Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
بسم هللا الرحمن الرحيم سبحان هللا و بحمده سبحان هللا العظيم • 2.2 Identifying functions Linear function f(x)=m x+ c ; m is the slope c is the y-intercept A constant functions has slope m=0 ;f(x)=c (0,c) f(x)=y=c (0,c) Polynomial functions P (x ) an x n an 1 x n 1 an 2 x n 2 ........... a1 x a0 where n is Integer and n> 0 a , a , a , ..a , a the coefficients of polynomial The domain of any polynomial is Dp =Re If an 0 the degree of the polynomial is n n n 1 n 2 1 0 Polynomial functions Degre? Domain? Degree 3 Degree 4 Degree5 Degree 6 Power Functions a a is constant f (x ) x Integers Rational Domain? a>0 a <0 Power Functions a is constant a is Rational Algebraic Functions polynomial using algebraic operations ( , , , /) a ) f (x ) (x 5) x 2 9 3x 3 b )g (x ) 5 x 2 (2 x 7) x 5x 3 2 c ) h (x ) x (3 x ) 3 x x Rational Functions ratio of two polynomials f (x ) Domain? q (x ) 0 g (x ) x 3 x 2 1 p (x ) , q (x ) 0 q (x ) Notice: All rational functions are special cases of algebraic functions functions Algebraic Transcendental Algebraic Functions Linear Polynomial Power Functions Rational Transcendental Functions Trigonometric f (x ) sin(x ) , h (x ) cos(x ) Exponential g (x ) a x Logarithmic f (x ) loga x Trigonometric Functions f (x ) sin(x ) , h (x ) cos(x ) Exponential g (x ) a x , a0 Logarithmic functions The domain is (0,∞), the range is (-∞,∞) the function increases slowly when x>1 f (x ) loga x , a 1, a 0 Transcendental Functions The set of transcendental Functions includes the • Trigonometric • Inverse trigonometric • Exponential • Logarithmic • Many other functions as well Definitions 2.2.1:Increasing function Let y=f(x) defined on an interval and x 1 , x 2 Increasing on if x 1 x 2 f (x 1 ) f (x 2 ) f (x ) x 2 , x (0, ) Definitions 2.2.1:Decreasing function Let y=f(x) defined on an interval and x 1 , x 2 Decreasing on if x 1 x 2 f (x 1 ) f (x 2 ) f (x ) x 2 , x (,0) Even functions and Odd functions Even Odd f (x ) f (x ) x D f f (x ) f (x ) x D f Even functions and Odd functions Even Odd Graph is symmetric about y-axis f (x ) f (x ) x D f Graph is symmetric about Origin f (x ) f (x ) x D f The domain must be symmetric Example 2 Example: Recognize the even and odd function a ) f (x ) x 4 x 2 b ) g (x ) x 5 x 3 3x x 2 1 c ) h (x ) 3 x 1 d ) f (x ) x 5 x 3 3x 7 • تعلمت أن المعرفة لم تعد قوة في عصر السرعة واإلنترنت والكمبيوتر ،إنما تطبيق المعرفة هو القوة . • تعلمت أن الذين لديهم الجرأة على مواجهة الفشل ،هم الذين يقهرون الصعاب وينجحون . • تعلمت أن المتسلق الجيد يركز على هدفه وال ينظر إلى األسفل ،حيث المخاطر التي تشتت الذهن