Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Triangles Chapter Problems Classify the Triangles by Sides or Angles Class Work In problems #1-10, choose the most appropriate description for the given triangle. (Equilateral, Scalene, Isosceles, Obtuse, Acute, Right, Equiangular) 1. Side lengths: 3 cm, 4 cm, 5 cm 2. Side lengths: 3 cm, 3 cm, 4 cm 3. Side lengths: 2 cm, 3 cm, 2 cm 4. Side lengths: 5 cm, 5 cm, 5 cm 5. Side lengths: 2 cm. 3 cm, 4 cm 6. Angle Measures: 30°, 60°, 90° 7. Angle Measures: 60°, 60°, 60° 8. Angle Measures: 92°, 37°, 51° 9. Angle Measures: 88°, 67°, 25° 10. Angle measures: 37°, 39°, 104° Complete the statement using ALWAYS, SOMETIMES, and NEVER. 11. An isosceles triangle is ___________ a scalene triangle. 12. An equilateral triangle is __________ an isosceles triangle. 13. An isosceles triangle is ___________ an equilateral triangle. 14. An acute triangle is ___________ an equiangular triangle. 15. An isosceles triangle is __________ a right triangle. For #16-20, classify the triangles by Sides & Angles 17. 16. 18. 64° 37° 22° 115° 58° 58° 106° 43° 37° 19. 20. 135° Geometry: Triangles ~1~ NJCTL.org Classify the Triangles by Sides or Angles Home Work In problems #21-30, choose the most appropriate description for the given triangle. (Equilateral, Scalene, Isosceles, Obtuse, Acute, Right, Equiangular) 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. Side lengths: 5 cm, 6 cm, 7 cm Side lengths: 2 cm, 2 cm, 3 cm Side lengths: 3 cm, 3 cm, 3 cm Side lengths: 3 cm, 4 cm, 4 cm Side lengths: 4 cm, 3 cm, 2 cm Angle Measures: 60°, 60°, 60° Angle Measures: 60°, 30°, 90° Angle Measures: 33°, 52°, 95° Angle Measures: 37°, 43°, 100° Angle measures: 25°, 67°, 88° Complete the statement using ALWAYS, SOMETIMES, and NEVER. 31. A scalene triangle is ___________ an equilateral triangle. 32. An equilateral triangle is __________ an obtuse triangle. 33. An isosceles triangle is ___________ an acute triangle. 34. An equiangular triangle is ___________ a right triangle. 35. An right triangle is __________ an isosceles triangle. For #36-40, classify the triangles by Sides & Angles 38. 37. 36. 27° 36° 47° 108° 106° 36° 40. 39. 51° 46° 78° 46° 51° Geometry: Triangles ~2~ NJCTL.org Triangle Sum & Exterior Angle Theorems Class Work In the given triangles, solve for the missing variable(s). 42. 41. 43. 57° x° (4x+21)° 29° 93° (2x+8)° x° 44. 45. 65° 65° (x-10)° >> 36° x° 85° x° z° (y+10)° >> 49. 46. 47. x° (4x-13)° 39° 21° 2x° (3x+23)° (3x-18)° 65° x° y° z° Triangle Sum & Exterior Angle Theorems Home Work In the given triangles, solve for the missing variable(s). Geometry: Triangles ~3~ NJCTL.org 51. 50. 52 x° 62° (3x-14)° 32° (2x+15)° 87° (x-7)° (x-9)° 54. 53. 55° 55. >> 29° x° (3x-18)° (x+4)° (3x-22)° (6x-23)° (2x+27)° z° (y-13)° 56. 57. 58. y° 26° x° 23° y° 66° x° z° >> z° 34° y° x° 35° 19° z° 62° 47° PARCC type question 59. Proof of Triangle Sum Theorem: Complete the proof by filling in the missing reasons with the βreasons bankβ to the right. Some reasons may be used more than once, and some may not be used at all. D Given: j || k, β π·π΅πΈ is a straight angle Prove: πβ 1 + πβ 4 + πβ 7 = 180° 3 4 2 1 C Statements 1. j || k β π·π΅πΈ is a straight angle 2. πβ π·π΅πΈ = 180° 3. πβ 3 + πβ 4 + πβ 5 = πβ π·π΅πΈ 4. πβ 3 + πβ 4 + πβ 5 = 180° 5. β 3 β β 1, β 5 β β 7 6. πβ 3 = πβ 1, πβ 5 = πβ 7 7. πβ 1 + πβ 4 + πβ 7 = 180° Geometry: Triangles Reasons 1. E B k 5 7 6 A j Reasons Bank 2. 