* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Study Guide
Golden ratio wikipedia , lookup
Technical drawing wikipedia , lookup
Apollonian network wikipedia , lookup
Multilateration wikipedia , lookup
Rational trigonometry wikipedia , lookup
Reuleaux triangle wikipedia , lookup
Euler angles wikipedia , lookup
Trigonometric functions wikipedia , lookup
History of trigonometry wikipedia , lookup
Pythagorean theorem wikipedia , lookup
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`i
&ORUSEWITHPAGESn
"
>ÃÃvÞÊÌÀ>}iÃÊ>`ÊwÊ`Êi>ÃÕÀiÃÊvÊÌ
iÀÊ>}ið
6V>LÕ>ÀÞ
!TRIANGLEISAPOLYGONWITHTHREESIDES
!SCALENETRIANGLEHASNOCONGRUENTSIDES
!NISOSCELESTRIANGLEHASATLEASTTWOCONGRUENTSIDES
!NEQUILATERALTRIANGLEHASTHREECONGRUENTSIDES
!NACUTETRIANGLEHASTHREEACUTEANGLES
!RIGHTTRIANGLEHASONERIGHTANGLE
!NOBTUSETRIANGLEHASONEOBTUSEANGLE
7HENTHESIDESOFAPOLYGONAREEXTENDEDOTHERANGLESAREFORMED
4HEORIGINALANGLESARETHEINTERIORANGLES4HEANGLESTHATFORMLINEAR
PAIRSWITHTHEINTERIORANGLESARETHEEXTERIORANGLES
--" Ê{°£
!NEQUIANGULARTRIANGLEHASTHREECONGRUENTANGLES
4HEOREM4RIANGLE3UM4HEOREM4HESUMOFTHEMEASURESOFTHE
INTERIORANGLESOFATRIANGLEIS
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
4HEOREM%XTERIOR!NGLE4HEOREM4HEMEASUREOFANEXTERIOR
ANGLEOFATRIANGLEISEQUALTOTHESUMOFTHEMEASURESOFTHETWO
NONADJACENTINTERIORANGLES
#OROLLARYTOTHE4RIANGLE3UM4HEOREM4HEACUTEANGLESOFARIGHT
TRIANGLEARECOMPLEMENTARY
8*Ê£
>ÃÃvÞÊÌÀ>}iÃÊLÞÊÃ`iÃÊ>`ÊLÞÊ>}iÃÊ
>ÃÃvÞÊÌ
iÊÌÀ>}iÊLÞÊÌÃÊÃ`iÃÊ>`ÊLÞÊÌÃÊ>}ið
Ê >°
L°
-ÕÌ
Ê >° 4RIANGLE$%&HASONEOBTUSEANGLEANDNOCONGRUENTSIDES
3ONg$%&ISANOBTUSESCALENETRIANGLE
Ê L° 4RIANGLE!"#HASONERIGHTANGLEANDTWOCONGRUENTSIDES
3ONg!"#ISARIGHTISOSCELESTRIANGLE
'EOMETRY
#HAPTER2ESOURCE"OOK
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`iÊ CONTINUED
&ORUSEWITHPAGESn
ÝiÀVÃiÃÊvÀÊÝ>«iÊ£
>ÃÃvÞÊÌ
iÊÌÀ>}iÊLÞÊÌÃÊÃ`iÃÊ>`ÊLÞÊÌÃÊ>}ið
£°
Ó°
ΰ
`Ê>}iÊi>ÃÕÀiÃ
--" Ê{°£
8*ÊÓ
>° &INDM"!#ANDM"#!
L° &INDM"#$ANDM!"#
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
-ÕÌ
>° XzzzzXzzzz
5SE#OROLLARYTOTHE4RIANGLE
3UM4HEOREM
3OLVEFORX
Xzz
3OM"#!zzXzzzz+zzzzAND
M"!#zzXzzzz+zzzz
L° XzzzzXzz
5SE%XTERIOR!NGLE4HEOREM
Xzz
3OLVEFORX
3OM"#$zzXzzzz+zzzzAND
M!"#zzXzzzz
ÝiÀVÃiÃÊvÀÊÝ>«iÊÓ
{° &INDM!"$ANDM"$#
'EOMETRY
#HAPTER2ESOURCE"OOK
x° &INDM#!"ANDM#"!
