Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
HEAT TRANSFER OPERATION MIDTERM NOTE I. LAW OF HEAT TRANSFER: 1. Fundamental law: Define: ALWAYS HAVE TO SATISFY, REGARDLESS OF SITUATION. (Xài lúc nào cũng đúng) a. Types of system consider: _ Closed system: + Fix amount of matter (𝑡𝑜𝑡𝑎𝑙 𝑚𝑜𝑙𝑒𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) + No mass flows across the system boundaries (𝑚𝑎𝑠𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) + Energy flow may occur across the boundaries (exchange heat, work to surrounding) + The boundaries may change with time (𝑉 𝑐ℎ𝑎𝑛𝑔𝑒) _Open System - Control Volume + Volume of fixed size containing matter + Mass flows across the system boundaries (𝑚𝑎𝑠𝑠 𝑐ℎ𝑎𝑛𝑔𝑒) + Energy flow occur across the boundaries + The boundaries may change with time b. Law of Conservation of Mass: _For closed system : 𝑚𝑎𝑠𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (vô TH này thì mass trước = mass sau) _ Fluid flow through a control volume: 𝑟𝑎𝑡𝑒 𝑚𝑎𝑠𝑠𝑖𝑛 − 𝑟𝑎𝑡𝑒 𝑚𝑎𝑠𝑠𝑜𝑢𝑡 − 𝑚𝑎𝑠𝑠 𝑎𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑦𝑠𝑡𝑒𝑚 = 0 With: 𝑟𝑎𝑡𝑒 𝑚𝑎𝑠𝑠 = 𝑑𝑚 𝑑𝑉 𝑑𝑥 =𝜌 = 𝜌𝑑𝐴 = 𝜌𝐴𝑣 (1 − 𝐷𝑖𝑚𝑒𝑠𝑖𝑜𝑛, 𝑠𝑚𝑎𝑙𝑙 𝐴) 𝑑𝑡 𝑑𝑡 𝑑𝑡 𝑟𝑎𝑡𝑒 𝑚𝑎𝑠𝑠𝑖𝑛 = ∬ 𝜌𝑣𝑖𝑛 𝑑𝐴𝑖𝑛 (𝑖𝑛𝑡𝑒𝑟𝑔𝑒𝑟𝑎𝑡𝑒𝑑 𝑎𝑏𝑜𝑣𝑒 𝑓𝑜𝑟 ℎ𝑜𝑙𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒) 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑟𝑎𝑡𝑒 𝑚𝑎𝑠𝑠𝑖𝑛 = ∬𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝜌𝑣𝑜𝑢𝑡 𝑑𝐴𝑜𝑢𝑡 𝑚𝑎𝑠𝑠 𝑎𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑦𝑠𝑡𝑒𝑚 = 𝜕 ∭ 𝜌𝑑𝑉 𝜕𝑡 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 Equation (1) ∬ 𝜌𝑣𝑖𝑛 𝑑𝐴𝑖𝑛 − ∬ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝜌𝑣𝑜𝑢𝑡 𝑑𝐴𝑜𝑢𝑡 = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝜕 {∭ 𝜌𝑑𝑉 } 𝜕𝑡 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 (Description : Rate of mass tại 1 điểm là 𝜌𝐴𝑣 vói v theo phương x, do xét trong hệ vật diện tich cố định, Rate of mass trên cả mặt của vật thì lấy nguyên hàm 2 phương y, z. Tương tự với mass accumulation nếu V đổi theo 3 phương thì ta nguyên hàm theo 3 phương đêr có đụowc tổng thay đổi của V) Types of fluids Steady state (No accumulation) Compressible fluid Non-steady state ∬ 𝜌𝑣𝑖𝑛 𝑑𝐴𝑖𝑛 = ∬ 𝜌𝑣𝑜𝑢𝑡 𝑑𝐴𝑜𝑢𝑡 𝐶.