL Μ3 = πΈ Μ1 + πΈ Μ2 β΄ π β΄ πΆππΈπΎ is a cyclic quadrilateral Angles subt by same chord CK (3) PRELIM 2015 GRADE 12 PRELIMINARY EXAMINATION 2015 MATHEMATICS PAPER 2 Page 15 of 21 c) Prove that ο COT /// ο KET. (3) CΛ ο½ KΛ angles subt by segment EO OΛ 3 ο½ EΛ1 ο« EΛ 2 angles subt by segment KC TΛ ο½ TΛ ο¨ vert opp L ' s ο© 3 1 ο COT / / / KET d) ο¨ AAAο© Determine the length of CO if OT = 1 unit and KT = 9 units. (3) CT OT ο½ KT ET CT OT ο½ KT CT ο CT 2 ο½ 9 CT ο½ 3 CO 2 ο½ CT 2 ο« OT 2 Pythag CO ο½ 32 ο« 12 ο½ 10 ο½ 3, 2 e) Μ correct to 2 decimal digits. Determine the size of πΎ (2) TE 3 tan KΛ ο½ ο½ KT 9 KΛ ο½ 18, 40 [14] PRELIM 2015 GRADE 12 PRELIMINARY EXAMINATION 2015 MATHEMATICS PAPER 2 Page 16 of 21 QUESTION 10 2 NL = 6 units. RE = π₯ units; RD = π₯ units; EY = 9 units and DL = π₯ + 3 units. 3 S is a point on YL and ED // YL. a) Show that L is the midpoint of DN by first solving for π₯. 2 x x 3 ο½ 9 xο«3 x 2 ο« 3x ο½ 6 x (4) ο¨ line / /, divide proportionally ο© x 2 ο 3x ο½ 0 οx ο½ 0 xο½3 DL ο½ 6 LN ο½ 6 L is midpt b) If SL = 1,4 units write down the length of DE. 1 DE Midpt 2 1, 4 ο½ 0.5DE DE ο½ 2,8 SL ο½ PRELIM 2015 (1) GRADE 12 PRELIMINARY EXAMINATION 2015 MATHEMATICS PAPER 2 Page 17 of 21 c) If Area ο RED = 2, 7 units² determine the area of ο REN. (3) RED ο½ 0,5( RD) ο¨ h ο© ο¦2 οΆ 2, 7 ο½ 0,5 ο§ ο΄ 3 ο· h ο¨3 οΈ h ο½ 2, 7 REN ο½ 0,5RN .h ο½ 0,5 ο¨ 2 ο« 6 ο« 6 ο© ο΄ 2, 7 ο½ 18,9 [8] QUESTION 11 The median of an odd set of n numbers is p, and the mean is q. Give answers to the following in terms of n, p and q. (a) If the largest number is increased by 10, write down the new mean and the new median. Median : p (b) nq ο« 10 Mean : n A number, m, is inserted between the median and the next lower number. Write down the new mean and the new median. Median : mο« p 2 Mean : (3) (4) nq ο« m n ο«1 [7] PRELIM 2015 GRADE 12 PRELIMINARY EXAMINATION 2015 MATHEMATICS PAPER 2 Page 18 of 21 QUESTION 12 Two of the cogs that form part of the clock in the tower are represented in the diagram below. The two cogs are represented by a smaller circle with centre O, the origin, and larger circle with centre M. The point of contact of the two circles is at point P (-3;2). The radius of the larger circle is 2β13. a) Determine the equation of the smaller circle centred at the origin. (2) OP ο½ 22 ο« ο¨ ο3ο© ο½ 13 2 ο x 2 ο« y 2 ο½ 13 b) Determine the equation of the line OM. M OP ο½ yο½ PRELIM 2015 0 ο 2 ο2 ο½ 0ο«3 3 ο2 x 3 (2) GRADE 12 PRELIMINARY EXAMINATION 2015 MATHEMATICS PAPER 2 Page 19 of 21 c) Determine the equation of the common tangent, π‘. (4) 3 2 3 y ο½ xο«c 2 3 ο΄ ο3 2ο½ ο«c 2 13 cο½ 2 3 13 y ο½ xο« 2 2 mο½ d) If π₯ = π at point M, write π in terms of π. yο½ (1) ο2 aο½b 3 e) Determine the equation of the larger circle. (8) ο¦ ο2 οΆ M ο§ a; a ο· ο¨ 3 οΈ 2 ο¨ 2a ο¨ x ο a ο© ο« ο¦ο§ y ο« οΆο· ο½ 2 13 3 οΈ ο¨ 2 ο© 2 2 2a ο¨ ο3 ο a ο© ο« ο¦ο§ 2 ο« οΆο· ο½ 52 3 οΈ ο¨ 8a 4 a 2 2 9 ο« 6a ο« a ο« 4 ο« ο« ο½ 52 3 9 13a 2 ο« 78a ο 351 ο½ 0 a ο½ 3 or a ο½ ο9 2 M ο¨ ο9;6 ο© ο¨ x ο« 9ο© ο« ο¨ y ο 6ο© 2 2 ο½ 52 [17] PRELIM 2015 GRADE 12 PRELIMINARY EXAMINATION 2015 MATHEMATICS PAPER 2 Page 20 of 21 QUESTION 13 The sketch below represents the curves f ( x) ο½ sin( x ο ο‘ ) and g ( x) ο½ cos ο’x Y C f g A B 60ο° O (1) Using the graph, determine co-ordinates of: (i) A ο30 0 (1) (ii) B 1500 (1) (iii) C 1200 (2) Determine the value of: (1) (i) ο‘ ο½ ο30 (1) (ii) ο’ ο½3 (1) [5] PRELIM 2015 X GRADE 12 PRELIMINARY EXAMINATION 2015 MATHEMATICS PAPER 2 Page 21 of 21 QUESTION 14 In the diagram, AB is a diameter of a circle with centre O . The point C is chosen such that οABC is acute β angled. The circle intersects AC and BC at P and Q respectively. C 1 Q 11 P 3 2 3 2 A B O Let PΜ2 ο½ x and QΜ1 ο½ y Λ? a) Why is QΛ1 ο½ A (1) QΛ1 is an exterior angle of quad ABQP. βA b) Prove that OP is a tangent to the circle passing through P , Q and C . (5) AΛ ο½ QΛ1 ο½ y.............................proved in a) βA βA ο PΛ ο½ AΛ ο½ y...........................OP=OA 3 Λ ....................Ext But CΛ ο« QΛ1 ο½ APQ ο of οCPQ βA ο CΛ ο« y ο½ x ο« y ο CΛ ο½ x ο½ PΛ βA βA Therefore, OP is a tangent to circle through P, Q and C. [6] TOTAL FOR SECTION B = 73 MARKS PRELIM 2015