Download Math 0308 Final Exam Review(answers)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Math 0308 Final Exam Review(answers)
Solve the given equations.
1. 3 x + 14 = 8 x − 1
15 = 5 x
2. 3 ( 4 x − 1) = 5 x + 6
12 x − 3 = 5 x + 6
7x = 9
4 = 9x
9
7
4
=x
9
4
9
x=
3= x
3
9
7
4. 5 ( 2 x + 1) − 3 ( x + 4 ) = −21
10 x + 5 − 3 x − 12 = −21
7 x − 7 = −21
7 x = −14
x = −2
−2
5. 3 ( 4 x + 5 ) − 5 ( 2 x − 7 ) = 2 ( 6 x + 1)
12 x + 15 − 10 x + 35 = 12 x + 2
2 x + 50 = 12 x + 2
48 = 10 x
48
=x
10
24
5
6. 2 ( 3 x + 1) + 4 ( 2 x − 2 ) = 2 ( 7 x − 3) 7. 5 ⎡⎣ 2 ( 3 x − 1) − 6 ( x + 2 ) ⎤⎦ = 3 x − 7
5[ 6 x − 2 − 6 x − 12] = 3 x − 7
6 x + 2 + 8 x − 8 = 14 x − 6
5 ⋅ −14 = 3 x − 7
14 x − 6 = 14 x − 6
−70 = 3 x − 7
−6 = −6
−63 = 3 x
all real numbers
−21 = x
−21
8. 3 x + 14 = 3 ( x − 2 ) + 20
3 x + 14 = 3 x − 6 + 20
3. 8 − ( 3 x + 4 ) = 6 x
8 − 3x − 4 = 6 x
9. 3 x + 14 = 5 ( x − 2 ) − 2 ( x + 7 )
3 x + 14 = 5 x − 10 − 2 x − 14
3 x + 14 = 3 x + 14
3 x + 14 = 3 x − 24
14 = 14
14 = −24
all real numbers
no solution
Solve the following inequalities. Graph your solution on a number line.
10. x − 7 ≤ −4
11. 4 x + 9 > 3
12. 1 − 9 x ≥ 4
−9 x ≥ 3
4 x > −6
x≤3
x>−
3
2
x≤−
1
3
3
−
13. 2 x + 15 > 7 x − 1
−5 x > −16
x<
3
2
1
3
15. −4 < 4 − 2 x < 6
−8 < −2 x < 2
−
14. −1 < 3 x + 8 ≤ 5
−9 < 3 x < −3
16
5
4 > x > −1
−3 < x < −1
16
5
−3
−1 < x < 4
−1
−1
Use equations and algebraic methods to find solutions of the following problems.
16. Five minus 4 times a number is 3. What is the number?
5 − 4x = 3
−4 x = −2
x=
1
2
1
2
17. Find three consecutive odd integers whose sum is −21 .
x + ( x + 2 ) + ( x + 4 ) = −21
3 x + 6 = −21
3 x = −27
x = −9
−9, −7, −5
4
18. A 43 inch board is cut into three pieces. The second piece is one-half as long as the first
piece. The third piece is 7 inches longer than the second piece. How long is each piece?
x + ( 12 x ) + ( 12 x + 7 ) = 43
2 x + 7 = 43
2 x = 36
x = 18
18",9",16"
19. The perimeter of a rectangle is 36 feet. The length is 2 feet more than 3 times the width.
What are the dimensions of the rectangle?
L is the length; W is the width.
2 L + 2W = 36
L = 2 + 3W
2 ( 2 + 3W ) + 2W = 36
4 + 6W + 2W = 36
8W + 4 = 36
8W = 32
W = 4'
L = 14'
20. Michael has $7.95 in dimes and quarters. He has a total of 39 coins. How many of each
type of coin does he have?
D is the number of dimes; Q is the number of quarters.
10 D + 25Q = 795
D + Q = 39
10 ( 39 − Q ) + 25Q = 795
390 − 10Q + 25Q = 795
15Q + 390 = 795
15Q = 405
Q = 27
D = 12
21. Jeffrey has $11.75 in nickels and quarters. The number of quarters is 5 more than 4 times
the number of nickels. How many of each type of coin does he have?
N is the number of nickels; Q is the number of quarters.
5 N + 25Q = 1175
Q = 5 + 4N
5 N + 25 ( 5 + 4 N ) = 1175
5 N + 125 + 100 N = 1175
105 N + 125 = 1175
105 N = 1050
N = 10
Q = 45
22. Melissa has $220 in $1 bills, $5 bills, and $10 bills. The number of $1 bills is 3 times the
number of $5 bills. The number of $10 bills is 4 more than the number of $5 bills. How
many of each type of bill does she have?