Answer Key
Lesson 4.1
Study Guide
1. right scalene 2. equiangular equilateral
3. obtuse isosceles 4. m∠ ABD 5 908, m∠ BDC 5 608
5. m∠ CAB 5 808, m∠ CBA 5 108
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`i
&ORUSEWITHPAGESn
"
`iÌvÞÊV}ÀÕiÌÊwÊ}ÕÀið
6V>LÕ>ÀÞ
)NTWOCONGRUENTlGURESALLTHEPARTSOFONElGUREARECONGRUENTTO
THECORRESPONDINGPARTSOFTHEOTHERlGURE)NCONGRUENTPOLYGONS
THISMEANSTHATTHECORRESPONDINGSIDESANDTHECORRESPONDINGANGLES
ARECONGRUENT
4HEOREM4HIRD!NGLES4HEOREM)FTWOANGLESOFONETRIANGLEARE
CONGRUENTTOTWOANGLESOFANOTHERTRIANGLETHENTHETHIRDANGLESARE
CONGRUENT
8*Ê£
1ÃiÊ«À«iÀÌiÃÊvÊV}ÀÕiÌÊwÊ}ÕÀiÃ
ÊÌ
iÊ`>}À>]Ê
Êʰ
Ê >° &INDTHEVALUEOFX
L° &INDTHEVALUEOFY
-ÕÌ
] ]
>° 9OUKNOWTHAT!%z&*z
!%zz*&
zzXzz
zzX
zzX
L° 9OUKNOWTHAT$)
M$zzM)
zzYzz
zzYzz
zzY
zzY
--" Ê{°Ó
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
ÝiÀVÃiÃÊvÀÊÝ>«iÊ£
ÊÌ
iÊ`>}À>]ÊN
ÊÊN°
Ê £° &INDTHEVALUEOFX
Ê Ó° &INDTHEVALUEOFY
'EOMETRY
#HAPTER2ESOURCE"OOK
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`iÊ CONTINUED
&ORUSEWITHPAGESn
ÊÌ
iÊ`>}À>]Ê
Êʰ
Ê Î° &INDTHEVALUEOFX
Ê {° &INDTHEVALUEOFY
8*ÊÓ
1ÃiÊÌ
iÊ/
À`Ê}iÃÊ/
iÀi
`ʰ
-ÕÌ
--" Ê{°Ó
ÝiÀVÃiÃÊvÀÊÝ>«iÊÓ
`ÊÌ
iÊÛ>ÕiÊvÊݰ
x°
Ȱ
'EOMETRY
#HAPTER2ESOURCE"OOK
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
)NTHEDIAGRAM!$AND"%3OBYTHE4HIRD!NGLES4HEOREM
#&"YTHE4RIANGLE3UM4HEOREMM#zzzzzzzz
3OM#zzM&zzBYTHEDElNITIONOFCONGRUENTANGLES
Answer Key
Lesson 4.2
Study Guide
1. 3 2. 5 3. 7 4. 11 5. 65 6. 2
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`i
&ORUSEWITHPAGESn
"
1ÃiÊÌ
iÊÃ`iÊi}Ì
ÃÊÌÊ«ÀÛiÊÌÀ>}iÃÊ>ÀiÊV}ÀÕḭ
6V>LÕ>ÀÞ
0OSTULATE3IDE3IDE3IDE333#ONGRUENCE0OSTULATE)FTHREE
SIDESOFONETRIANGLEARECONGRUENTTOTHREESIDESOFASECONDTRIANGLE
THENTHETWOTRIANGLESARECONGRUENT
8*Ê£
1ÃiÊÌ
iÊ---Ê
}ÀÕiViÊ*ÃÌÕ>Ìi
*ÀÛiÊÌ
>ÌÊNÊÊN °Ê
-ÕÌ
4HEMARKSONTHEDIAGRAMSHOWTHAT
] ] ] ]
] ]
*+z-,z+,z,.zAND*,z-.z
3OBYTHE333#ONGRUENCE0OSTULATENgg*+,Ng-,.