𝑉 Incompressible fluid (𝜌 = 𝑐𝑜𝑛𝑠𝑡) 𝐶.𝑉 ∬ 𝑣𝑖𝑛 𝑑𝐴𝑖𝑛 = ∬ 𝑣𝑜𝑢𝑡 𝑑𝐴𝑜𝑢𝑡 𝐶.𝑉 Equation (1) Equation (1) 𝐶.𝑉 _In 1 dimensional : Remove term rate mass out of the integrate (Do A không đổi theo phương y,z; A tại điểm vào và ra của mass là hằng số) Types of fluids Steady state (No accumulation) 𝜌𝑖𝑛 𝑣𝑖𝑛 𝐴𝑖𝑛 = 𝜌𝑜𝑢𝑡 𝑣𝑜𝑢𝑡 𝐴𝑜𝑢𝑡 Compressible fluid 𝑣𝑖𝑛 𝐴𝑖𝑛 = 𝑣𝑜𝑢𝑡 𝐴𝑜𝑢𝑡 Incompressible fluid (𝜌 = 𝑐𝑜𝑛𝑠𝑡) Non-steady state 𝜌𝑖𝑛 𝑣𝑖𝑛 𝐴𝑖𝑛 − 𝜌𝑜𝑢𝑡 𝑣𝑜𝑢𝑡 𝐴𝑜𝑢𝑡 = 𝑎𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒 𝑣𝑖𝑛 𝐴𝑖𝑛 − 𝑣𝑜𝑢𝑡 𝐴𝑜𝑢𝑡 = 𝑎𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒 c. Newton’s Second law of motion: _For close system: ∑ 𝐹⃗ = 𝑑 𝑑𝑡 (𝑚𝑣⃗) (𝑓𝑜𝑙𝑜𝑤 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑦𝑜𝑢 𝑐ℎ𝑜𝑠𝑒) _Fluid flow through a control volume: 𝑆𝑢𝑚 𝑓𝑜𝑟𝑐𝑒 = 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑢𝑡 − 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡 𝑖𝑛 + 𝐴𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒 With: 𝑟𝑎𝑡𝑒 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = 𝑑𝐹 𝑑𝑚 𝑑𝑥 = 𝑣⃗ = 𝑣⃗𝜌𝑑𝐴 = 𝑣⃗𝜌𝐴𝑣𝑛 (1 − 𝐷𝑖𝑚𝑒𝑠𝑖𝑜𝑛, 𝑠𝑚𝑎𝑙𝑙 𝐴) 𝑑𝑡 𝑑𝑡 𝑑𝑡 n n 𝑣⃗: 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑢𝑠𝑒 𝑐ℎ𝑜𝑠𝑒) 𝑛⃗⃗ ∶ 𝑉𝑒𝑐𝑡𝑜𝑟 𝑛𝑜𝑟𝑚𝑎𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 v in 𝑣𝑛 = |𝑣||𝑛|𝑐𝑜𝑠𝜃 _Fluid flow through in 1 direction: ∑ 𝐹𝑥 = − ∬ 𝑣𝑥 𝜌𝑣𝑛 𝑑𝐴𝑖𝑛 + ∬ 𝑣𝑥 𝜌𝑣𝑛 𝑑𝐴𝑜𝑢𝑡 + 𝐶𝑆 𝐶𝑆 𝜕 {∭ 𝜌𝑣𝑥 𝑑𝑉 } 𝜕𝑡 𝐶𝑉 (𝑣𝑛 là tích vector có phương của vector vận tốc, và vector vuông góc với mặt phẳng vật, trong slide cth chung là 𝑣. 𝑛 thì tích có hướng này sẽ âm nếu v và n ngược chiều lúc đi vào) d. 1st Law of Thermodynamics: _For closed system: 𝛿𝑄 𝛿𝑡 − 𝛿𝑊 𝛿𝑡 = 𝛿𝐸 𝛿𝑡 Usually no work involve: Heat change equal energy change: 𝛿𝑄 𝛿𝐸 = 𝛿𝑡 𝛿𝑡 2. Subsidiary law: a. Fourier’s law of heat conduction: 𝑞 𝜕𝑇 = −𝐾 𝐴 𝜕𝑛 𝑞 𝑊 𝑞: ℎ𝑒𝑎𝑡 𝑟𝑎𝑡𝑒 (𝑊 𝑜𝑟 𝐽/𝑠), : 𝐻𝑒𝑎𝑡 𝑓𝑙𝑢𝑥 (𝑊/𝑚2 ), 𝐾: 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ( ) 𝐴 𝑚. 