O is the number of ones; F is the number of fives; T is the number of tens.
O + 5 F + 10T = 220
O = 3F
T =4+ F
3F + 5 F + 10 ( 4 + F ) = 220
8 F + 40 + 10 F = 220
18 F + 40 = 220
18 F = 180
F = 10
O = 30
T = 14
Using the laws of exponents, simplify the following expressions. Write your answers with
positive exponents. Assume that all variables represent non-zero numbers.
36
23. 4
3
32
9
24. ( x
)
4 6
x 24
⎛ 3x 4 ⎞
25. ⎜ 8 ⎟
⎝ y ⎠
33 x12
y 24
27 x12
y 24
3
26.
39 x5 y12
3x 4 y 6
13xy 6
⎛ 8 x5 y 6 ⎞
27. ⎜ 2 2 ⎟
⎝ 2x y ⎠
3
28. 5 + 5
0
( 4x y )
1+
64 x9 y12
6
5
4 3
3
14 x −2 y 6
31.
21x −10 y −3
32. ( 4 x −2 y
−3
−1
29. x ⋅ x
4
1
5
x −3
1
x3
) (6
−7 −3
−1
−6
x3 y
4 x y ⋅6 x y
10 −2
6
2x x y y
3
6
21
2
62 y 25
43
36 y 25
64
3
2 x8 y 9
3
x −5
30. 2
x
1
x5 ⋅ x 2
−7
4
)
−2 −2
1
x7
⎛ 4 x −4 y −3 ⎞
33. ⎜ 2 −6 ⎟
⎝ 7x y ⎠
−2
⎛ 4 y −3 y 6 ⎞
⎜ 2 4 ⎟
⎝ 7x x ⎠
−2
( 3x
34.
38. ( 3 x + 8 )( 6 x − 5 )
18 x + 33 x − 40
2
−2
−2
3 ⋅ 82 ⋅ x −2 y
23 x 4 y −2
49 x12
16 y 6
24 y 3
x6
4x2 + 7 x + 8
39. ( 5 x + 6 ) ( 3 x 2 − 2 x + 3)
15 x 3 − 10 x 2 + 15 x + 18 x 2 − 12 x + 18
15 x3 + 8 x 2 + 3x + 18
(8x y )
⎛ 4 y3 ⎞
⎜ 6⎟
⎝ 7x ⎠
4−2 y −6
7 −2 x −12
3 ⋅ 64 ⋅ yy 2
8x4 x2
Perform the indicated operations, and simplify all answers.
35. ( x 2 − 5 x − 12 ) + ( 7 x 2 − 3 x + 4 )
36. ( 5 x 2 − x + 6 ) − ( x 2 − 8 x − 2 )
8x2 − 8x − 8
y −2 )( 2 x −2 y −1 )
3 x −8 y −2 ⋅ 2−3 x 6 y 3
8−2 x 4 y −2
−2
9 y 25
16
−8
37. ( −5 x3 )( 8 x 7 )
−40x10
40. ( x − 11 y )( x + 11 y )
x 2 − 121 y 2
−3
41. ( 3 x + 5 )
42. ( 4 x − 3 y )
2
9 x 2 + 30 x + 25
12 x 2 − 40 x + 28
43.
4x
2
12 x
40 x 28
−
+
4x
4x 4x
2
16 x 2 − 24 xy + 9 y 2
3 x − 10 +
44.
24 x5 yz + 6 x 4 y 2 z 3 − 4 x 3 y 3 z 5
3 x 4 yz 2
24 x5 yz 6 x 4 y 2 z 3 4 x 3 y 3 z 5
+
− 4 2
3 x 4 yz 2 3 x 4 yz 2
3 x yz
2 3
45.
6 x 2 + 22 x − 5
2x + 8
3x − 1 +
3
2x + 8
2 x + 8 6 x 2 + 22 x − 5
− ( 6 x 2 + 24 x )
8x
4y z
+ 2 yz −
3x
z
− 2x − 5
− ( −2 x − 8 )
3
46.
2 x 4 + 8 x3 + 7 x 2 − 7
2x2 + 2x − 5
x 2 + 3x + 3 +
2x2 + 2 x − 5
9x + 8
2x + 2x − 5
2
2 x 4 + 8 x3 + 7 x 2 − 7
− ( 2 x 4 + 2 x3 − 5 x 2 )
6 x3 + 12 x 2 − 7
− ( 6 x3 + 6 x 2 − 15 x )
6 x 2 + 15 x − 7
− ( 6 x 2 + 6 x − 15 )
9x + 8
7
x
Completely factor the following polynomials.