3. 4. 5. 6. 7. ~4~ a) Angle Addition Postulate b) Substitution Property of Equality c) If 2 parallel lines are cut by a transversal, then the alternate interior angles are congruent. d) If 2 parallel lines are cut by a transversal, then the corresponding angles are congruent. e) Given f) Definition of congruent angles. g) Definition of a straight angle. NJCTL.org Inequalities in Triangles Classwork For each triangle list the sides from greatest to smallest #60-62. 60. 61. 62. B H D 30° A C 65° F 24° 112° E G 76° I 75° For each triangle list the angles in order from greatest to smallest #63-65. 63. 64. 65. L M 5.7 O 4 Q 6.75 2.5 K J 62 43 3.8 60 P N 5.5 R Will the three lengths given make a triangle? 66. 2, 3, and 4 67. 1, 3, and 4 68. 5, 6, and 7 69. 16, 8, and 7 70. 20, 10, and 10 71. 8x, 7x, and 14x Given the lengths of two sides of a triangle, what lengths could the third side, x, have? 72. 12 and 14 73. 15 and 6 74. 22 and 22 75. 9 and 12 76. 8y and 10y Inequalities in Triangles Homework For each triangle list the sides from greatest to smallest #77-79. 77. 78. 79. Geometry: Triangles ~5~ NJCTL.org E B H 57° 41° 95° C D A F 63° 80° G 18° I For each triangle list the angles in order from greatest to smallest #80-82. 80. 81. 82. M K H 18 N 10 5 7 G 8 L 11 I J 7 27 33 O List the sides in order from shortest to longest #83-84. 83. 84. H T 75° 40° 80° S V 40° 80° G 75° 70° 110° 40° U F 60° I J Will the three lengths given make a triangle? 85. 21, 34, and 49 Geometry: Triangles ~6~ NJCTL.org 86. 11, 31, and 44 87. 8, 6, and 5 88. 12, 5, and 7 89. 20, 30, and 11 90. 9x, 17x, and 26x Given the lengths of two sides of a triangle, what lengths could the third side, x, have? 91. 10 and 21 92. 19 and 8 93. 30 and 30 94. 5 and 15 95. 4y and 14y Similar Triangles Classwork 96. Determine if the triangles are similar. If so, write a similarity statement & state the similarity postulate or theorem. a. b. c. PARCC type questions: Complete the proof by filling in the missing reasons with the βreasons bankβ to the right. Some reasons may not be used at all. 97. Given: DH || FG Prove: βπ·πΈπ»~βπΊπΈπΉ Reasons Bank F D a) If 2 parallel lines are cut by a transversal, then the alternate interior E angles are congruent. b) If 2 parallel lines are cut by a G H transversal, then the corresponding angles are congruent. Statements Reasons c) Given 1. 1. DH || FG d) Vertical angles are congruent 2. 2. β π· β β πΊ e) AA~ 3. 3. β π·πΈπ» β β πΊπΈπΉ f) SAS~ g) SSS~ Geometry: Triangles ~7~ NJCTL.org 4. βπ·πΈπ»~βπΊπΈπΉ 4. 98. Given: ÐR @ ÐA , PR = 9 , QR = 7.2 , AB = 4.8 , and AC = 6 Prove: βπππ ~βπ΅πΆπ΄ Reasons Bank Statements 1. ÐR @ ÐA , PR = 9 , QR = 7.2 , AB = 4.8 , and AC = 6 2. ππ πΆπ΄ ππ 9 3 ππ 7.2 3 = 6 = 2 , π΅π΄ = 4.8 = 2 ππ Reasons 1. 2. 3. 