𝐾 𝜕𝑇 : 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑖𝑛 𝑐𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝜕𝑛 _If K constant: isotropic material _One dimension, steady state situation: +Infinite slab: 𝑞 𝑇𝐻 − 𝑇𝐶 =𝐾 𝐴 𝑏 𝑇𝐻 /𝑇𝐶 ∶ 𝑡𝑒𝑚𝑝 𝑎𝑡 ℎ𝑜𝑡/𝑐𝑜𝑙𝑑 𝑠𝑖𝑑𝑒, 𝑏: 𝑡ℎ𝑖𝑐𝑘 𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑎𝑙𝑙/𝑠𝑙𝑎𝑏 (𝑚) v out 𝑇 𝑎𝑡 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑝𝑜𝑖𝑛𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑥 𝑓𝑜𝑟𝑚 ℎ𝑜𝑡 𝑓𝑎𝑐𝑒: 𝑇𝐻 − 𝑇 𝑥 = 𝑇𝐻 − 𝑇𝐶 𝑏 +Infinite long hollow cylinder 𝑟𝑜 (𝑟𝑖 ): 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝑖𝑛𝑠𝑖𝑑𝑒), 𝐿: 𝑙𝑒𝑛𝑔ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑇𝑜 (𝑇𝑖 ): 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝑖𝑛𝑠𝑖𝑑𝑒) 𝑟𝑖 𝑇𝑖 𝑞 𝑞 𝜕𝑇 𝑞 𝜕𝑟 𝑞 𝑟𝑖 = = −𝐾 ↔ ∫ = −𝐾 ∫ 𝜕𝑇 ↔ 𝑙𝑛 ( ) = −𝐾(𝑇𝑖 − 𝑇𝑜 ) 𝐴 2𝜋𝑟𝐿 𝜕𝑟 2𝜋𝐿 𝑟 2𝜋𝐿 𝑟𝑜 𝑟𝑜 𝑇𝑜 ↔𝑞=− 2𝜋𝐾𝐿(𝑇𝑖 − 𝑇𝑜 ) 𝑟 𝑙𝑛 (𝑟𝑖 ) 𝑜 𝑇 𝑎𝑡 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑟 ∶ 𝑇 − 𝑇𝑖 𝑙𝑛(𝑟/𝑟𝑖 ) = 𝑇𝑖 − 𝑇𝑜 𝑙𝑛(𝑟𝑜 /𝑟𝑖 ) _At not steady state: Coordinate Cartesian (slab) Cylindrical Sphere x 𝑥=𝑥 𝜕𝑇 𝜕𝑇 ↔ = 𝜕𝑛 𝜕𝑥 𝑥 = 𝑟 𝑐𝑜𝑠𝜃 = 𝑟 ↔ 𝜕𝑥 = 𝜕𝑟 𝜕𝑇 𝜕𝑇 ↔ = 𝜕𝑥 𝜕𝑟 (radial heat transfer) y 𝑦=𝑦 𝜕𝑇 𝜕𝑇 ↔ = 𝜕𝑛 𝜕𝑦 z 𝑧=𝑧 𝜕𝑇 𝜕𝑇 ↔ = 𝜕𝑛 𝜕𝑧 𝑦 = 𝑟 𝑠𝑖𝑛𝜃 = 𝑟𝜃 ↔ 𝜕𝑦 = 𝑟𝜕𝜃 𝜕𝑇 1 𝜕𝑇 ↔ = 𝜕𝑦 𝑟 𝜕𝜃 𝑧=𝑧 𝜕𝑇 𝜕𝑇 ↔ = 𝜕𝑛 𝜕𝑧 𝐴𝑡 𝑠𝑚𝑎𝑙𝑙 𝜃: 𝑠𝑖𝑛𝜃 ≈ 𝜃, 𝑐𝑜𝑠𝜃 ≈ 1 𝑦 = 𝑟 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛𝜑 = 𝑟𝜃𝜑 𝑥 = 𝑟 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠𝜑 = 𝑟𝜃 ↔ 𝜕𝑦 = 𝑟𝜃 𝜕𝜑 ↔ 𝜕𝑥 = 𝑟𝜕𝜃 𝜕𝑇 1 𝜕𝑇 𝜕𝑇 1 𝜕𝑇 ↔ = ↔ = 𝜕𝑦 𝑟𝜃 𝜕𝜑 𝜕𝑥 𝑟 𝜕𝜃 b. Newton’s law of cooling : 𝑞 = ℎ(𝑇𝑊 − 𝑇𝑓 ) 𝐴 𝑧 = 𝑟 𝑐𝑜𝑠𝜃 = 𝑟 𝜕𝑇 𝜕𝑇 ↔ = 𝜕𝑧 𝜕𝑟 𝑇𝑊 : 𝐻𝑒𝑎𝑡 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡, 𝑇𝑓 : ℎ𝑒𝑎𝑡 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑, ℎ: 𝐻𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ( 𝑊 ) 𝑚2 𝐾 c. Stefan-Boltzmann Law: 𝑞 = 𝜎𝑇 4 𝐴 𝑊 𝐵𝑡𝑢 𝜎 = 5.67 × 10−8 ( 2 4 ) = 1.7134 ( ) : 𝑆𝑡𝑒𝑓𝑎𝑛 − 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑚 𝐾 ℎ. 