48. x 2 − 81
47. 6 x 3 + 12 xy
6x ( x2 + 2 y )
( x − 9 )( x + 9 )
49. 3 x 3 − 27 x
50. x 2 + 6 x + 8
3x ( x 2 − 9 )
( x + 2 )( x + 4 )
3 x ( x − 3)( x + 3)
51. x 2 − 9 x + 14
( x − 2 )( x − 7 )
52. x 2 − 6 x − 27
( x − 9 )( x + 3)
55. 6 x 3 − 7 x 2 − 10 x
56. 6 xy + 21x + 10 y + 35 57. 6 xy + x − 30 y − 5
( 6 xy + 21x ) + (10 y + 35) ( 6 xy + x ) − ( 30 y + 5)
x ( 6 x 2 − 7 x − 10 )
x ( 6 x + 5 )( x − 2 )
58. 12 x3 − 28 x 2 − 3 x + 7
(12 x3 − 28 x2 ) − ( 3x − 7 )
4 x 2 ( 3x − 7 ) − ( 3x − 7 )
( 3x − 7 ) ( 4 x
2
− 1)
53. 6 x 2 − 11x − 2
( 6 x + 1)( x − 2 )
54. 5 x 2 + 7 x − 6
( 5 x − 3)( x + 2 )
3x ( 2 y + 7 ) + 5 ( 2 y + 7 )
x ( 6 y + 1) − 5 ( 6 y + 1)
( 2 y + 7 )( 3x + 5)
( 6 y + 1)( x − 5)
59. x3 − 125
( x − 5) ( x 2 + 5 x + 25)
60. 8 x 3 + 27
( 2 x + 3) ( 4 x 2 − 6 x + 9 )
( 3x − 7 )( 2 x − 1)( 2 x + 1)
61. 4 y 3 − 4
4 ( y 3 − 1)
4 ( y − 1) ( y 2 + y + 1)
Solve the given equations.
62. ( x − 2 )( x + 5 ) = 0
x − 2 = 0, x + 5 = 0
2, −5
63. 4 x 2 − 49 = 0
( 2 x − 7 )( 2 x + 7 ) = 0
2 x − 7 = 0,2 x + 7 = 0
7 7
,−
2 2
64. 2 x 2 + 5 x − 10 = x 2 + 2 x + 8
x 2 + 3 x − 18 = 0
( x + 6 )( x − 3) = 0
x + 6 = 0, x − 3 = 0
−6,3
65. 3 x 2 − 11x + 14 = ( 2 x + 1)( x − 2 )
66. ( 3 x + 10 )( 3 x − 2 ) = ( x + 3)( 3 x + 10 )
( 3x + 10 )( 3x − 2 ) − ( x + 3)( 3x + 10 ) = 0
( 3x + 10 ) ⎡⎣( 3x − 2 ) − ( x + 3)⎤⎦ = 0
( 3x + 10 )( 2 x − 5) = 0
3 x 2 − 11x + 14 = 2 x 2 − 3 x − 2
x 2 − 8 x + 16 = 0
( x − 4)
2
=0
3 x + 10 = 0, 2 x − 5 = 0
x−4=0
4
−
10 5
,
3 2
67. 4 x3 + 10 x 2 − 50 x = 0
2 x ( 2 x 2 + 5 x − 25 ) = 0
2 x ( 2 x − 5 )( x + 5 ) = 0
2 x = 0, 2 x − 5 = 0, x + 5 = 0
5
0, , −5
2
Reduce the following rational expressions to lowest terms.
27 x3 y
x2 + 4 x + 3
68.
69.
x2 − 1
18 x 2 y 4
3x
2 y3
( x + 1)( x + 3)
( x − 1)( x + 1)
x+3
x −1
3− x
3x − 5 x − 12
3− x
( 3x + 4 )( x − 3)
70.
2
− ( x − 3)
( 3x + 4 )( x − 3)
−
1
( 3x + 4 )
Perform the indicated operations, and reduce the answers to lowest terms.
8 x 3 10 x 3
2x2 + x 2x2 + 6x
3 x 2 − 9 xy x3 − 3 x 2 y
72.
73.
71. 2 ⋅
÷
⋅
5 x 12 x 4
4 x + 8 x3 + 3x 2
6 x2 − 6 y 2
xy + y 2
x ( 2 x + 1) 2 x ( x + 3)
3x ( x − 3 y )
y( x + y)
⋅ 2
⋅ 2
4 ( x + 2 ) x ( x + 3)
6 ( x − y )( x + y ) x ( x − 3 y )
4
3
2x + 1
2( x + 2)
y
2x ( x − y )
2 x2 + 8x
3x 2 − 2 x
÷
2 x 2 − 4 x − 30 3 x 2 + 7 x − 6
2 x ( x + 4)
( 3x − 2 )( x + 3)
⋅
2 ( x − 5 )( x + 3)
x ( 3x − 2 )
74.
