Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
HEAT TRANSFER OPERATION MIDTERM NOTE I. LAW OF HEAT TRANSFER: 1. Fundamental law: Define: ALWAYS HAVE TO SATISFY, REGARDLESS OF SITUATION. (Xài lúc nào cΕ©ng Δúng) a. Types of system consider: _ Closed system: + Fix amount of matter (π‘ππ‘ππ πππππ = ππππ π‘πππ‘) + No mass flows across the system boundaries (πππ π = ππππ π‘πππ‘) + Energy flow may occur across the boundaries (exchange heat, work to surrounding) + The boundaries may change with time (π πβππππ) _Open System - Control Volume + Volume of fixed size containing matter + Mass flows across the system boundaries (πππ π πβππππ) + Energy flow occur across the boundaries + The boundaries may change with time b. Law of Conservation of Mass: _For closed system : πππ π = ππππ π‘πππ‘ (vô TH này thì mass trΖ°α»c = mass sau) _ Fluid flow through a control volume: πππ‘π πππ π ππ β πππ‘π πππ π ππ’π‘ β πππ π πππ’ππ’πππ‘ππππ π¦π π‘ππ = 0 With: πππ‘π πππ π = ππ ππ ππ₯ =π = πππ΄ = ππ΄π£ (1 β π·ππππ πππ, π ππππ π΄) ππ‘ ππ‘ ππ‘ πππ‘π πππ π ππ = β¬ ππ£ππ ππ΄ππ (πππ‘πππππππ‘ππ ππππ£π πππ βπππ π π’πππππ) ππππ‘πππ π π’πππππ πππ‘π πππ π ππ = β¬ππππ‘πππ π π’πππππ ππ£ππ’π‘ ππ΄ππ’π‘ πππ π πππ’ππ’πππ‘ππππ π¦π π‘ππ = π β πππ ππ‘ πΆπππ‘πππ π£πππ’ππ Equation (1) β¬ ππ£ππ ππ΄ππ β β¬ ππππ‘πππ π π’πππππ ππ£ππ’π‘ ππ΄ππ’π‘ = ππππ‘πππ π π’πππππ π {β πππ } ππ‘ πΆπππ‘πππ π£πππ’ππ (Description : Rate of mass tαΊ‘i 1 Δiα»m là ππ΄π£ vói v theo phΖ°Ζ‘ng x, do xét trong hα» vαΊt diα»n tich cα» Δα»nh, Rate of mass trên cαΊ£ mαΊ·t của vαΊt thì lαΊ₯y nguyên hàm 2 phΖ°Ζ‘ng y, z. TΖ°Ζ‘ng tα»± vα»i mass accumulation nαΊΏu V Δα»i theo 3 phΖ°Ζ‘ng thì ta nguyên hàm theo 3 phΖ°Ζ‘ng Δêr có Δα»₯owc tα»ng thay Δα»i của V) Types of fluids Steady state (No accumulation) Compressible fluid Non-steady state β¬ ππ£ππ ππ΄ππ = β¬ ππ£ππ’π‘ ππ΄ππ’π‘ πΆ.π Incompressible fluid (π = ππππ π‘) πΆ.π β¬ π£ππ ππ΄ππ = β¬ π£ππ’π‘ ππ΄ππ’π‘ πΆ.π Equation (1) Equation (1) πΆ.π _In 1 dimensional : Remove term rate mass out of the integrate (Do A không Δα»i theo phΖ°Ζ‘ng y,z; A tαΊ‘i Δiα»m vào và ra của mass là hαΊ±ng sα») Types of fluids Steady state (No accumulation) πππ π£ππ π΄ππ = πππ’π‘ π£ππ’π‘ π΄ππ’π‘ Compressible fluid π£ππ π΄ππ = π£ππ’π‘ π΄ππ’π‘ Incompressible fluid (π = ππππ π‘) Non-steady state πππ π£ππ π΄ππ β πππ’π‘ π£ππ’π‘ π΄ππ’π‘ = πππ’ππ’πππ‘π