ÝiÀVÃiÃÊvÀÊÝ>«iÊ£
iV`iÊÜ
iÌ
iÀÊÌ
iÊV}ÀÕiViÊÃÌ>ÌiiÌÊÃÊÌÀÕi°ÊÝ«>ÊÞÕÀÊ
Ài>Ã}°
Ê
Ó° Ng879Ng7:9
Ê Î° Ng234Ng654
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
£° Ng!"$Ng#$"
{° Ng&'(Ng*('
Ê Ê
--" Ê{°Î
x° Ng012Ng243
Ê
Ȱ Ng*+,Ng-0.
Ê
'EOMETRY
#HAPTER2ESOURCE"OOK
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`iÊ CONTINUED
&ORUSEWITHPAGESn
8*ÊÓ
}ÀÕiÌÊÌÀ>}iÃÊÊ>ÊVÀ`>ÌiÊ«>i
1ÃiÊÌ
iÊ---Ê
}ÀÕiViÊ*ÃÌÕ>ÌiÊÌÊÃ
ÜÊÊ
Ì
>ÌÊN
ÊÊN
°
-ÕÌ
5SETHE$ISTANCE&ORMULATOSHOWTHATCORRESPONDINGSIDESARETHESAMELENGTH
]]]
z zzzz
z
z
!"zzqzz
]
zzq zzz
zzq z
]
]]
#$zzq zzz
zzzzz
]
zzq zzz
]
zzq z
] ]
3O!"zz#$ANDHENCE!"z#$z
]]]
zzzzz
z
z
"#zzq zz
zzq zzz
zzq z
]
]
zzq zzz
]
zzq z
] ]
3O"#zz$%ANDHENCE"#z$%z
]]]
zzzzz
#!zzq zzz
]
zzq zzz
zzq z
]
]]
%#zzq zzzzzz
z
z
]]
zzq zz
z
z
]
zzq z
] ]
3O#!zz%#ANDHENCE#!z%#z
3OBYTHE333#ONGRUENCE0OSTULATEYOUKNOWTHATNg!"#Ng#$%
ÝiÀVÃiÊvÀÊÝ>«iÊÓ
Ê Ç° 0ROVETHATNg!"#Ng$%&Ê
--" Ê{°Î
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
]
]]
$%zzq zzzzzz
z
z
'EOMETRY
#HAPTER2ESOURCE"OOK
Answer Key
Lesson 4.3
Study Guide
1. Yes, the corresponding triangle sides are congruent
}
} }
}
2. No; WY À ZY, XY À WY
3. Yes, the corresponding triangle sides are congruent
4. Yes, the corresponding triangle sides are congruent
5. Yes, the corresponding triangle sides are congruent
}
} } }
}
} }
}
}
}
}
}
6. No; JK À MP, JL À MN 7. AB 5 DE 5 Ï 5 so AB > DE;
}
BC 5 EF 5 Ï 13 so BC > EF; CA 5 FD 5 2Ï5 so CA > FD; By the SSS Congruence Postulate, n ABC
> n DEF.
.AME ,%33/.
--" Ê{°{
$ATE
-ÌÕ`ÞÊÕ`i
&ORUSEWITHPAGESn
"
1ÃiÊÃ`iÃÊ>`Ê>}iÃÊÌÊ«ÀÛiÊV}ÀÕiVi°
6V>LÕ>ÀÞ
)NARIGHTTRIANGLETHESIDESADJACENTTOTHERIGHTANGLEARECALLED
THELEGS
4HESIDEOPPOSITETHERIGHTANGLEISCALLEDTHEHYPOTENUSEOFTHE
RIGHTTRIANGLE
0OSTULATE3IDE!NGLE3IDE3!3#ONGRUENCE0OSTULATE)FTWO
SIDESANDTHEINCLUDEDANGLEOFONETRIANGLEARECONGRUENTTOTWO
SIDESANDTHEINCLUDEDANGLEOFASECONDTRIANGLETHENTHETWOTRIANGLES
ARECONGRUENT
4HEOREM(YPOTENUSE,EG#ONGRUENCE4HEOREM)FTHE
HYPOTENUSEANDALEGOFARIGHTTRIANGLEARECONGRUENTTOTHE
HYPOTENUSEANDALEGOFASECONDRIGHTTRIANGLETHENTHETWOTRIANGLES