75.
x2 + 4 x + 4
2 ( x − 2 )( x + 2 )
( x + 2)
2 ( x − 2)
2
76.
12 x
9
x+4
x−5
x 2 + 3 x + 5 x 2 − 3 x − 13
77. 2
+
x + 4 x + 4 x2 + 4 x + 4
2x2 − 8
x2 + 4 x + 4
2 ( x2 − 4)
7 x 5x
+
9
9
2x − y
2x − y
4x
3
78.
6x − 5 y 4x − 4 y
−
2x − y
2x − y
1
6 x + 1 3 x − 13
−
3x − 4 4 − 3x
6 x + 1 3 x − 13
+
3x − 4 3x − 4
9 x − 12
3x − 4
3( 3x − 4 )
3x − 4
79.
11x + 2 2 x + 15 3 x − 1
−
−
2x − 4 2x − 4 2x − 4
6 x − 12
2x − 4
6 ( x − 2)
2 ( x − 2)
3
x+2
Given the following linear equations, complete the table of solution pairs.
80. 6 x − 5 y = 10
x
y
0
−2
5
0
3
10
3
2
x
−3
y
0
0
81. 3 x − 4 y + 9 = 0
−3
5
6
82. x + y = 0
x
1
−2
−5
y
−1
2
5
3
Graph the solutions of the following linear equations. Indicate the intercept(s).
83. x + y = −3
84. 3 x − y = 9
85. 5 x − 4 y = −20
86. 4 x + 3 y = 24
87. x = 2
89. − x + y = −5
88. 3 y + 6 = 0
90. 2 x + y = 0
91. − x − 2 y = 4
Determine the solutions of the following linear systems of equations. If there are no
solutions, write inconsistent. If there are infinitely many solutions, write dependent.
92.
3x − 7 y = 8
x = −2
93.
x = 3y +1
2x − 5 y = 3
2 ( 3 y + 1) − 5 y = 3
94.
3x + 8 y = 1
x+ y=2
3( 2 − y ) + 8 y = 1
−6 − 7 y = 8
6y + 2 − 5y = 3
−7 y = 14
y+2=3
6 − 3y + 8y = 1
5y + 6 =1
y = −2
y =1
5 y = −5
x = −2
x=4
y = −1
x=3
95.
2x − 6 y = 4
− x + 3 y = −2
2x − 6 y = 4
+ 2 ( − x + 3 y = −2 )
0=0
infinitely many solutions
dependent
96.
6 x − y = −1
3 x + 2 y = 12
2 ( 6 x − y = −1)
+ ( 3 x + 2 y = 12 )
9 x = 10
10
x=
9
13
y=
3
97.
5 x + y = −14
2 x − y = −7
5 x + y = −14
+ ( 2 x − y = −7 )
7 x = −21
x = −3
y =1
98.
−3 x + 7 y = −7
99.
3 x + 2 y = 25
6 x − 4 y = 10
−3 x + 2 y = −4
−3 x + 7 y = −7
6 x − 4 y = 10
+ ( 3 x + 2 y = 25 )
+2 ( −3 x + 2 y = −4 )
9 y = 18
0=2
y=2
no solution
x=7
inconsistent
Simplify the following radicals, if possible.
numbers.
100
101. 49
102.
9
10
7
3
104.
107.
63
105. 13x10
3 7
x5 13
275x11 y 25
5 12
5x y
108.
x=7
7
+11( 4 x + 11 y = 31)
81 y = 189
7
3
4
x=
3
y=
Assume all variables represent positive
103.
x 2 + x − 12 = 6 x − 6
x − 5x − 6 = 0
2
( x − 6 )( x + 1) = 0
6, −1
3
−27
125
3
−
5
80x 4 y 7
106.
4 x2 y3 5 y
11
144
Solve the following equations.
3x x 7
x+4
6
110.
− =
111.
=
5 2 10
x −1 x − 3
11x + 10 y = 38
4 x + 11 y = 31
−4 (11x + 10 y = 38 )
99 x16
16
109.
3 x8 11
4
11
12
11xy
6 x − 5x = 7
100.
112.
x
5
−20
−
= 2
x + 1 x − 3 x − 2x − 3
x ( x − 3) − 5 ( x + 1) = −20
x 2 − 8 x − 5 = −20
x 2 − 8 x + 15 = 0
( x − 3)( x − 5) = 0
5
Related documents