3. πΆπ΄ = π΅π΄ 4. βπππ ~βπ΅πΆπ΄ 99. a) If the scale factors are the same, then the sides are proportional. b) Given c) AA~ d) Calculating the scale factor between the sides of the triangles. e) SAS~ f) SSS~ 4. Given: ÐA @ ÐD , ÐB @ ÐE Prove: βπ΄π΅πΆ~βπ·πΈπΉ Reasons Bank E a) b) c) d) B C A F D Statements 1. ÐA @ ÐD , ÐB @ ÐE 2. βπ΄π΅πΆ~βπ·πΈπΉ AB BC CA ο½ ο½ 100. Given: DE EF FD Prove: βπ΄π΅πΆ~βπ·πΈπΉ Reasons 1. 2. Reasons Bank a) b) c) d) E B A Statements AB BC CA ο½ ο½ 1. DE EF FD Geometry: Triangles C AA~ SAS~ SSS~ Given AA~ SAS~ SSS~ Given F D Reasons 1. ~8~ NJCTL.org 2. βπ΄π΅πΆ~βπ·πΈπΉ 2. In problems 101-103, determine if DE || BC . 101. 102. 103. PARCC type questions: Solve for y. 104. 105. PARCC type question: Complete the proof by filling in the missing reasons with the βreasons bankβ to the right. Some reasons may not be used at all. 106. Prove the Side Splitter Theorem Reasons Bank Given BD β AE Prove C CB CD ο½ CA CE B Geometry: TrianglesD A ~9~ E a) If 2 parallel lines are cut by a transversal, then the alternate interior angles are congruent. b) If 2 parallel lines are cut by a transversal, then the corresponding angles are congruent. c) Given d) Reflexive Property of Congruence NJCTL.org e) AA~ f) SAS~ g) If two triangles are similar, then their corresponding sides are proportional. Statements 1. BD β AE 2. β πΆ β β πΆ 3. β πΆπ΅π· β β πΆπ΄πΈ 4. βπΆπ΅π·~βπΆπ΄πΈ CB CD 5. ο½ CA CE Reasons 1. 2. 3. 4. 5. Similar Triangles Homework 107. Determine if the triangles are similar. If so, write a similarity statement & state the similarity postulate or theorem. a. b. c. Geometry: Triangles ~10~ NJCTL.org PARCC type questions: Complete the proof by filling in the missing reasons with the βreasons bankβ to the right. Some reasons may not be used at all. 108. Given: BD || AE Reasons Bank Prove: βπ΄πΆπΈ~βπ΅πΆπ· a) If 2 parallel lines are cut by a transversal, then the alternate interior angles are congruent. b) If 2 parallel lines are cut by a transversal, then the corresponding angles are congruent. Statements Reasons c) Given 1. 1. BD β AE d) Reflexive Property of Congruence 2. 2. β πΆ β β πΆ e) AA~ 3. 3. β πΆπ·π΅ β β πΆπΈπ΄ f) SAS~ 4. 4. βπ΄πΆπΈ~βπ΅πΆπ· g) SSS~ 109. Given: mÐP = 48°, mÐQ = 55° , mÐB = 55° , mÐC = 77° Prove: βπππ ~βπ΄π΅πΆ Reasons Bank Statements 1. mÐP = 48°, mÐQ = 55° , mÐB = 55° , mÐC = 77° 2. πβ π = 77° 3. β π β β π΅, β π β β πΆ 4. βπππ ~βπ΄π΅πΆ a) b) c) d) e) f) Reasons 1. Triangle Sum Theorem Given AA~ SAS~ Definition of congruent angles SSS~ 2. 3. 4. Reasons Bank AB CA ο½ , ÐA @ ÐD DE FD Prove: βπ΄π΅πΆ~βπ·πΈπΉ 110. Given: a) b) c) d) E AA~ SAS~ SSS~ Given B A C Statements AB CA ο½ 1. , ÐA @ ÐD DE FD Geometry: Triangles F D Reasons 1. ~11~ NJCTL.org 2. βπ΄π΅πΆ~βπ·πΈπΉ 2. In problems 111-113, determine if DE || BC . 111. 112. 113. PARCC type questions: Solve for y. 114. 115. 116. Geometry: Triangles ~12~ NJCTL.org PARCC type question: 117. Prove the Converse to the Side Splitter Theorem: Complete the proof by filling in the missing reasons with the βreasons bankβ to the right. Some reasons may not be used at all. CB CD ο½ Reasons Bank Given C CA CE Prove BD β AE a) If 2 lines are cut by a transversal and the alternate interior angles are congruent, then the lines are parallel. b) If 2 lines are cut by a transversal and the B D corresponding angles are congruent, then the lines are parallel. c) Given A E d) Reflexive Property of Congruence Statements Reasons e) AA~ 1. CB CD f) SAS~ ο½ 1. g) SSS~ CA CE h) If two triangles are similar, then the 2. 