ARECONGRUENT
8*Ê£
1ÃiÊÌ
iÊ--Ê
}ÀÕiViÊ*ÃÌÕ>Ìi
*ÀÛiÊÌ
>ÌÊN
ÊÊN°
-ÕÌ
] ] ] ]
4HEMARKSONTHEDIAGRAMSHOWTHAT!"z$%z"#z%&zAND"%
3OBYTHE3!3#ONGRUENCE0OSTULATENg!"#Ng$%&
ÝiÀVÃiÃÊvÀÊÝ>«iÊ£
iV`iÊÜ
iÌ
iÀÊiÕ}
ÊvÀ>ÌÊÃÊ}ÛiÊÌÊ«ÀÛiÊÌ
>ÌÊÌ
iÊÌÀ>}iÃÊ
>ÀiÊV}ÀÕiÌÊÕÃ}ÊÌ
iÊ--Ê
}ÀÕiViÊ*ÃÌÕ>Ìi°
£° Ng014Ng213
Ó° Ng.+*N,+-
ΰ N789Ng:89
'EOMETRY
#HAPTER2ESOURCE"OOK
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`iÊ CONTINUED
&ORUSEWITHPAGESn
1ÃiÊÌ
iÊÞ«ÌiÕÃii}Ê/
iÀi
7ÀÌiÊ>Ê«Àv°
] ] ]
--" Ê{°{
8*ÊÓ
] ] ]
')6%.!"z$#z"!z>!#z#$z>$"z
02/6%Ng!"#Ng$#"
-ÕÌ
2EDRAWTHETRIANGLESSOTHEYARESIDEBYSIDE
WITHTHECORRESPONDINGPARTSINTHESAME
POSITION-ARKTHEGIVENINFORMATIONIN
THEDIAGRAM
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
3TATEMENTS
] ] ] ]
£° "!
z>!#z#$z>$"z
Ó° !AND$ARERIGHTANGLES
ΰ Ng!"#ANDNg$#"ARERIGHTTRIANGLES
] ]
( {° #"
z"#z
] ]
, x° !"
z$#z
Ȱ Ng!"#Ng$#"
2EASONS
£° 'IVEN
Ó° $ElNITIONOF>LINES
ΰ $ElNITIONOFARIGHTTRIANGLE
{° 2EmEXIVE0ROPERTYOF#ONGRUENCE
x° 'IVEN
Ȱ (,#ONGRUENCE4HEOREM
ÝiÀVÃiÃÊvÀÊÝ>«iÊÓ
7ÀÌiÊ>Ê«Àv°
]
] ] ]
{° ')6%.!"z$"z"#z>!$z
02/6%Ng!"#Ng$"#
x° ')6%. M*+,zzM-,+zz
] ]
*,z-+z
] ]
02/6%*+z-,z
'EOMETRY
#HAPTER2ESOURCE"OOK
Answer Key
Lesson 4.4
Study Guide
1. Yes; You are given that two sides and the included angle of one triangle are congruent to two sides and
the included angle of another triangle.
2. Yes; ∠ JKN and ∠ MKL are congruent because they are vertical angles. So you have two sides and the
included angle of one triangle that are congruent to two sides and the included angle of another triangle.
3. No; You have two sides in nWXY that are congruent to two sides in n ZXY, but the angle in n ZXY is not
the included angle.
4.
Statements
} }
H 1. AB > DB
} }
2. BC ⊥ AD
3. ∠ ACB and ∠ DCB
are right angles.
4. n ABC and n DCB
are right triangles.
} }
L 5. BC > BC
6. n ABC > n DBC
Reasons
1. Given
2. Given
3. Def. of ⊥ lines
4. Def. of a right
triangle
5. Reflexive Property of Congruence
6. HL Congruence Theorem
5.
Statements
1. ∠ JKL and ∠ MLK
are right angles.
2. n JKL and n MLK
are right triangles.