π£ππ π΄ππ β π£ππ’π‘ π΄ππ’π‘ = πππ’ππ’πππ‘π c. Newtonβs Second law of motion: _For close system: β πΉβ = π ππ‘ (ππ£β) (πππππ€ π‘βπ ππππππ‘πππ π¦ππ’ πβππ π) _Fluid flow through a control volume: ππ’π πππππ = πππ‘π ππ ππππππ‘ ππ’π‘ β πππ‘π ππ ππππππ‘ ππ + π΄ππ’ππ’πππ‘π With: πππ‘π ππππππ‘π’π = ππΉ ππ ππ₯ = π£β = π£βπππ΄ = π£βππ΄π£π (1 β π·ππππ πππ, π ππππ π΄) ππ‘ ππ‘ ππ‘ n n π£β: π£ππππππ‘π¦ ππ π£πππ‘ππ (ππππππ‘πππ π’π π πβππ π) πββ βΆ ππππ‘ππ ππππππ π‘π π‘βπ π π’πππππ v in π£π = |π£||π|πππ π _Fluid flow through in 1 direction: β πΉπ₯ = β β¬ π£π₯ ππ£π ππ΄ππ + β¬ π£π₯ ππ£π ππ΄ππ’π‘ + πΆπ πΆπ π {β ππ£π₯ ππ } ππ‘ πΆπ (π£π là tích vector có phΖ°Ζ‘ng của vector vαΊn tα»c, và vector vuông góc vα»i mαΊ·t phαΊ³ng vαΊt, trong slide cth chung là π£. π thì tích có hΖ°α»ng này sαΊ½ âm nαΊΏu v và n ngược chiα»u lúc Δi vào) d. 1st Law of Thermodynamics: _For closed system: πΏπ πΏπ‘ β πΏπ πΏπ‘ = πΏπΈ πΏπ‘ Usually no work involve: Heat change equal energy change: πΏπ πΏπΈ = πΏπ‘ πΏπ‘ 2. Subsidiary law: a. Fourierβs law of heat conduction: π ππ = βπΎ π΄ ππ π π π: βπππ‘ πππ‘π (π ππ π½/π ), : π»πππ‘ πππ’π₯ (π/π2 ), πΎ: πβπππππ πππππ’ππ‘ππ£ππ‘π¦ ( ) π΄ π. πΎ ππ : ππππππππ‘π’ππ ππππππππ‘ ππ ππππππππ‘π ππ _If K constant: isotropic material _One dimension, steady state situation: +Infinite slab: π ππ» β ππΆ =πΎ π΄ π ππ» /ππΆ βΆ π‘πππ ππ‘ βππ‘/ππππ π πππ, π: π‘βπππ πππ π ππ π‘βπ π€πππ/π πππ (π) v out π ππ‘ ππππ‘πππ πππππ‘ πππ π‘ππππ π₯ ππππ βππ‘ ππππ: ππ» β π π₯ = ππ» β ππΆ π +Infinite long hollow cylinder ππ (ππ ): πππππ’π ππ’π‘π πππ(πππ πππ), πΏ: ππππβ ππ π‘βπ ππ¦ππππππ ππ (ππ ): π‘πππππππ‘π’ππ ππ’π‘π πππ(πππ πππ) ππ ππ π π ππ π ππ π ππ = = βπΎ β β« = βπΎ β« ππ β ππ ( ) = βπΎ(ππ β ππ ) π΄ 2πππΏ ππ 2ππΏ π 2ππΏ ππ ππ ππ βπ=β 2ππΎπΏ(ππ β ππ ) π ππ (ππ ) π π ππ‘ ππππ‘πππ π βΆ π β ππ ππ(π/ππ ) = ππ β ππ ππ(ππ /ππ ) _At not steady state: Coordinate Cartesian (slab) Cylindrical Sphere x π₯=π₯ ππ ππ β = ππ ππ₯ π₯ = π πππ π = π β ππ₯ = ππ ππ ππ β = ππ₯ ππ (radial heat transfer) y π¦=π¦ ππ ππ β = ππ ππ¦ z π§=π§ ππ ππ β = ππ ππ§ π¦ = π π πππ = ππ β ππ¦ = πππ ππ 1 ππ β = ππ¦ π ππ π§=π§ ππ ππ β = ππ ππ§ π΄π‘ π ππππ π: π πππ β π, πππ π β 1 π¦ = π π ππ π π πππ = πππ π₯ = π π ππ π πππ π = ππ β ππ¦ = ππ ππ β ππ₯ = πππ ππ 1 ππ ππ 1 ππ β = β = ππ¦ ππ ππ ππ₯ π ππ b. Newtonβs law of cooling : π = β(ππ β ππ ) π΄ π§ = π πππ π = π ππ ππ β = ππ§ ππ ππ : π»πππ‘ ππ ππππππ‘, ππ : βπππ‘ ππ πππ’ππ, β: π»πππ‘ π‘ππππ πππ πππππππππππ‘ ( π ) π2 πΎ c. Stefan-Boltzmann Law: π = ππ 4 π΄ π π΅π‘π’ π = 5.67 × 10β8 ( 2 4 ) = 1.7134 ( ) : ππ‘ππππ β π΅πππ‘π§πππ ππππ π‘πππ‘ π πΎ β. ππ‘ 2 β4 d. Thermal resistance: (nhiα»t trα», na ná Δiα»n trα») Infinite slab Thermal resistance (ππ‘β ) Infinite hollow Cylinder ππ(ππ /ππ ) 2ππ πΎπΏ π πΎπ΄ Surface of liquid 1 βπ΄ If the wall have only 1 way to transfer heat (many layers wall): similar to resistance put in series: ππ‘β,π‘ππ‘ππ = β ππ‘β If the wall have more than 1 way to transfer heat similar to resistance put in parallel: (Ex: The wall have 1 nail stick through its, heat can transfer in two paths: Through nail or through wall) 1 ππ‘β,π‘ππ‘ππ =β 1 ππ‘β,πππ‘β π (1 πππ‘β πππ¦ βππ£π ππππ¦ πππ ππ π‘ππππ ππ π πππππ ) We can calculate the resistance of the path to find temperature of cold side knowing hot side and heat rate: π= βπ ππ‘β,π‘ππ‘ππ Ex: Calculate the temp at intersection of 2, 3 layers in 3 layers wall ππ‘β,π‘ππ‘ππ = π1 + π2 Z1 Z2 Z3 Or if do not have A we can call calculate: Overall heat transfer coefficient π = π΄ππ‘β,π‘ππ‘ππ II. The Differential Equation of Heat Conduction: There are several step to derive equation of heat conduction as problem give: Step 1: Chose the shape: _Slab with 3D: (x,y,z) π ππ π ππ π ππ ππ (πΎ. ) + (πΎ. ) + (πΎ. ) + πΜ = ππΆπ ππ₯ ππ₯ ππ¦ ππ¦ ππ§ ππ§ ππ‘ With: πΆπ (π½/πΎπ. πΎ): π πππππππ βπππ‘ πππππππ‘π¦ π πΜ ( 3 ) : βπππ‘ πππππππ‘πππ π _ 3D cylindrical coordinate system: (π, π, π§) 1π ππ 1 π ππ π ππ ππ (πΎ. π ) + 2 (πΎ. ) + (πΎ. ) + πΜ = ππΆπ π ππ ππ π ππ ππ ππ§ ππ§ ππ‘ _3D spherical coordinate system (π, π, π) 1π π(ππ) 1 π ππ 1 π ππ ππ (πΎ. )+ 2 (πΎ. π πππ ) + 2 2 (πΎ. ) + πΜ = ππΆπ π ππ ππ π π πππ ππ ππ π π ππ π ππ ππ ππ‘ Step 2: Chose the condition: (more than 1 usually applied) Condition K Constant Absence of heat generation Meaning Ex: in 3D slab π ππ π ππ π ππ (πΎ. ) + (πΎ. ) + (πΎ. ) ππ₯ ππ₯ ππ¦ ππ¦ ππ§ ππ§ π ππ π ππ π ππ = πΎ{ ( )+ ( ) + ( )} ππ₯ ππ₯ ππ¦ ππ¦ ππ§ ππ§ 2 = πΎβ π πΜ = 0 Equation change πΜ 1 ππ β2 π + = πΎ πΌ ππ‘ With πΎ πΌ= ; π‘βπππππ πππππ’π ππ‘π¦ ππΆπ (π2 /π ) Steady state In 1 direction ππ =0 ππ‘ Ex: 3D cylindrical: Assume temperature change only on r coordinate (radial heat transfer) ππ ππ = =0 ππ ππ§ With (π’π£)β² = π’β²π£ + π’π£β² In (*) π : ππ πππππππππ‘ππ π€ππ‘β π, ππ Step 3: find π» πππ Into equation in I.2.b (πΎβ2 π = 0) 1π ππ πΜ 1 ππ (π ) + = π ππ ππ πΎ πΌ ππ‘ 1 ππ π 2π β ( + π 2 ) + β― (β) π ππ ππ ππ πππ π ππ ππ’πππ‘πππ ππ π ππ ππ» ππ ππ πππππππ ππ ππππ πππ ππππ πππππ βΆ Ex: for 1D slab (condition 4), steady state (condition 2) and K constant (condition 1) General equation become: π 2 π πΜ π 2π πΜ + = 0 β = β ππ₯ 2 πΎ ππ₯ 2 πΎ β ππ πΜ = β π₯ + πΆ1 ππ₯ πΎ β π(π₯) = β πΜ π₯ 2 + πΆ1 π₯ + πΆ2 πΎ 2 Ex: for 1D hollow cylinder (condition 4), steady state (condition 2) and K constant (condition 1) 1π ππ πΜ 1 ππ π 2π πΜ (πΎ. π ) + = 0 β ( + π 2 ) + = 0 π ππ ππ πΎ π ππ ππ πΎ 1 ππ π 2 π πΜ β + 2 =β π ππ ππ πΎ β βπ ππ π 2π πΜ + π 2 = β π (ππ’ππ‘ππππ¦ π πππ πππβ π πππ) ππ ππ πΎ ππ πΜ π 2 ππ πΜ π πΜ π 2 =β (πππ‘πππππ 2 π πππ) β =β β π(π) = β + πΆ1 ππ πΎ 2 ππ πΎ2 πΎ 4 Step 4: Find boundary condition for solving C1 and C2 (normally maximum 2 is require): Boundary condition Temperature of surface is maintain at ππ π’π (π₯ = π, π = ππ ) Knowing heat flux (q/A) at surface (π₯ = π, π = ππ ) Special case for heat Insulation surface flux Thermal symmetry (Heat flow in/out from 2 side to center) Convection Boundary Condition (Have fluid flow to cool/heat surface with temperature ππ and h) π(π) = ππ π’π (ππ π’π is a number, position of surface depend on how you put the origin and coordinate) ππ π/π΄ = ( ) ππ₯ π₯=π ππ ( ) =0 ππ₯ π₯=π ππ ( ) =0 ππ₯ π₯=π/2 (b is the thickness of wall, if chose x =0 at center change the x=b/2 by x=0) ππ βπΎ ( ) = ββ(ππ β ππ₯=π ) ππ₯ π₯=π Step 5: Put C1 and C2 to equation. (TO SEE HOLD SOLVING CAN SEE TAKE HOME PRACTICE) III. Unsteady State Heat Conduction: 1. Some dimension for use: π΅πππ‘ ππ’ππππ: π΅π = βπΏ (π ππ‘ππ ππ ππ‘β ππ π ππππ πππ ππ‘β ππ π π’πππππ) πΎ πΉππ’ππππ ππ’ππππ: π = πΌ= πΌπ‘ πΎπ‘ = (ππππππ ππππππ π ππ π‘πππ) πΏ2 ππΆπ πΏ2 πΎ ; π‘βπππππ πππππ’π ππ‘π¦ (π2 /π ) ππΆπ 1 π΅πππ‘ π₯ π ππππ‘ππ£π πππ ππ‘πππ: π = πΏ π ππππ‘ππ£π πππ ππ π‘ππππ: π = Shape Infinite slab Infinite slab 1 side insulate L (Characteristic dimension) Thickness (b) divide by 2 (b/2) Treat as infinite slab with thickness: 2b (double thickness of original slab) cal equal b Radius (r) π πΏ= π΄π π’π Infinite cylinder/sphere Other shape 2. Way to solve: Step 1: Define the shape: infinite slab, infinite