Download 2 - The Bronx High School of Science

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
http://www.youtube.com/watch?v=rVXHYx8zYeI
Overview of cellular respiration
 4 metabolic stages

http://www.youtube.com/watch?v=6JGXayUyNVw
Anaerobic respiration
http://www.youtube.com/watch?v=EfGlznwfu9U
1. Glycolysis
 respiration without O2
 in cytosol

Aerobic respiration
 respiration using O2
 in mitochondria
2. Pyruvate oxidation
3. Krebs cycle
4. Electron transport chain
C H O6 +
AP Biology
6 12
6O2
 ATP + 6H2O + 6CO2 (+ heat)
Cellular Respiration
http://www.youtube.com/watch?v=VCpNk92uswY
AP Biology
Major Metabolic Pathway
Glucose
Glycolysis
Glc-6-P
Kinase
6
3
Glycogen phosphorylase
Glycogen
Glc-1-P
P
digestion
Starch
Oxidation of Carbon
Mitochondria
Oxidative phosphorylation
P
H
O
P
4 H3-C-H 0
↓
3 H3-C-OH 1 Change
↓
of carbon
2 H2-C=O 1 number
↓
1 H-COOH 2
↓
Pyruvate
0 O=C=O 2
3
AP Biology
2
Acetyl
CoA A
Pyruvate
ATP
$ $$
Citric
acid
cycle
NADH
H2O
CO2
1
STAGE 3 Energy production
STAGE 2 Unit molecule → Key small molecule
Juang RH (2004) BCbasics
STAGE 1
Macromolecule → Unit molecule
Overview
10 reactions
glucose
C-C-C-C-C-C
2 ATP
2 ADP
convert
fructose-1,6bP
glucose (6C) to
P-C-C-C-C-C-C-P
2 pyruvate (3C)
DHAP
G3P
 produces:
4 ATP & 2 NADH P-C-C-C C-C-C-P
2H
 consumes:
2Pi
2 ATP
 net:
2Pi
2 ATP & 2 NADH

AP Biology
pyruvate
C-C-C
2 NAD+
2
4 ADP
4 ATP
What’s the
point?
Cellular Respiration
Stages 2 & 3:
Oxidation of Pyruvate
Krebs Cycle
The point
is to make
AP Biology
ATP!
2013-2014
http://www.youtube.com/watch?v=EfGlznwfu9U
Glycolysis is only the start
 Glycolysis
glucose      pyruvate
6C
2x 3C
 Pyruvate has more energy to yield



3 more C to strip off (to oxidize)
if O2 is available, pyruvate enters mitochondria
enzymes of Krebs cycle complete the full
oxidation of sugar to CO2
pyruvate       CO2
AP Biology
3C
1C
x3
Cellular respiration
AP Biology
Mitochondria — Structure
 Double membrane energy harvesting organelle


smooth outer membrane
highly folded inner membrane
 cristae

intermembrane space
 fluid-filled space between membranes

matrix
 inner fluid-filled space


DNA, ribosomes
enzymes
 free in matrix &
What cells would have
AP
Biology
a lot
of mitochondria?
outer
intermembrane
membrane
inner
membrane-bound space
membrane
cristae
matrix
mitochondrial
DNA
Mitochondria – Function
Oooooh!
Form fits
function!
Dividing mitochondria
Membrane-bound proteins
Who else divides like that? Enzymes & permeases
bacteria!
What does this tell us about
the evolution of eukaryotes?
Endosymbiosis!
AP Biology
Advantage of highly folded inner
membrane?
More surface area for membranebound enzymes & permeases
Oxidation of pyruvate
 Pyruvate enters mitochondrial matrix
[
2x pyruvate    acetyl CoA + CO2
3C
2C
1C
NAD
Where
does the
CO2 go?
Exhale!
3 step oxidation process
 releases 2 CO2 (count the carbons!)
 reduces 2 NAD  2 NADH (moves e )
 produces 2 acetyl CoA


Acetyl CoA enters Krebs cycle
AP Biology
]
AP Biology
Pyruvate oxidized to Acetyl CoA
reduction
NAD+
Pyruvate
C-C-C
[
Coenzyme A
CO2
Acetyl CoA
C-C
oxidation
2 x Yield = 2C sugar + NADH + CO2
AP Biology
]
Pyruvate Oxidation
 2 NADH's are generated
 2 CO2 are released
AP Biology
Krebs cycle
1937 | 1953
 aka Citric Acid Cycle
in mitochondrial matrix
 8 step pathway

 each catalyzed by specific enzyme
Hans Krebs
1900-1981
 step-wise catabolism of 6C citrate molecule
 Evolved later than glycolysis