} }
3. JL > MK
} }
4. KL > LK
5. n JKL > n MLK
} }
6. JK > ML
Reasons
1. Given
2. Def. of a right
triangle
3. Given
4. Reflexive Property of Congruence
5. HL Congruence Theorem
6. Corresponding parts of > triangles are congruent.
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`i
&ORUSEWITHPAGESn
"
1ÃiÊÌÜÊÀiÊiÌ
`ÃÊÌÊ«ÀÛiÊV}ÀÕiVið
6V>LÕ>ÀÞ
!mOWPROOFUSESARROWSTOSHOWTHEmOWOFALOGICALARGUMENT
0OSTULATE!NGLE3IDE!NGLE!3!#ONGRUENCE0OSTULATE
)FTWOANGLESANDTHEINCLUDEDSIDEOFONETRIANGLEARECONGRUENTTOTWO
ANGLESANDTHEINCLUDEDSIDEOFASECONDTRIANGLETHENTHETWOTRIANGLES
ARECONGRUENT
8*Ê£
`iÌvÞÊV}ÀÕiÌÊÌÀ>}iÃ
>ÊÌ
iÊÌÀ>}iÃÊLiÊ«ÀÛiÊV}ÀÕiÌÊÜÌ
ÊÌ
iÊvÀ>ÌÊ}ÛiÊÊ
Ì
iÊ`>}À>¶ÊvÊÃ]ÊÃÌ>ÌiÊÌ
iÊ«ÃÌÕ>ÌiÊÀÊÌ
iÀiÊÞÕÊÜÕ`ÊÕÃi°
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
>°
L°
--" Ê{°x
4HEOREM!NGLE!NGLE3IDE!!3#ONGRUENCE4HEOREM)FTWO
ANGLESANDANONINCLUDEDSIDEOFONETRIANGLEARECONGRUENTTOTWO
ANGLESANDTHECORRESPONDINGNONINCLUDEDSIDEOFASECONDTRIANGLE
THENTHETWOTRIANGLESARECONGRUENT
V°
-ÕÌ
Ê >° 4HEVERTICALANGLESARECONGRUENTSOTHREEPAIRSOFANGLESARECONGRUENT4HERE
ISNOTENOUGHINFORMATIONTOPROVETHETRIANGLESARECONGRUENTBECAUSENOSIDES
AREKNOWNTOBECONGRUENT
Ê L° 4HEVERTICALANGLESARECONGRUENTSOTWOPAIRSOFANGLESANDTHEIRINCLUDED
SIDESARECONGRUENT4HETRIANGLESARECONGRUENTBYTHE!3!#ONGRUENCE
0OSTULATE
Ê V° 4WOPAIRSOFANGLESANDANONINCLUDEDPAIROFSIDESARECONGRUENT4HE
TRIANGLESARECONGRUENTBYTHE!!3#ONGRUENCE4HEOREM
'EOMETRY
#HAPTER2ESOURCE"OOK
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`iÊ CONTINUED
&ORUSEWITHPAGESn
ÝiÀVÃiÃÊvÀÊÝ>«iÊ£
>ÊÌ
iÊÌÀ>}iÃÊLiÊ«ÀÛiÊV}ÀÕiÌÊÜÌ
ÊÌ
iÊvÀ>ÌÊ}ÛiÊÊÌ
iÊ
`>}À>¶ÊvÊÃ]ÊÃÌ>ÌiÊÌ
iÊ«ÃÌÕ>ÌiÊÀÊÌ
iÀiÊÞÕÊÜÕ`ÊÕÃi°
8*ÊÓ
Ó°
ΰ
7ÀÌiÊ>ÊyÊÜÊ«Àv
]
]
ÊÌ
iÊ`>}À>]ÊÊÊÊ>`ÊÊ
Ê{
z{
Ê Ê°zÊ
7ÀÌiÊ>ÊyÊÜÊ«ÀvÊÌÊÃ
ÜÊN
ÊÊN
°
-ÕÌ
] ]
')6%. '"#"{
z{'!
z
02/6%Ng'#!Ng"!#
] ]
z{'!
z
#"{
"#!'!#
'IVEN
'"
!LTERNATE)NTERIOR
N'#!N"!#
'IVEN
!!3#ONGRUENCE4HEOREM
] ]
!#z!#z 2EmEXIVE0ROPERTY
ÝiÀVÃiÃÊvÀÊÝ>«iÊÓ
7ÀÌiÊ>ÊyÊÜÊ«ÀvÊÌÊÃ
ÜÊÌ
>ÌÊÌ
iÊÌÀ>}iÃÊ>ÀiÊV}ÀÕḭ
{° ')6%.013213
130132
02/6%N013N213
'EOMETRY
#HAPTER2ESOURCE"OOK
,-/*./
02/6%Ng-*.Ng.,
x° ')6%./-./.-
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
--" Ê{°x
£°
Answer Key
Lesson 4.5
Study Guide
1. The vertical angles are congruent, so two pairs of angles and their included sides are congruent. The
triangles are congruent by the ASA Congruence Postulate.
