Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
The Thyroid Thyroid hormones Two hormones • Tri-iodothyronine (T3) • Tetra-iodothyronine (T4) = thyroxine I HO I O CH2-CH(NH2)-COOH I I N.B. Reverse T3 SYNTHESIS OF THYROID HORMONES: STEP 1 - IODINATION TYROSINE TYROSINE IODINATION MONOIODOTYROSINE (MIT) THYROGLOBULIN I THYROGLOBULIN Tyr Approximately 10% of the tyrosine residues on the 550 amino acid residue Thyroglobulin molecule may become iodinated by the enzyme - thyroid peroxidase acting on the colloid at the luminal surface of the thyroid follicle. These reactions only occur in the thyroid at specific residues in “Hormonogenic” sites located at the extreme ends of the Thyroglobulin molecule. TYROSINE IODINATION I DIIODOTYROSINE (DIT) - Tyr NH2 I THYROGLOBULIN SYNTHESIS OF THYROID HORMONES: STEP- 2 COUPLING OF IODOTYROSINES I HO I CH2CHCOOH Tyr I HO 5’ + HO Tyr CH2CHCOOH HO I Tyr O Tyr 3 T4 I Thyroglobulin Thyroglobulin 5 3’ NH2 NH2 I II I 3,5,3’5’-tetraiodothyronine I Coupling of iodotyrosine moities results in the loss of the peptide linkage to thyroglobulin allowing thyroid hormones to diffuse across the cell membrane 3,5,3’-Triiodothyronine I Tyr HO CH2CHCOOH + Tyr CH2CHCOOH NH2 NH2 HO Tyr O Tyr I I Thyroglobulin Thyroglobulin I T3 I 3,5,3’5’-tetraiodothyronine STEP 3 DEIODINATION I I O Tyr CH2CHCOOH Tyr NH2 “DEACTIVATION” PATHWAY I T4 I 5’- deiodination 5-deiodination rT3 I Tyr O “ACTIVATION” PATHWAY SELENODEIODINASES I T3 I Tyr CH2CHCOOH Tyr I O Tyr NH2 I 3,3’,5’-Triiodothyronine (reverse T3) CH2CHCOOH NH2 I 3,5,3’-Triiodothyronine (T3) SECRETION OF THYROID HORMONE 4 IODINATION OF THYROGLOBULIN BY THYROID PEROXIDASE TG 3 TG TG I ENDOCYTOSIS OF ‘COLLOID’ IN FOLLICLE BY PSEUDOPOD 5 FUSION OF PHAGOSOME WITH LYSOSOMES TG DEGRADATION AND RECYCLING OF MIT/DIT BY DEIODINASES 6 TG DEGRADATION OF THYROGLOBULIN 7 T4 2 FREE THYROXINE RELEASED FROM PROTEIN INTO CYTOPLASM 8 IODIDE UPTAKE BY Na/I SYMPORTER “DIFFUSION” OF THYROXINE THROUGH CELL MEMBRANE T4> > > T3 1 IODIDE IN ECF~20nM Additional metabolism?? I HO I CH2CH-COOH CH2CH-COOH HO NH2 3-Monoiodotyrosine (MIT) I NH2 3,5-Diiodotyrosine (DIT) Figure 2. Structures of MIT and DIT. Precursors that when coupled together form thyroid hormones DIT + DIT = T4 MIT + DIT = T3 IODINE Trace element Thyroid gland concentrates iodine – contains 90% of body pool Iodine transported and taken up as iodide ion I I O HO 5-deiodinase NH2 I I 3,5,3',5'-Tetraiodothyronine (T4) most abundant form Peripheral target tissue O HO CH2CH-COOH I I Inactivation in fasting adult CH2CH-COOH NH2 I 3,3',5'-Triiodothyronine (reverse) (rT3) inactive form I I 5'-deiodinase HO Activation in fed adult O CH2CH-COOH NH2 I 3,5,5'-Triiodothyronine (T3) most potent form Figure 1. Chemistry and interconversions of the thyroid hormones Figure 3. Iodine metabolism in the thyroid follicle and its stimulation by TSH Extracellular Space (COLLOID) MITMIT Tyr DIT Tyr DIT MIT Tgb DIT Tgb DIT DITMIT Coupling Iodination + Oxidation/H2O2 I IPeroxidase * * THYROID FOLLICULAR CELL Tyr Tgb Peroxidase Tgb Peroxidase In Golgi Peroxidase Peroxidase * Secreted to Colloid Tyr mRNA O2 + H+ NADP+ NADPH Lysosomes Secondary Lysosomes Mitochondrion Tyrosine + other Thyroid-specific amino acids deiodinase Na+ Deiodination Symport Concentration Na+ * I- Tgb H2O2 Protein synthesis I- T3 MIT DIT DIT MIT Tgb T4 DIT T4 DIT * K+ ProteaseHydrolysis MIT DIT Diffusion T4,T3 Na+/K+- Na+ ATPase Extracellular Space (BLOOD SIDE) T4,T3 Release Tgb PKA Tgb Increased cell growth cAMP Adenylyl cyclase TSH Receptor LATS/TSI TSH TSH TRH Secretion T4 T3 Hypothalamus TRH TRH sensitivity to TRH TSH T4 T3 Thyrotroph (via IP3/Ca2+ FSH and DAG) LH TSH hCG Thyroid TSH FSH Pituitary LH CG Placenta ATP Adenylyl cAMP PKA activation Cyclase PROTEIN PHOSPHORYLATION T4 Secretion of Thyroid Hormone Figure 4. The TRH-TSH- T4 axis Cell Growth THYROID HORMONES HORMONE T4 T3 rT3 * RELATIVE POTENCY + ++++ - PRODUCTION PLASMA CONCENTRATION (µg/day) (µg/dL) 80- 90 8 4-8 (24)* 2-3 (27) * BOUND TO PLASMA PROTEINS (%) 99.95 t½ (days) 6-7 0.3 99.7 1-3 0.04 99.8 0.1 VALUES IN PARENTHESES INDICATE PERIPHERAL CONVERSION Mechanism of thyroid hormone action T4 T3 plasma membrane T4 T3 nucleus mito. M . ito. ? Response R T3 DNA mRNA Circulating T4 - bound to TBG or TBPA deiodination T3 5' deiodinase T4 RXR T3 Nucleus RXR TT33 receptor RXR T33 RXR T New Proteins (enzymes) Trans lation G3PDH Na+,K+ATPase RNA Pol Response Induced element gene mRNA Transcription Temp homeostasis: heat generation from ATP used by Na,KATPase in liver and other tissues O2 consumption Mitochondria Thyroid Target Cell (e.g., pituitary/brain, liver, muscle, heart) Figure 5. Action of the thyroid hormones O2 Other effects of T3: brain development, myelination Growth (GH transcribed in somatotrope; induction of anabolic enzymes) TSH in thyrotrope (repressive pituitary effect) 1-adrenergic receptor Transport of thyroid hormones thyroid T3/T4 blood free Bound >99% target tissues response inactivation Table 2. A Summary of the Various Etiologies of Goiters. Hyperthyroid* excess T4 Hypothyroid** insufficient T4 TRH (tumor) Nutritional iodine deficiency (TSH from feedback break) TSH (tumor) Defective thyroid: i) iodide uptake ii) peroxidase iii) deiodinase (TSH from feedback break) TSI/LATS (autoimmune activator of the TSH receptor) Hashimoto’s Thyroiditis (autoimmune destruction of the thyroid) (TSH from feedback break)