𝑓𝑡 2 ℉4 d. Thermal resistance: (nhiệt trở, na ná điện trở) Infinite slab Thermal resistance (𝑍𝑡ℎ ) Infinite hollow Cylinder 𝑙𝑛(𝑟𝑜 /𝑟𝑖 ) 2𝜋𝑅𝐾𝐿 𝑏 𝐾𝐴 Surface of liquid 1 ℎ𝐴 If the wall have only 1 way to transfer heat (many layers wall): similar to resistance put in series: 𝑍𝑡ℎ,𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑍𝑡ℎ If the wall have more than 1 way to transfer heat similar to resistance put in parallel: (Ex: The wall have 1 nail stick through its, heat can transfer in two paths: Through nail or through wall) 1 𝑍𝑡ℎ,𝑡𝑜𝑡𝑎𝑙 =∑ 1 𝑍𝑡ℎ,𝑝𝑎𝑡ℎ 𝑖 (1 𝑝𝑎𝑡ℎ 𝑚𝑎𝑦 ℎ𝑎𝑣𝑒 𝑚𝑎𝑛𝑦 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑠𝑒𝑟𝑖𝑒𝑠) We can calculate the resistance of the path to find temperature of cold side knowing hot side and heat rate: 𝑞= ∆𝑇 𝑍𝑡ℎ,𝑡𝑜𝑡𝑎𝑙 Ex: Calculate the temp at intersection of 2, 3 layers in 3 layers wall 𝑍𝑡ℎ,𝑡𝑜𝑡𝑎𝑙 = 𝑍1 + 𝑍2 Z1 Z2 Z3 Or if do not have A we can call calculate: Overall heat transfer coefficient 𝑈 = 𝐴𝑍𝑡ℎ,𝑡𝑜𝑡𝑎𝑙 II. The Differential Equation of Heat Conduction: There are several step to derive equation of heat conduction as problem give: Step 1: Chose the shape: _Slab with 3D: (x,y,z) 𝜕 𝜕𝑇 𝜕 𝜕𝑇 𝜕 𝜕𝑇 𝜕𝑇 (𝐾. ) + (𝐾. ) + (𝐾. ) + 𝑞̅ = 𝜌𝐶𝑝 𝜕𝑥 𝜕𝑥 𝜕𝑦 𝜕𝑦 𝜕𝑧 𝜕𝑧 𝜕𝑡 With: 𝐶𝑝 (𝐽/𝐾𝑔. 𝐾): 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑊 𝑞̅ ( 3 ) : ℎ𝑒𝑎𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑚 _ 3D cylindrical coordinate system: (𝑟, 𝜃, 𝑧) 1𝜕 𝜕𝑇 1 𝜕 𝜕𝑇 𝜕 𝜕𝑇 𝜕𝑇 (𝐾. 𝑟 ) + 2 (𝐾. ) + (𝐾. ) + 𝑞̅ = 𝜌𝐶𝑝 𝑟 𝜕𝑟 𝜕𝑟 𝑟 𝜕𝜃 𝜕𝜃 𝜕𝑧 𝜕𝑧 𝜕𝑡 _3D spherical coordinate system (𝑟, 𝜃, 𝜑) 1𝜕 𝜕(𝑟𝑇) 1 𝜕 𝜕𝑇 1 𝜕 𝜕𝑇 𝜕𝑇 (𝐾. )+ 2 (𝐾. 