2. Two pairs of angles and a non-included pair of sides are congruent. The triangles are congruent by the
AAS Congruence Theorem.
3. Two pairs of sides and a pair of angles are congruent. This is not enough information to prove that the
triangles are congruent.
4.
5.
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`i
&ORUSEWITHPAGESn
"
8*Ê£
1ÃiÊV}ÀÕiÌÊÌÀ>}iÃÊÌÊ«ÀÛiÊVÀÀië`}Ê«>ÀÌÃÊ
V}ÀÕḭ
`iÌvÞÊV}ÀÕiÌÊÌÀ>}iÃ
Ý«>Ê
ÜÊÞÕÊV>ÊÕÃiÊÌ
iÊ}ÛiÊvÀ>ÌÊÊ
>`ÊV}ÀÕiÌÊÌÀ>}iÃÌÊ«ÀÛiÊÌ
iÊÃÌ>Ìiḭ
] ] ] ]
')6%. !"z{{$%
z!"z$%z
]
02/6% #ISTHEMIDPOINTOF"%z
-ÕÌ
)FYOUCANSHOWTHATNg!"#Ng$%#YOUWILLKNOWTHAT#ISTHEMIDPOINT
]
OF"%z&IRSTCOPYTHEDIAGRAMANDMARKTHEGIVENINFORMATION4HENADDTHE
INFORMATIONTHATYOUCANDEDUCE)NTHISCASE"%AND!$BYTHE
!LTERNATE)NTERIOR!NGLES4HEOREM
-ARKGIVENINFORMATION
!DDDEDUCEDINFORMATION
--" Ê{°È
4WOANGLEPAIRSANDTHEINCLUDEDSIDESARECONGRUENTSOBYTHE!3!#ONGRUENCE
0OSTULATENg!"#N$%#"ECAUSECORRESPONDINGPARTSOFCONGRUENTTRIANGLES
] ]
]
ARECONGRUENT"#z#%z"YTHEDElNITIONOFMIDPOINT#ISTHEMIDPOINTOF"%z
ÝiÀVÃiÃÊvÀÊÝ>«iÊ£
/iÊÜ
V
ÊÌÀ>}iÃÊÞÕÊV>ÊÃ
ÜÊ>ÀiÊV}ÀÕiÌÊÊÀ`iÀÊÌÊ«ÀÛiÊÌ
iÊ
ÃÌ>ÌiḭÊ7
>ÌÊ«ÃÌÕ>ÌiÊÀÊÌ
iÀiÊÜÕ`ÊÞÕÊÕÃi¶
] ]
£° *+z,+z
Ó° 201423
'EOMETRY
#HAPTER2ESOURCE"OOK
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`iÊ CONTINUED
&ORUSEWITHPAGESn
8*ÊÓ
*>Ê>Ê«ÀvÊÛÛ}Ê«>ÀÃÊvÊÌÀ>}iÃ
1ÃiÊÌ
iÊ}ÛiÊvÀ>ÌÊÌÊÜÀÌiÊ>Ê
«>ÊvÀÊ>Ê«Àv°
')6%.
02/6% Ng$%&Ng$#"
-ÕÌ
)NNg$%&ANDNg$#"YOUKNOW)FYOUCANSHOWTHAT%$&#$"
] ]
AND%$z#$zYOUCANUSETHE3!3#ONGRUENCE0OSTULATE
"ECAUSE%$&AND#$"AREVERTICALANGLES%$&#$"BYTHE
6ERTICAL!NGLES4HEOREM
] ]
4OPROVETHAT%$z#$zYOUCANlRSTPRIVETHATNg!%$Ng!#$9OUAREGIVEN
] ]
AND!$z!$zBYTHE2EmEXIVE0ROPERTY9OUCANUSETHE
!3!#ONGRUENCE0OSTULATETOPROVETHATNg!%$Ng!#$
ÝiÀVÃiÃÊvÀÊÝ>«iÊÓ
1ÃiÊÌ
iÊ`>}À>Ê>`ÊÌ
iÊ}ÛiÊvÀ>ÌÊÌÊÜÀÌiÊ>Ê«>Ê
vÀÊ>Ê«Àv°
] ] ] ]
] ] ]
ΰ ')6%. !"