does that make evolutionary sense?
 bacteria 3.5 billion years ago (glycolysis)
 free O2 2.7 billion years ago (photosynthesis)
 eukaryotes 1.5 billion years ago (aerobic
AP Biology
respiration = organelles  mitochondria)
Count the carbons!
pyruvate
3C
2C
6C
4C
This happens
twice for each
glucose
molecule
4C
citrate
oxidation
of sugars
4C
6C
CO2
x2
4C
AP Biology
acetyl CoA
5C
4C
CO2
http://www.youtube.com/watch?v=hw5nWB0xN0Y&feature=related
http://www.youtube.com/watch?v=p-k0biO1DT8&feature=related
Count the electron carriers!
pyruvate
3C
2C
CO2
acetyl CoA
http://www.youtube.com/watch?v=mFiaIS1IKIA&feature=related
This happens
twice for each
glucose
molecule
6C
4C
NADH
4C
4C
citrate
reduction
of electron
carriers
x2
FADH2
4C ATP
AP Biology
http://www.youtube.com/watch?v=XG12CMszYLI
NADH
6C
CO2
NADH
5C
4C
CO2
NADH
Figure 9.12-1
Acetyl CoA
CoA-SH
1
Oxaloacetate
Citrate
Citric
acid
cycle
AP Biology
Figure 9.12-2
Acetyl CoA
CoA-SH
H2O
1
Oxaloacetate
2
Citrate
Isocitrate
Citric
acid
cycle
AP Biology
Figure 9.12-3
Acetyl CoA
CoA-SH
H2O
1
Oxaloacetate
2
Citrate
Isocitrate
NAD
Citric
acid
cycle
3
NADH
+ H
CO2
-Ketoglutarate
AP Biology
Figure 9.12-4
Acetyl CoA
CoA-SH
H2O
1
Oxaloacetate
2
Citrate
Isocitrate
NAD
Citric
acid
cycle
NADH
3
+ H
CO2
CoA-SH
-Ketoglutarate
4
NAD
NADH
Succinyl
CoA
AP Biology
+ H
CO2
Figure 9.12-5
Acetyl CoA
CoA-SH
H2O
1
Oxaloacetate
2
Citrate
Isocitrate
NAD
Citric
acid
cycle
NADH
3
+ H
CO2
CoA-SH
-Ketoglutarate
4
CoA-SH
5
NAD
Succinate
GTP GDP
ADP
ATP
AP Biology
Pi
Succinyl
CoA
NADH
+ H
CO2
Figure 9.12-6
Acetyl CoA
CoA-SH
H2O
1
Oxaloacetate
2
Citrate
Isocitrate
NAD
Citric
acid
cycle
Fumarate
NADH
3
+ H
CO2
CoA-SH
-Ketoglutarate
4
6
CoA-SH
5
FADH2
NAD
FAD
Succinate
GTP GDP
ADP
ATP
AP Biology
Pi
Succinyl
CoA
NADH
+ H
CO2
Figure 9.12-7
Acetyl CoA
CoA-SH
H2O
1
Oxaloacetate
2
Malate
Citrate
Isocitrate
NAD
H2O
Citric
acid
cycle
7
Fumarate
NADH
3
+ H
CO2
CoA-SH
-Ketoglutarate
4
6
CoA-SH
5
FADH2
NAD
FAD
Succinate
GTP GDP
ADP
ATP
AP Biology
Pi
Succinyl
CoA
NADH
+ H
CO2
Figure 9.12-8
Acetyl CoA
CoA-SH
NADH
+ H
H2O
1
NAD
8 Oxaloacetate
2
Malate
Citrate
Isocitrate
NAD
H2O
Citric
acid
cycle
7
Fumarate
NADH
3
+ H
CO2
CoA-SH
-Ketoglutarate
4
6
CoA-SH
5
FADH2
NAD
FAD
Succinate
GTP GDP
ADP
ATP
AP Biology
Pi
Succinyl
CoA
NADH
+ H
CO2
Figure 9.12a
Acetyl CoA
CoA-SH
H2O
1
Oxaloacetate
2
Citrate
Isocitrate
AP Biology
Figure 9.12b
Isocitrate
NAD
NADH
3
+ H
CO2
CoA-SH
-Ketoglutarate
4
NAD
NADH
Succinyl
CoA
AP Biology
+ H
CO2
Figure 9.12c
Fumarate
6
CoA-SH
5
FADH2
FAD
Succinate
Pi
GTP GDP
ADP
ATP
AP Biology
Succinyl
CoA
Figure 9.12d
NADH
+ H
NAD
8 Oxaloacetate
Malate
H2O
7
Fumarate
AP Biology
Whassup?
So we fully
oxidized
glucose
C6H12O6

CO2
& ended up
with 4 ATP!
What’s the
point?
AP Biology
http://www.johnkyrk.com/krebs.html
AP Biology
Electron Carriers = Hydrogen Carriers
H+
 Krebs cycle
produces large
quantities of
electron carriers
NADH
 FADH2
 go to Electron
Transport Chain!

AP Biology
What’s so
important about
electron carriers?
H+
H+
H+
+
H+ H H+
H+
ADP
+ Pi
ATP
H+
Energy accounting of Krebs cycle
4 NAD + 1 FAD
4 NADH + 1 FADH2
2x pyruvate          CO2
3C
3x 1C
1 ADP
1 ATP
ATP
Net gain = 2 ATP
= 8 NADH + 2 FADH2
AP Biology
http://www.youtube.com/watch?v=JPCs5pn7UNI
Value of Krebs cycle?
 If the yield is only 2 ATP, how was the Krebs
cycle an adaptation?

value of NADH & FADH2
 electron carriers & H carriers
 reduced molecules move e-s
 reduced molecules move H+ ions
 to be used in the Electron Transport Chain
like $$
in the
bank
AP Biology
NADH and FADH2
 So much more to give
AP Biology
http://www.youtube.com/watch?v=VCpNk92uswY
What’s the
point?
The point
is to make
ATP!
ATP
AP Biology
2013-2014
H+
And how do we do that? H
+
H+
H+
H+
H+
H+
H+
 ATP synthase
set up a H+ gradient
 allow H+ to flow
through ATP synthase
 powers bonding
of Pi to ADP

ADP + P
ADP + Pi  ATP
ATP
http://www.youtube.com/watch?v=BGU-g4IYD7c
AP Biology
But…
Have
we done that yet?
http://vcell.ndsu.edu/animations/atpgradient/movie.htm
H+
NO!
The final chapter
to my story is
next!
Any Questions?
AP Biology
2013-2014
Overview – sites of reactions
AP Biology
FAD Reduction
AP Biology
AP Biology
AP Biology
AP Biology
Coenzyme A (CoA)
AP Biology
Pyruvate to acetyl CoA
AP Biology
Related documents