cylinder, sphere, or cubic,β¦ If not find K, you can look for the material and find in Appendix H. Step 2: Define the shape in component infinite slab and infinite cylinder: Shape Finite cylinder Box (cubic) Component Infinite of cylinder and infinite slab 3 infinite slabs different (same) thickness Step 3: Calculate Biot Number: (if more than 1 component Cal for each component) _If π΅π < 0.1: Neglect internal temperature gradient βπ΄π‘ π β ππ π β = = π ππΆπ π = π βπ΅π×π ππ ππ β ππ _ If π΅π > 0.1: π Step 4: Define π ππ that shape: π 3 π π πΈπ₯: ( ) = [( ) ] ππ ππ’πππ ππ πππππππ‘π π πππ π Step 5: Calculate Biot, Fourier, m, n for each component and find for π in Appendix F: π If there are no line near with youβre calculate m: Ex: m = 0.6, but in chart only have 0.5 and 0.75: π π π π You can find π for 0.5 and 0.75, assume m and π are linear: π = ππ + π ππ And use 2 point at 0.5 and 0.75 you are found to calculate a and b π Step 6: Found the π of the shape and calculate T π ο· There are some problem like give you T and make you find t: π Step 1: You will calculate π of the shape and write it component: π Ex: π π π ( ) =( ) ( ) ππ ππ ππ¦π ππ ππππ ππ¦π ππ ππππ π πππ Step 2: Then you calculate the Fourier number of component through time: Ex:πππππ π πππ = π × π‘, πππππ ππ¦π = π × π‘ Step 3: Then you will guess :)))))) any relation you want: (CHOSE ONLY 1 COMPONENT) Ex π π π π ( ) = β( ) ππ ( ) = 1/2 ( ) ππ ππππ ππ¦π ππ ππ ππ¦π ππ ππππ ππ¦π ππ ππ ππ¦π (πππ’ πππ βππ£π π‘βπ πππβπ‘ πβππ π πππ¦ ππππ ππππ π‘βπ πππ‘ππ ππ πππβ πΏ ππ πππβ ππππππππ‘) π Step 4: Then put it in(π ) π of the shape to calculate each of component, put in appendix ππππ ππ¦π of find time by each component. π π π π Step 5Take that time to find other componentπ . Then cal (π ) π βπππ π Step 6: If π of the shape not fit, adjust t and try again π 3. Fin: a. Some equation: We have the fin with: ππ₯π‘πππππ πΏ , π΄π‘ππ ππ ππππ ππ π‘βπ π‘ππ πππ π ππ πππππππ‘ππ ππ π‘βπ π‘ππ π = ββππΎπ΄π‘ππ , πππ ππππππ‘ππ£ππππ π : ππ = π=β βπ πΎπ΄π‘ππ ππ βπππ‘ π‘ππππ πππ π€ππ‘β πππ = π βπππ‘ π‘ππππ πππ π€ππ‘βππ’π‘ π‘βπ πππ πΎπ ππ = β π‘ππβ(ππΏ) (πππππππ‘ππ πππ) βπ΄π π’πππππ πππ ππππππππππ¦: ππ = πππππ πππππ = ππππππ (βπππ‘ ππ‘ π‘ππ πππ’ππ ππ‘ πππ π) βπ΄π π’π (π β ππΏ ) b. Calculation: _For only pin fin: _For circular and other strainght fin: (ππΏ β ππ )