Download Fermi Gas Model

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Fermi Gas Model
Heisenberg Uncertainty Principle
h
dpx  dx  h  dpx 
dx
Particle in dx will have a minimum uncertainty in px of dpx
px
Next particle in dx will have a momentum px
dx
h
px  px  dpx  px 
dx
Particles with px in dpx have minimum x-separation dx

dx  dpx  h
Heisenberg Uncertainty Principle
Identical conditions apply for the y, py, and z, pz -Therefore, in a fully degenerate system of fermions,
(i.e., all fermions in their lowest energy state),
we have 1 particle in each 6-dimensionl volume --


dV ps  dx  dp x  dy  dp y  dz  dpz  h 3
dV ps  dV  dp 3
Phase space
=
volume
Spatial
Momentum

volume
volume
Heisenberg Uncertainty Principle
In some dVps the maximum number dN of unique quantum
states (fermions) is
pz
dN 
dV ps
h
dN 
p
3
py
dV  4 p 2 dp
2

3
px
Number of states in a shell in p-space
between p and p + dp
Only Heisenberg uncertainty principle; completely general
FGM for the nucleus
Treat protons & neutrons separately
Consider a simple model for nucleus-V (x)  0 ; 0  x  L
V (x)   ; x  L
V (y)  0 ; 0  y  L
V (z)  0 ; 0  z  L
V (y)   ; y  L
V (z)   ; z  L
V  V (x)  V (y)  V (z)

   x (x)   y (y)   z (z)


 x (x) 
n x 
2
sin  
L  L 

2
2M
 2  V  E
E  E x  E y  Ez
Ex
2
 2


n
2
2ML
x


FGM for the nucleus
E  E x  E y  Ez
2


E


degenerate
ni  1,2,3,  
eigenvalues
   x (x)   y (y)   z (z)
unique states
2
2
n

n
y
2 x
2ML
 x (x) 
Ex


 n z2
n x 
2
sin  
L  L 


Total energy eigenvalue

2
2
n
2 x
2ML
 n x n y n z x, y,z
2
p

x

Ex 
 px 
nx
2M
L

FGM for the nucleus
   2
px 
n x  p    n x  n 2y  nz2  p n x n y nz
 L 
L


unique states
quantized momentum states
p x , p x , p x  
 n x n y n z x, y,z
h    
dp      
L   L 

3
from Heisenberg
uncertainty relation


3
3
px
pz

n x ,n y ,nz 

L
p


dp 3
p x , p x , p x 
py
FGM for the nucleus
Assume extreme degeneracy  all low levels filled up to a
maximum -- called the Fermi level (EF)
 All momentum states up to pF are filled (occupied)
We want to estimate EF and pF for nuclei -The number N of momentum states within
the momentum-sphere up to pF is -1 4  pF3
N   
8 3 dp 3
pz
p
one p-state per dp3
1/8 of sphere because nx, ny, nz > 0
px


dp 3
p x , p x , p x 
py
FGM for the nucleus
1 4  pF3
1 4  pF3
N   
pF  2ME F
N   
3
3
8 3 dp
8 3 2 
 
 L 
2 spin states
3/2


V
2ME
1  2 4
F
3
L3  V

N


N   

p
V
 2 2 
F
3
3
  
8 2  3



EF
pF 

2
  3N 2 / 3






2M

V

1/ 3
1/
3


N
2
 
3
Fermi energy
 nucleon(s)
(most energetic
Fermi momentum

V 
 (most energetic nucleon(s)
protons
N=Z
neutrons N
= (A-Z)
FGM for the nucleus
Protons
pF 
Neutrons
1/ 3
1/
3


Z
2
3 

V 

pF 
1/ 3
1/
3


A

Z
2
3 

 V 

Assume Z = N
pF 
V
1/ 3
1/
3



A
/2
2
3 
4
 R3
3
R  Ro A1/ 3

 V 

pF 
4
V   Ro3A  4.18 Ro3A
3
1/ 3
1/
3


A
/2
2
3 

 V 

 3 2 1/ 3

pF  

Ro 2  4.18 

FGM for the nucleus
Protons
pF 
Neutrons
1/ 3
1/
3


Z
2
3 

V 

pF 
1/ 3
1/
3


A

Z
2
3 

 V 

Assume Z = N
3
2 1/ 

197Mev 3
300


pF 

MeV /c


Roc 2  4.18 
Ro
pF  231 MeV /c
(Ro 1.3F)
EF
2
pF 


 28 MeV
2M
FGM potential
Test of
FGM
not FGM
Related documents