Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
ArtificialIntelligenceandSubfields Ming-HwaWang,Ph.D Adjunct,DepartmentofComputerEngineering SantaClaraUniversity February4,2017 ArtificialIntelligence • Humanintelligence: Useofintuition,commonsense,judgment,creativity,goal-directedness, plausiblereasoning,knowledgeandbeliefs • Artificialintelligence: Afieldofstudythatencompassescomputationaltechniquesforperforming tasksthatapparentlyrequireintelligencewhenperformedbyhuman • Turingtest • Applications: Computervision,speechandaudioprocessing,naturallanguageprocessing, robotics,bioinformaticsandchemistry,videogames,searchengines,online advertisingandfinance • Challenges: Solvingthetasksthatareeasyforpeopletoperformintuitivelybuthardfor peopletodescribeformally,e.g.,speechunderstanding,facerecognition TraditionalAI • Fundamentalissues: Knowledgerepresentation,search,perceptionandinference • Classictechniques: • Symbolic,rule-based,oralgorithm-based:emphasizetheuseofprior knowledge,asystemwithmanuallycreatedruleshaslimitedsuccess • Alwayshaveexceptionsforrules • AlmostallAIproblemsareNP-hardO(2n) • Artificialneuralnetwork(ANN): • Reverse engineer the computational principles behind the brain and duplicateitsfunctionality • Thesecondbestsolutionforalmostanyproblem • EarlyFailureofAI • Moore’sLawandparallel/distributedcomputing RecentAIProgress • Bigprogressfields: Machinelearning,datamining,naturallanguageprocessing,ComputerVision, etc. • Empirical,data-drivenstatisticalapproaches: Achievedencouragingresults(statisticalrevolution),emphasizethedata • AIDeepLearning: The hierarchy of concepts enables the computer to learn complicated conceptsbybuildingthemoutofsimplerones • BigData: A supervised deep learning algorithm will generally achieve acceptable performancewitharound5,000labeledexamplespercategoryandwillmatch orexceedhumanperformancewhentrainedwithadatasetcontainingatleast 10millionlabeledexamples • ChangedMindset: Notexact/perfectsolution • • • • • • • • • • AISubfields MachineLearning DataMining InformationRetrievalandSemanticWeb SpeechRecognitionandNaturalLanguageProcessing ImageProcessing/RecognitionandComputerVision Robotics Search KnowledgeRepresentationandKnowledgeDatabase LogicReasoningandProbabilisticReasoning ExpertSystems ExpertSystems • Domain-specificcomplexapplication LogicReasoning&ProbabilisticReasoning • Logicreasoning: Propositionalcalculusàpredicatecalculusàfirst-orderpredicatecalculus • Logicprogramming: • FunctionalProgrammingLanguage:Lisp,Scheme • VeryHighLevelProgrammingLanguage:Prolog • Automatedreasoning: • Inferencerule(generatenewclausesfromexistingones), • Subsumption(removeunnecessaryclauses), • Demodulation(replace/rewrite/substituteclauses), • Theoremprovingandqualification • Probability:additivelaw,multiplicativelaw,Bayes’rule • Probabilityinferencenetworksandfuzzylogic • Dempster-ShafterCalculus: Formanipulatedegreesofbelief,whichdoesn’trequireB(A)+B(¬A)=1 KnowledgeRepresentation&KnowledgeDatabase • • • • • • Productionsystem:pattern-action-orientedknowledge Inclusionorconcepthierarchies:object-oriented Mathematiclogics:first-orderpredicatecalculus Framesofcontext Semanticnetworksorsemanticnet Constraintschemataorgeneralizedconstraints: Predicatecalculusaugmentedwithproceduralinformation • RelationaldatabaseandNoSQL • • • • Key-valueNoSQL(e.g.,Redis) Column-familyNoSQL(e.g.,Google’sBigTable,HBase,Cassandra) DocumentNoSQL(e.g.,MongoDB,CouchDB) GraphNoSQL(e.g.,Neo4j) • Challenges: • Closeworldassumption • Expensiveknowledgeacquisition Search • Depth-firstsearch Usingbacktracking • Breadth-firstsearch Usingqueue • Heuristicsearchmethods Withcostfunctionandpriorityqueueorheap • Approximation Closebutnotexactsolutionwithdeviationguarantee • RandomizeorProbabilisticmethods • Planning Makesproblemsolvingmoretractablebymakingtheoperationsconditional Robotics: • Sensorforperception: • Proprioception • Forcesensing • Tactilesensingortouchsensing • Sonar • CameraandcomputerVision • Effectorforaction: • Actuator:convertssoftwarecommandsintophysicalmotion • Locomotion:changethepositionoftherobotwithinitsenvironment • Manipulation:moveotherobjectsintheenvironment,changetheshape orotherphysicalpropertiesofobjects • Endeffector:tool • AutonomousSystems: Imagingprocessing/recognitionand computervision • Vision: • Therichestofthefivesensingmodalitiesofhuman,itoccupies approximately¼ofthebrain • Simultaneouslywithspatial,geometricalrelations,andsymbolic,semantic structures • Manipulation: Elementarymanipulation,extractionofmeaningfulstructures,edge detectionandsegmentationintoregions,analyzingshape,representingand determining3Dstructurefrom2Dimages,specialheuristicsforhandling blocksworldscenes • Computervision: Theperceptionmodel,machinerecognitionofpatterns,pictureprocessing, automaticimageanalysis,sceneanalysis,imageunderstanding Speech&NaturalLanguageProcessing • Speechrecognitionandsynthesis,stemmingandlemmatization,syntaxand parsing, semantic analysis and knowledge representation, formal language theory, statistical methods, probabilistic models, hidden Markov models, computational linguistic, machine translation, spoken language understanding, question answering, conversational agents, machine translation,summarization,andhuman-machineinteraction • source-channelmathematicalmodelforaspeechrecognitionsystem communicationchannel text generator W speech generator signal processing X speech decoder Ŵ speechrecognizer where W is a source word sequence, X is W’s acoustic signal, and Ŵ is the recognized words sequence Speech&NaturalLanguageProcessing • basicsystemarchitectureofaspeechrecognitionsystem voice application application signalprocessing decoder languagemodels adaptation acousticmodels • basicsystemarchitectureofaspokenlanguageunderstandingsystem application database discourseanalysis dialogmanager dialogstrategy responsegeneration sentenceinterpretation text-to-speech speechrecognizer accessdevice Speech&NaturalLanguageProcessing • basicsystemarchitectureofatext-to-speechsystem rawtextor taggedtext TTSEngine textanalysis:documentstructuredetection,text normalization,linguisticanalysis Taggedtext phoneticanalysis:grapheme-to-phoneme conversion Taggedphones prosodicanalysis:pitch&durationattachment Controls speechsynthesis:voicerendering InformationRetrieval&SemanticWeb • IR: Process data offline and store it in inverted index to provide good search performance • Ranking • Tools:Lucene,Solr,ElasticSearch,etc. • SemanticWeb: Semantic-basedsearchinginsteadofkeyword-basedsearching • ResourceDescriptionFramework(RDF): • Triples(subject,predicate,andobject)andhypergraph • RDFàRDFS(RDFScheme)àWebOntologyLanguage(OWL) • RDFQueryLanguageSPARQL DataMining • Findingsimilaritems: Shingling,minhash,andLSH(localitysensitivehashing) • Frequentitemsets: Market-basketmodel,A-Priorialgorithmandvariations • Miningdatastream: Sampling,filtering,counting,estimatingmoments • Linkanalysis: PageRank,topic-sensitivePageRank,linkspam,hubsandauthority • Textminingandsocialmining MachineLearning • Recommendation(collaborativefiltering),clustering,classification • Supervised/predictive learning, unsupervised/descriptive learning, semisupervisedlearning,reinforcementlearning • MLprojectlifecycle: Understanding, data collection/cleaning, feature selection, model selection, training/tuning,evaluation,deployment,review • Error-basedlearning:linearregression,gradientdescent,multinomiallogistic regression,modelingnon-linearrelationship),artificialneuralnetworks • Information-basedlearning:decisiontreelearning,entropyandinformation gain,modelensembleslikeboostingandbagging • Similarity-based learning: feature space and distance metrics, nearest neighboralgorithm,k-dtree • Probability-basedlearning:naïveBayes,Bayesiannetworks • NoFreeLunchTheorem DeepLearning • Usingdeepermodelscanreducethenumberofunitsrequiredtorepresent thedesiredfunctionandcanreducetheamountofgeneralizationerror • 2Dmatrixalgebraà3Dtensoralgebra • Artificial neural network (ANN), convolutional neural network (CNN), recurrentneuralnetwork(RNN),deepneuralnetwork • Convexandnon-convexoptimization • PerformanceenhancementwithGPU