𝑠𝑖𝑛𝜑 ) + 2 2 (𝐾. ) + 𝑞̅ = 𝜌𝐶𝑝 𝑟 𝜕𝑟 𝜕𝑟 𝑟 𝑠𝑖𝑛𝜑 𝜕𝜑 𝜕𝜑 𝑟 𝑠𝑖𝑛 𝜑 𝜕𝜃 𝜕𝜃 𝜕𝑡 Step 2: Chose the condition: (more than 1 usually applied) Condition K Constant Absence of heat generation Meaning Ex: in 3D slab 𝜕 𝜕𝑇 𝜕 𝜕𝑇 𝜕 𝜕𝑇 (𝐾. ) + (𝐾. ) + (𝐾. ) 𝜕𝑥 𝜕𝑥 𝜕𝑦 𝜕𝑦 𝜕𝑧 𝜕𝑧 𝜕 𝜕𝑇 𝜕 𝜕𝑇 𝜕 𝜕𝑇 = 𝐾{ ( )+ ( ) + ( )} 𝜕𝑥 𝜕𝑥 𝜕𝑦 𝜕𝑦 𝜕𝑧 𝜕𝑧 2 = 𝐾∇ 𝑇 𝑞̅ = 0 Equation change 𝑞̅ 1 𝜕𝑇 ∇2 𝑇 + = 𝐾 𝛼 𝜕𝑡 With 𝐾 𝛼= ; 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑡𝑦 𝜌𝐶𝑝 (𝑚2 /𝑠) Steady state In 1 direction 𝜕𝑇 =0 𝜕𝑡 Ex: 3D cylindrical: Assume temperature change only on r coordinate (radial heat transfer) 𝜕𝑇 𝜕𝑇 = =0 𝜕𝜃 𝜕𝑧 With (𝑢𝑣)′ = 𝑢′𝑣 + 𝑢𝑣′ In (*) 𝜕 : 𝑖𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑎𝑙 𝑤𝑖𝑡ℎ 𝑟, 𝜕𝑟 Step 3: find 𝑻 𝒂𝒏𝒅 Into equation in I.2.b (𝐾∇2 𝑇 = 0) 1𝜕 𝜕𝑇 𝑞̅ 1 𝜕𝑇 (𝑟 ) + = 𝑟 𝜕𝑟 𝜕𝑟 𝐾 𝛼 𝜕𝑡 1 𝜕𝑇 𝜕 2𝑇 ↔ ( + 𝑟 2 ) + ⋯ (∗) 𝑟 𝜕𝑟 𝜕𝑟 𝜕𝑇 𝑎𝑛𝑑 𝑟 𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟 𝜕𝑟 𝝏𝑻 𝝏𝒙 𝒕𝒐 𝒂𝒑𝒑𝒍𝒊𝒆𝒅 𝒊𝒏 𝒃𝒐𝒖𝒅𝒂𝒓𝒚 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 ∶ Ex: for 1D slab (condition 4), steady state (condition 2) and K constant (condition 1) General equation become: 𝜕 2 𝑇 𝑞̅ 𝜕 2𝑇 𝑞̅ + = 0 ↔ = − 𝜕𝑥 2 𝐾 𝜕𝑥 2 𝐾 → 𝜕𝑇 𝑞̅ = − 𝑥 + 𝐶1 𝜕𝑥 𝐾 → 𝑇(𝑥) = − 𝑞̅ 𝑥 2 + 𝐶1 𝑥 + 𝐶2 𝐾 2 Ex: for 1D hollow cylinder (condition 4), steady state (condition 2) and K constant (condition 1) 1𝜕 𝜕𝑇 𝑞̅ 1 𝜕𝑇 𝜕 2𝑇 𝑞̅ (𝐾. 𝑟 ) + = 0 ↔ ( + 𝑟 2 ) + = 0 𝑟 𝜕𝑟 𝜕𝑟 𝐾 𝑟 𝜕𝑟 𝜕𝑟 𝐾 1 𝜕𝑇 𝜕 2 𝑇 𝑞̅ ↔ + 2 =− 𝑟 𝜕𝑟 𝜕𝑟 𝐾 ↔ ↔𝑟 𝜕𝑇 𝜕 2𝑇 𝑞̅ + 𝑟 2 = − 𝑟 (𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 𝑟 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑖𝑑𝑒) 𝜕𝑟 𝜕𝑟 𝐾 𝜕𝑇 𝑞̅ 𝑟 2 𝜕𝑇 𝑞̅ 𝑟 𝑞̅ 𝑟 2 =− (𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 2 𝑠𝑖𝑑𝑒) ↔ =− → 𝑇(𝑟) = − + 𝐶1 𝜕𝑟 𝐾 2 𝜕𝑟 𝐾2 𝐾 4 Step 4: Find boundary condition for solving C1 and C2 (normally maximum 2 is require): Boundary condition Temperature of surface is maintain at 𝑇𝑠𝑢𝑟 (𝑥 = 𝑏, 𝑟 = 𝑟𝑜 ) Knowing heat flux (q/A) at surface (𝑥 = 𝑏, 𝑟 = 𝑟𝑜 ) Special case for heat Insulation surface flux Thermal symmetry (Heat flow in/out from 2 side to center) Convection Boundary Condition (Have fluid flow to cool/heat surface with temperature 𝑇𝑓 and h) 𝑇(𝑏) = 𝑇𝑠𝑢𝑟 (𝑇𝑠𝑢𝑟 is a number, position of surface depend on how you put the origin and coordinate) 𝜕𝑇 𝑞/𝐴 = ( ) 𝜕𝑥 𝑥=𝑏 𝜕𝑇 ( ) =0 𝜕𝑥 