Download MTH 113 test 1 practice summer 2013.tst

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
MTH 113 Practice Problems for Test 1
Sections 4.1-4.8
The given angle is in standard position. Determine the
quadrant in which the angle lies.
1) 139°
Find a positive angle less than 360° that is coterminal with
the given angle.
15) -234°
2) -52°
16) -1335°
3) -342°
Classify the angle as acute, right, obtuse, or straight.
4) 7.64°
5)
π
2
17)
5π
2
18)
10π
3
Find the length of the arc on a circle of radius r
intercepted by a central angle θ. Round answer to two
decimal places.
19) r = 50 inches, θ = 20°
6) 114°
Find the radian measure of the central angle of a circle of
radius r that intercepts an arc of length s.
1
7) r = feet, s = 7 feet
3
Solve the problem.
20) The minute hand of a clock is 4 inches long.
How far does the tip of the minute hand move
in 15 minutes? If necessary, round the answer
to two decimal places.
8) r = 1 meter, s = 200 centimeters
21) A car wheel has a 16-inch radius. Through
what angle (to the nearest tenth of a degree)
does the wheel turn when the car rolls forward
3 ft?
Convert the angle in degrees to radians. Express answer as
a multiple of π.
9) 54°
10) - 480°
The point P on the unit circle that corresponds to a real
number t is given. Find the values of the indicated
trigonometric function at t.
77
2
Find tan t.
22) , 9
9
Convert the angle in radians to degrees.
π
11) - 5
12) - 35
π
9
Convert the angle in degrees to radians. Round to two
decimal places.
13) 194°
23)
55
3
, 8
8
Find sin t.
24)
7 3
, 4 4
Find sec t.
Find the reference angle for the given angle.
25) 436°
Convert the angle in radians to degrees. Round to two
decimal places.
14) -2.54 radians
26) 62°
1
27) -229°
28) - 29) - 30)
31)
13π
12
3π
4
5π
4
29π
3
14π
3
43) cot 17π
4
44) cos 35π
6
45) tan -7π
4
46) csc 960°
Use your unit circle knowledge and reference angles to
find the exact value of the expression.
π
32) sec 6
33) sin 42) cos 47) cot -29π
6
Use a calculator to find the value of the trigonometric
function to four decimal places.
48) sin 0.4
-2π
3
49) tan 3.9
π
34) cos 3
50) cos 2π
7
7π
6
51) cot 0.1975
36) cot 3π
2
52) sec 37) sec π
4
35) tan Two sides of a right triangle ABC (C is the right angle) are
given. Find the indicated trigonometric function of the
given angle. Give an exact answer with a rational
denominator.
53)
π
38) sin (- )
6
39) cot - π
10
π
6
2
5
40) sin (-120°)
Find sin θ.
41) cos 5π
4
2
54)
Graph the function.
65) y = 2 sin 2x
y
2
3
9
Find csc θ.
-2π
Solve the problem.
55) A radio transmission tower is 250 feet tall.
How long should a guy wire be if it is to be
attached 10 feet from the top and is to make an
angle of 22° with the ground? Give your
answer to the nearest tenth of a foot.
-π
π
2π
x
-3
66) y = 2 sin (2x - π)
56) What is the domain of the cosine function?
Write your answer in interval notation.
y
3
57) What is the range of the cosine function? Write
your answer in interval notation.
-π
Find the exact value of the indicated trigonometric
function of θ.
9
58) sec θ = , θ in quadrant IV
Find tan θ.
2
8
59) tan θ = - , θ in quadrant II
3
-π
2
π
2
π
π
4
π
2
x
-3
Find cos θ.
67) y = 3 cos (4x - π)
y
15 3π
< θ < 2π
60) cos θ = , 2
17
Find cot θ.
3
Determine the amplitude and the period..
1
61) y = 4 sin x
3
-π
2
-π
4
-3
7
8π
62) y = cos x
8
5
Determine the phase shift of the function.
1
63) y = sin (4x + π)
4
π
64) y = 2 sin (x - )
4
3
x
Use a vertical shift to graph the function.
1
68) y = 2 cos x + 2
2
71) y = 2 sec x + π
2
y
8
6
6
y
4
4
2
2
-2π
-π
-π
π
2π
-2
π
x
-4
x
-6
-2
-8
-4
-6
Find the exact value of the expression.
3
72) sin-1 2
Graph the function.
69) y = tan x
73) sin-1 1
y
2
2
74) cos-1 - 2
1
75) cos-1 (-1)
π
2
-π
2
-π
π
3π
2
2π
5π
2
3π
x
76) cos-1 -1
3
2
-2
77) tan-1 1
78) tan-1 0
70) y = cot x
y
Use a calculator to find the value of the expression
rounded to two decimal places.
79) tan-1 (-1.8)
2
1
-π
π
2
-π
2
π
3π
2
2π
5π
2
3π
1
80) cos-1 - 3
x
-1
81) sin-1 -2
4
5
3
Find the exact value of the expression, if possible. Do not
use a calculator.
6π
82) sin-1 sin 7
6π
83) tan-1 tan 7
Use a sketch to find the exact value of the expression.
3
84) cos sin-1 5
5
85) cos tan-1 8
5
Answer Key
Testname: MTH 113 TEST 1 PRACTICE SUMMER 2013
1)
2)
3)
4)
5)
6)
7)
8)
Quadrant II
Quadrant IV
Quadrant I
acute
right
obtuse
21 radians
2 radians
3π
9)
radians
10
10) - 34)
35) 3
36) 0
37) 2
1
38) - 2
39) - 3
3
40) - 2
8π
radians
3
2
2
41) -
11) -36°
12) -700°
13) 3.39 radians
14) -145.53°
15) 126°
16) 105°
π
17)
2
18)
1
2
42) - 1
2
43) 1
3
2
44)
45) 1
46) - 4π
3
2 3
3
47) 3
48) 0.3894
49) 0.9474
50) 0.6235
51) 4.9973
52) 1.0515
19) 17.45 inches
20) 6.28 inches
21) 128.9°
77
22)
2
23)
55
8
53) sin θ = 2 29
29
24)
4 7
7
54) csc θ = 85
9
25) 76°
26) 62°
27) 49°
π
28)
12
55) 640.7 feet
56) (-∞, ∞)
57) [-1 to 1]
77
58) - 2
29)
π
4
59) - 30)
π
4
3 73
73
60) - 31)
π
3
15
8
32)
2 3
3
33) - 61) amplitude is 4
period is 6π
7
62) amplitude is 8
3
2
period is 6
5
4
Answer Key
Testname: MTH 113 TEST 1 PRACTICE SUMMER 2013
63)
64)
π
units to the left
4
68)
6
π
units to the right
4
y
4
65)
2
y
-2π
3
-π
π
2π
x
-2
-4
-2π
-π
π
2π
x
-6
69)
y
-3
2
66)
1
y
3
-π
-π
2
π
2
π
3π
2
2π
5π
2
3π
π
2
π
3π
2
2π
5π
2
3π
x
-1
-π
-π
2
π
2
π
x
-2
70)
-3
y
2
67)
y
1
3
-π
-π
2
-1
-π
2
-π
4
π
4
π
2
x
-2
-3
7
x
Answer Key
Testname: MTH 113 TEST 1 PRACTICE SUMMER 2013
71)
y
8
6
4
2
-2π
-π
-2
π
2π
x
-4
-6
-8
72)
π
3
73)
π
2
74)
3π
4
75) π
π
76)
6
77)
π
4
78) 0
79) -1.06
80) 1.91
81) 0.84
π
82)
7
83) - π
7
84)
4
5
85)
8 89
89
8