z%"z&"z#"z
] ]
02/6% "'z"$z
]
{° ')6%.23z34z05z01z
504102
02/6%Ng045Ng021
--" Ê{°È
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
0LANFOR0ROOF 5SETHE!3!#ONGRUENCE0OSTULATETOPROVETHATNg!%$Ng!#$
] ]
4HENSTATETHAT$%z$#zBECAUSECORRESPONDINGPARTSOFCONGRUENTTRIANGLESARE
CONGRUENT5SETHE!3!#ONGRUENCE0OSTULATETOPROVETHATNg$%&Ng$#"
'EOMETRY
#HAPTER2ESOURCE"OOK
Answer Key
Lesson 4.6
Study Guide
}
}
}
}
1. If you can show that n JKM > n LKM, then you will know that JK > LK. Since KM > KM by the
reflexive property, then n JKM > n LKM by the SAS Congruence Postulate. Because corresponding parts of
} }
congruent triangles are congruent, JK > LK.
2. If you can show that n PQR > n RST, then you will know that ∠ RPQ > ∠ TRS. Because RQ i TS,
∠ PRQ > ∠ RTS by the Corresponding Angles Postulate. By the AAS Congruence Theorem, n PQR >
n RST. Because corresponding parts of congruent triangles are congruent, ∠ RPQ > ∠ TRS. 3. Use the
SAS Congruence Postulate to prove that n ABF > n EBC. Then state that ∠ AFB > ∠ ECB because they are
corresponding parts of congruent triangles. ∠ CBD and ∠ FBG are congruent because they are vertical
} }
angles. Use the ASA Congruence Postulate to prove that BG > BD.
} }
4. Use the SAS Congruence Postulate to prove that n PTS > n PRS. Then state that PT > PR because they
are corresponding parts of congruent triangles. Use the SAS Congruence Postulate to prove that n PTU >
n PRQ.
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`i
&ORUSEWITHPAGESn
"
1ÃiÊÌ
iÀiÃÊ>LÕÌÊÃÃViiÃÊ>`ÊiµÕ>ÌiÀ>ÊÌÀ>}ið
6V>LÕ>ÀÞ
7HENANISOSCELESTRIANGLEHASEXACTLYTWOCONGRUENTSIDESTHESETWO
SIDESARETHELEGS4HEANGLEFORMEDBYTHELEGSISTHEVERTEXANGLE
4HETHIRDSIDEISTHEBASEOFTHEISOSCELESTRIANGLE4HETWOANGLES
ADJACENTTOTHEBASEARECALLEDBASEANGLES
4HEOREM"ASE!NGLES4HEOREM)FTWOSIDESOFATRIANGLEARE
CONGRUENTTHENTHEANGLESOPPOSITETHEMARECONGRUENT
4HEOREM#ONVERSEOF"ASE!NGLES4HEOREM)FTWOANGLESOFA
TRIANGLEARECONGRUENTTHENTHESIDESOPPOSITETHEMARECONGRUENT
#OROLLARYTOTHE"ASE!NGLES4HEOREM)FATRIANGLEISEQUILATERAL
THENITISEQUIANGULAR
#OROLLARYTOTHE#ONVERSEOF"ASE!NGLES4HEOREM)FATRIANGLEIS
EQUIANGULARTHENITISEQUILATERAL