𝑥=𝑏 𝜕𝑇 ( ) =0 𝜕𝑥 𝑥=𝑏/2 (b is the thickness of wall, if chose x =0 at center change the x=b/2 by x=0) 𝜕𝑇 −𝐾 ( ) = −ℎ(𝑇𝑓 − 𝑇𝑥=𝑏 ) 𝜕𝑥 𝑥=𝑏 Step 5: Put C1 and C2 to equation. (TO SEE HOLD SOLVING CAN SEE TAKE HOME PRACTICE) III. Unsteady State Heat Conduction: 1. Some dimension for use: 𝐵𝑖𝑜𝑡 𝑛𝑢𝑚𝑏𝑒𝑟: 𝐵𝑖 = ℎ𝐿 (𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑍𝑡ℎ 𝑜𝑓 𝑠𝑜𝑙𝑖𝑑 𝑎𝑛𝑑 𝑍𝑡ℎ 𝑜𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑒) 𝐾 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑁𝑢𝑚𝑏𝑒𝑟: 𝑋 = 𝛼= 𝛼𝑡 𝐾𝑡 = (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 𝑜𝑓 𝑡𝑖𝑚𝑒) 𝐿2 𝜌𝐶𝑝 𝐿2 𝐾 ; 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑡𝑦 (𝑚2 /𝑠) 𝜌𝐶𝑝 1 𝐵𝑖𝑜𝑡 𝑥 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛: 𝑛 = 𝐿 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒: 𝑚 = Shape Infinite slab Infinite slab 1 side insulate L (Characteristic dimension) Thickness (b) divide by 2 (b/2) Treat as infinite slab with thickness: 2b (double thickness of original slab) cal equal b Radius (r) 𝑉 𝐿= 𝐴𝑠𝑢𝑟 Infinite cylinder/sphere Other shape 2. Way to solve: Step 1: Define the shape: infinite slab, infinite cylinder, sphere, or cubic,… If not find K, you can look for the material and find in Appendix H. Step 2: Define the shape in component infinite slab and infinite cylinder: Shape Finite cylinder Box (cubic) Component Infinite of cylinder and infinite slab 3 infinite slabs different (same) thickness Step 3: Calculate Biot Number: (if more than 1 component Cal for each component) _If 𝐵𝑖 < 0.1: Neglect internal temperature gradient ℎ𝐴𝑡 𝑇 − 𝑇𝑓 𝜃 − = = 𝑒 𝜌𝐶𝑝 𝑉 = 𝑒 −𝐵𝑖×𝑋 𝜃𝑜 𝑇𝑜 − 𝑇𝑓 _ If 𝐵𝑖 > 0.1: 𝜃 Step 4: Define 𝜃 𝒐𝒇 that shape: 𝑜 3 𝜃 𝜃 𝐸𝑥: ( ) = [( ) ] 𝜃𝑜 𝑐𝑢𝑏𝑖𝑐 𝜃𝑜 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑙𝑎𝑏 𝜃 Step 5: Calculate Biot, Fourier, m, n for each component and find for 𝜃 in Appendix F: 𝑜 If there are no line near with you’re calculate m: Ex: m = 0.6, but in chart only have 0.5 and 0.75: 𝜃 𝜃 