2. β πΆ β β πΆ corresponding angles are congruent. 3. 3. βπΆπ΅π·~βπΆπ΄πΈ 4. 4. β πΆπ΅π· β β πΆπ΄πΈ 5. 5. BD β AE Geometry: Triangles ~13~ NJCTL.org Triangles Review Multiple Choice 1. Identify the triangles by sides and angles a. scalene, acute b. isosceles, obtuse c. scalene, obtuse d. equilateral, equiangular 2. Angle measures of a triangle are given, find the value of x. a. 24 A triangleβs angles are: b. 28 mβ π΄ = 2x - 1 c. 32 mβ π΅ = x + 9 d. 30 mβ πΆ = 3x + 4 3. Classify the triangle by sides and angles. a. scalene, obtuse b. isosceles, acute c. scalene, acute d. isosceles, obtuse 8 12 10 4. Using the figure at right, list the segments from least to greatest. Μ Μ Μ Μ , π΄πΆ Μ Μ Μ Μ , π΅πΆ Μ Μ Μ Μ , π΄π· Μ Μ Μ Μ , π·πΆ Μ Μ Μ Μ a. π΅πΆ Μ Μ Μ Μ , Μ Μ Μ Μ b. Μ Μ Μ Μ π΄π΅ , π΅πΆ π΄πΆ , Μ Μ Μ Μ π΄π· , Μ Μ Μ Μ π·πΆ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ c. π΄π·, π·πΆ , π΄πΆ , π΄π΅ , π΅πΆ d. cannot be determined 5. Use the diagram to find the value of x. a. 130 b. 125 c. 120 d. 110 6. Which of the following values cannot be the third side of a triangle if two of the sides are 14 and 20? a. 18 b. 20 c. 32.5 d. 34 Geometry: Triangles ~14~ NJCTL.org 7. Decide whether the triangles are similar. If so, write a similarity statement. a. b. c. d. Yes, DABC : DDEF Yes, DABC : DDFE Yes, DABC : DFDE The triangles are not similar 8. Determine if the triangles are similar. If so, state the similarity postulate or theorem. a. b. c. d. Yes, by AA~ Yes, by SSS~ Yes, by SAS ~ The triangles are not similar 9. Determine if the triangles are similar. If so, state the similarity postulate or theorem. B a. b. c. d. C A Yes, by AA~ Yes, by SSS~ Yes, by SAS ~ The triangles are not similar D E 10. Solve for y a. b. c. d. 8 4.5 6 12 Geometry: Triangles ~15~ NJCTL.org 11. Solve for x F 6 E 10 G 8 D a. b. c. d. H x 4 4.8 10 12.8 Short Constructed Response β Write the correct answer for each question. No partial credit will be given. 12. Find the values of x and z. x 2x-10 40ο° z 13. βπ½πΎπΏ~βπππ. Find the values if x & y K P 12 9 J L x 13.5 15 M Geometry: Triangles y ~16~ N NJCTL.org Extended Constructed Response β Write the correct answer for each question. Partial credit will be given. 14. Complete the proof by filling in the missing reasons with the βreasons bankβ to the right. Some reasons may not be used at all. Given BD β AE Reasons Bank Prove βπ΅πΆπ·~βπ΄πΆπΈ a) If 2 parallel lines are cut by a C transversal, then the alternate interior angles are congruent. b) If 2 parallel lines are cut by a transversal, then the corresponding angles are congruent. c) Reflexive Property of Congruence B D d) AA~ e) SAS~ f) Given A E g) SSS~ Statements Reasons 1. 1. BD β AE 2. 2. β πΆ β β πΆ 3. 3. β πΆπ΅π· β β πΆπ΄πΈ 4. 