`iÌvÞÊV}ÀÕiÌÊ>}iÃ
]
]
ÊÌ
iÊ`>}À>]ÊÊ,/ÊzÊÊ-/ʰzÊ >iÊÌÜÊV}ÀÕiÌÊ
>}ið
-ÕÌ
] ]
24z34zSOBYTHE"ASE!NGLES4HEOREM23
8*ÊÓ
`Êi>ÃÕÀiÃÊÊ>ÊÌÀ>}i
`ÊÊ>`Ê
ÊÊÌ
iÊÌÀ>}iÊ>ÌÊÌ
iÊÀ}
̰
-ÕÌ
--" Ê{°Ç
4HEDIAGRAMSHOWSTHATNg!"#ISEQUIANGULAR4HEREFORE
BYTHE#OROLLARYTOTHE#ONVERSEOF"ASE!NGLES4HEOREM
Ng!"#ISEQUILATERAL3O!"zz"#zz!#zz
ÝiÀVÃiÃÊvÀÊÝ>«iÃÊ£Ê>`ÊÓ
1ÃiÊÌ
iÊvÀ>ÌÊÊÌ
iÊ`>}À>ÊÌÊwÊ`ÊÌ
iÊ
}ÛiÊÛ>Õið
Ê £° &IND79
Ê Ó° &INDM789
'EOMETRY
#HAPTER2ESOURCE"OOK
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
8*Ê£
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`iÊ CONTINUED
&ORUSEWITHPAGESn
8*ÊÎ
1ÃiÊÃÃViiÃÊ>`ÊiµÕ>ÌiÀ>ÊÌÀ>}iÃ
ÊÌ
iÊ`>}À>]ÊÊÊä°Ê`ÊÌ
iÊÛ>ÕiÃÊ
vÊÝÊ>`ÊÞ°
-ÕÌ
-/*Ê£
-/*ÊÓ
8*Ê{
INDTHEVALUEOFX"ECAUSEN$%'IS
&
EQUILATERALITISALSOEQUIANGULARAND
M'$%zzM$%'zzX3OBYTHE
4RIANGLE3UM4HEOREMXzz
ANDXzz
] ]
INDTHEVALUEOFY"ECAUSE'%&'&%'%z'&zBYTHE#ONVERSEOF
&
"ASE!NGLES4HEOREMSO'%zz"ECAUSENg$%'ISEQUILATERAL
$%zz$'zz'%zz"ECAUSEM$%&zzNg$%&ISARIGHTTRIANGLE
]
5SINGTHE0YTHAGOREAN4HEOREMYzzq zzzz
z
-ÛiÊ>ÊÕÌÃÌi«Ê«ÀLi
1ÃiÊÌ
iÊ`>}À>ÊÌÊ>ÃÜiÀÊÌ
iʵÕiÃÌð
Ê >° 7HATCONGRUENCEPOSTULATECANYOUUSETO
PROVETHATNg!"#Ng!%$
Ê V° 3HOWTHATNg!"$Ng!%#
-ÕÌ
]
]
]
]
Ê >° 9OUCANSEETHAT!"z!%zAND"#z%$z"YTHE"ASE!NGLES4HEOREMYOU
KNOWTHAT"%3OBYTHE3!3#ONGRUENCE0OSTULATENg!"#Ng!%$
Ê L° "ECAUSECORRESPONDINGPARTSOFCONGRUENTTRIANGLESARECONGRUENTYOU
KNOWTHAT!#"!$%ANDBYTHE#ONGRUENT3UPPLEMENTS4HEOREM
!#$!$#3OM!$#zzM!#$zzAND
M#!$zzzzzzzzANDNg!#$ISEQUIANGULAR
Ê V° &ROMPARTBYOUKNOWTHATNg!#$ISEQUIANGULAR3O!$"!#%AND
THEREFORENg!"$Ng!%#BYTHE!!3#ONGRUENCE0OSTULATE
ÝiÀVÃiÃÊvÀÊÝ>«iÃÊÎÊ>`Ê{
Ê Î° &INDTHEVALUESOFXANDYINTHEDIAGRAM
ATTHERIGHT
Ê {° )N%XAMPLEABOVESHOWTHATN!"$N!%#
--" Ê{°Ç
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
Ê L° %XPLAINWHYNg!#$ISEQUIANGULAR
USINGTHE333#ONGRUENCE0OSTULATE
'EOMETRY
#HAPTER2ESOURCE"OOK
Answer Key
Lesson 4.7
Study Guide
1. 6 2. 608 3. x 5 75; y 5 21
4. From part (b) you know that n ACD is equiangular. By the Corollary to the Converse of Base Angles
} }
} }
}
Theorem, n ACD is equilateral, and AD > AC. Because BC > ED, then BC 1 CD 5 ED 1 DC, and BD 5
}
EC. Therefore, n ABD > n AEC by the SSS Congruence Postulate.