𝑜 𝑜 You can find 𝜃 for 0.5 and 0.75, assume m and 𝜃 are linear: 𝜃 = 𝑎𝑚 + 𝑏 𝜃𝑜 And use 2 point at 0.5 and 0.75 you are found to calculate a and b 𝜃 Step 6: Found the 𝜃 of the shape and calculate T 𝑜 There are some problem like give you T and make you find t: 𝜃 Step 1: You will calculate 𝜃 of the shape and write it component: 𝑜 Ex: 𝜃 𝜃 𝜃 ( ) =( ) ( ) 𝜃𝑜 𝑓𝑖 𝑐𝑦𝑙 𝜃𝑜 𝑖𝑛𝑓𝑖 𝑐𝑦𝑙 𝜃𝑜 𝑖𝑛𝑓𝑖 𝑠𝑙𝑎𝑏 Step 2: Then you calculate the Fourier number of component through time: Ex:𝑋𝑖𝑛𝑓𝑖 𝑠𝑙𝑎𝑏 = 𝑎 × 𝑡, 𝑋𝑖𝑛𝑓𝑖 𝑐𝑦𝑙 = 𝑏 × 𝑡 Step 3: Then you will guess :)))))) any relation you want: (CHOSE ONLY 1 COMPONENT) Ex 𝜃 𝜃 𝜃 𝜃 ( ) = √( ) 𝑜𝑟 ( ) = 1/2 ( ) 𝜃𝑜 𝑖𝑛𝑓𝑖 𝑐𝑦𝑙 𝜃𝑜 𝑓𝑖 𝑐𝑦𝑙 𝜃𝑜 𝑖𝑛𝑓𝑖 𝑐𝑦𝑙 𝜃𝑜 𝑓𝑖 𝑐𝑦𝑙 (𝑌𝑜𝑢 𝑐𝑎𝑛 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑐ℎ𝑜𝑠𝑒 𝑏𝑎𝑦 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑒𝑎𝑐ℎ 𝐿 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑡) 𝜃 Step 4: Then put it in(𝜃 ) 𝑜 of the shape to calculate each of component, put in appendix 𝑖𝑛𝑓𝑖 𝑐𝑦𝑙 of find time by each component. 𝜃 𝜃 𝑜 𝑜 Step 5Take that time to find other component𝜃 . Then cal (𝜃 ) 𝑠ℎ𝑎𝑝𝑒 𝜃 Step 6: If 𝜃 of the shape not fit, adjust t and try again 𝑜 3. Fin: a. Some equation: We have the fin with: 𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝐿 , 𝐴𝑡𝑖𝑝 𝑖𝑠 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑖𝑝 𝑎𝑛𝑑 𝑃 𝑖𝑠 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑖𝑝 𝑀 = √ℎ𝑃𝐾𝐴𝑡𝑖𝑝 , 𝑓𝑖𝑛 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠: 𝜀𝑓 = 𝑚=√ ℎ𝑃 𝐾𝐴𝑡𝑖𝑝 𝑞𝑓 ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑤𝑖𝑡ℎ 𝑓𝑖𝑛 = 𝑞 ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡ℎ𝑒 𝑓𝑖𝑛 𝐾𝑃 𝜀𝑓 = √ 𝑡𝑎𝑛ℎ(𝑚𝐿) (𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 𝑓𝑖𝑛) ℎ𝐴𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑖𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦: 𝑛𝑓 = 𝑞𝑟𝑒𝑎𝑙 𝑞𝑟𝑒𝑎𝑙 = 𝑞𝑖𝑑𝑒𝑎𝑙 (ℎ𝑒𝑎𝑡 𝑎𝑡 𝑡𝑖𝑝 𝑒𝑞𝑢𝑎𝑙 𝑎𝑡 𝑏𝑎𝑠𝑒) ℎ𝐴𝑠𝑢𝑟 (𝑇 − 𝑇𝐿 ) b. Calculation: _For only pin fin: _For circular and other strainght fin: (𝑟𝐿 − 𝑟𝑜 )