4. βπ΅πΆπ·~βπ΄πΆπΈ Geometry: Triangles ~17~ NJCTL.org Answers 1. Scalene 2. Isosceles 3. Isosceles 4. Equilateral 5. Scalene 6. Right 7. Equiangular & acute 8. Obtuse 9. Acute 10. Obtuse 11. Never 12. Never 13. Sometimes 14. Sometimes 15. Sometimes 16. Sides: Isosceles, Angles: Acute 17. Sides: Scalene, Angles: Obtuse 18. Sides: Isosceles, Angles: Obtuse 19. Sides: Scalene, Angles: Right 20. Sides: Isosceles, Angles: Obtuse 21. Scalene 22. Isosceles 23. Equilateral 24. Isosceles 25. Scalene 26. Equiangular & acute 27. Right 28. Obtuse 29. Obtuse 30. Acute 31. Never 32. Never 33. Sometimes 34. Never 35. Sometimes 36. Sides: Scalene, Angles: Right 37. Sides: Scalene, Angles: Obtuse 38. Sides: Isosceles, Angles: Obtuse 39. Sides: Isosceles, Angles: Acute 40. Sides: Isosceles, Angles: Acute 41. X=58° 42. X=33° 43. X=23° 44. X=30° 45. X=79°, z=144°, y=55° 46. X=12 Geometry: Triangles 47. X=27 48. (PROBLEM MISSING) 49. X=76°, y=104°, z=55° 50. X=61° 51. X=31 52. X=37 53. X=27 54. X=32 55. X=96°, z=151°, y=68 56. X=66°, z=88°, y=79° 57. Z=90°, y=43°, x=71° 58. X=95°, y=51°, z=39° 59. Statements 1. j || k β π·π΅πΈ is a straight angle 2. πβ π·π΅πΈ = 180° 3. πβ 3 + πβ 4 + πβ 5 = πβ π·π΅πΈ 4. πβ 3 + πβ 4 + πβ 5 = 180° 5. β 3 β β 1, β 5 β β 7 6. πβ 3 = πβ 1, πβ 5 = πβ 7 7. πβ 1 + πβ 4 + πβ 7 = 180° Reasons 1. e 2. g 3. a 4. b 5. c 6. f 7.b AC, BC, AB 61. DF, EF, DE 62. GI, HI, HG 60. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. ~18~ <K, <L, <J <N, <M, <O <P, <Q, <R yes no yes no no yes 2 < x < 26 9 < x < 21 0 < x < 44 3 < x < 21 2y < x < 18y NJCTL.org BC, AB, AC 78. EF, DE, DF 79. GI, HI,GH 100. Statements Reasons 1. d AB BC CA 1. ο½ ο½ DE EF FD 2. DABC : DDEF 2. c 101. yes 102. no 103. no 104. 12 105. 11.36 106. Statements Reasons 1. c 1. BD β AE 2. d 2. β πΆ β β πΆ 3. b 3. β πΆπ΅π· β β πΆπ΄πΈ 4. e 4. βπΆπ΅π· β βπΆπ΄πΈ 5. g CB CD 5. ο½ CA CE 107. a. yes, by AA~ or SAS~ b. not similar c. yes, by SSS~ 108. Statements Reasons 1. c 1. BD β AE 2. d 2. β πΆ β β πΆ 3. b 3. β πΆπ·π΅ β β πΆπΈπ΄ 4. e 4. βπΆπ΅π· β βπΆπ΄πΈ 109. Statements Reasons 1. mÐP = 48°, 1. b mÐQ = 55° , mÐB = 55° , mÐC = 77° 2. a 2. πβ π = 77° 3. e 3. β π β β π΅, β π β β πΆ 4. c 4. DPQR : DABC 110. Statements Reasons 1. d AB CA ο½ 1. , ÐA @ ÐD DE FD 2. DABC : DDEF 2. b 111. yes 112. yes 113. no 114. 10 115. 11.25 77. 80. <H @ <I, <G 81. <K, <J, <L 82. <N, <M, <O 83. UV,TV,UT ,ST ,SU 84. FJ,GF,GJ,GH, HJ, HI, JI 85. yes 86. no 87. yes 88. no 89. yes 90. no 91. 11< x < 31 92. 11 < x < 27 93. 0 < x < 60 94. 10 < x < 20 95. 10y < x < 18y 96. a. not similar b. yes by SAS c. not similar 97. Statements Reasons 1. c 1. DH || FG 2. β π· β β πΊ 3. β π·πΈπ» β β πΊπΈπΉ 4. DDEH : DGEF 98. Statements 1. ÐR @ ÐA , PR = 9 , 2. a 3. d 4. e Reasons 1. b QR = 7.2 , AB = 4.8 , and AC = 6 2. ππ πΆπ΄ ππ 9 3 ππ 7.2 3 = 6 = 2 , π΅π΄ = 4.8 = 2 ππ 3. πΆπ΄ = π΅π΄ 4. DQPR : DBCA 99. Statements 1. ÐA @ ÐD , ÐB @ ÐE 2. DABC : DDEF Geometry: Triangles 2. d 3. a 4. e Reasons 1. d 2. a ~19~ NJCTL.org 116. 10 117. Statements CB CD 1. ο½ CA CE 2. β πΆ β β πΆ 3. βπΆπ΅π· β βπΆπ΄πΈ 4. β πΆπ΅π· β β πΆπ΄πΈ 5. BD β AE Reasons 1. c 2. 3. 4. 5. d f h b Unit Review Answer Key 1. 2. 3. 4. 5. 6. 7. c 8. c 9. a 10. a 11. d c b c b b d 12. x = 50 & z = 90 13. x = 18 & y = 22.5 14. Statements 1. BD β AE 2. β πΆ β β πΆ 3. β πΆπ΅π· β β πΆπ΄πΈ 4. βπ΅πΆπ·~βπ΄πΆπΈ Geometry: Triangles Reasons 1. f 2. c 3. b 4. d ~20~ NJCTL.org