Download Heat midterm note

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
HEAT TRANSFER OPERATION
MIDTERM NOTE
I.
LAW OF HEAT TRANSFER:
1. Fundamental law:
Define: ALWAYS HAVE TO SATISFY, REGARDLESS OF SITUATION.
(Xài lúc nào cΕ©ng Δ‘úng)
a. Types of system consider:
_ Closed system:
+ Fix amount of matter (π‘‘π‘œπ‘‘π‘Žπ‘™ π‘šπ‘œπ‘™π‘’π‘  = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘)
+ No mass flows across the system boundaries (π‘šπ‘Žπ‘ π‘  = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘)
+ Energy flow may occur across the boundaries (exchange heat, work to surrounding)
+ The boundaries may change with time (𝑉 π‘β„Žπ‘Žπ‘›π‘”π‘’)
_Open System - Control Volume
+ Volume of fixed size containing matter
+ Mass flows across the system boundaries (π‘šπ‘Žπ‘ π‘  π‘β„Žπ‘Žπ‘›π‘”π‘’)
+ Energy flow occur across the boundaries
+ The boundaries may change with time
b. Law of Conservation of Mass:
_For closed system : π‘šπ‘Žπ‘ π‘  = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ (vô TH này thì mass trΖ°α»›c = mass sau)
_ Fluid flow through a control volume:
π‘Ÿπ‘Žπ‘‘π‘’ π‘šπ‘Žπ‘ π‘ π‘–π‘› βˆ’ π‘Ÿπ‘Žπ‘‘π‘’ π‘šπ‘Žπ‘ π‘ π‘œπ‘’π‘‘ βˆ’ π‘šπ‘Žπ‘ π‘  π‘Žπ‘π‘’π‘šπ‘’π‘™π‘Žπ‘‘π‘–π‘œπ‘›π‘ π‘¦π‘ π‘‘π‘’π‘š = 0
With:
π‘Ÿπ‘Žπ‘‘π‘’ π‘šπ‘Žπ‘ π‘  =
π‘‘π‘š
𝑑𝑉
𝑑π‘₯
=𝜌
= πœŒπ‘‘π΄
= πœŒπ΄π‘£ (1 βˆ’ π·π‘–π‘šπ‘’π‘ π‘–π‘œπ‘›, π‘ π‘šπ‘Žπ‘™π‘™ 𝐴)
𝑑𝑑
𝑑𝑑
𝑑𝑑
π‘Ÿπ‘Žπ‘‘π‘’ π‘šπ‘Žπ‘ π‘ π‘–π‘› = ∬
πœŒπ‘£π‘–π‘› 𝑑𝐴𝑖𝑛 (π‘–π‘›π‘‘π‘’π‘Ÿπ‘”π‘’π‘Ÿπ‘Žπ‘‘π‘’π‘‘ π‘Žπ‘π‘œπ‘£π‘’ π‘“π‘œπ‘Ÿ β„Žπ‘œπ‘™π‘‘ π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’)
π‘π‘œπ‘›π‘‘π‘Ÿπ‘œπ‘™ π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’
π‘Ÿπ‘Žπ‘‘π‘’ π‘šπ‘Žπ‘ π‘ π‘–π‘› = βˆ¬π‘π‘œπ‘›π‘‘π‘Ÿπ‘œπ‘™ π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’ πœŒπ‘£π‘œπ‘’π‘‘ π‘‘π΄π‘œπ‘’π‘‘
π‘šπ‘Žπ‘ π‘  π‘Žπ‘π‘’π‘šπ‘’π‘™π‘Žπ‘‘π‘–π‘œπ‘›π‘ π‘¦π‘ π‘‘π‘’π‘š =
πœ•
∭
πœŒπ‘‘π‘‰
πœ•π‘‘ πΆπ‘œπ‘›π‘‘π‘Ÿπ‘œπ‘™ π‘£π‘œπ‘™π‘’π‘šπ‘’
Equation (1)
∬
πœŒπ‘£π‘–π‘› 𝑑𝐴𝑖𝑛 βˆ’ ∬
π‘π‘œπ‘›π‘‘π‘Ÿπ‘œπ‘™ π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’
πœŒπ‘£π‘œπ‘’π‘‘ π‘‘π΄π‘œπ‘’π‘‘ =
π‘π‘œπ‘›π‘‘π‘Ÿπ‘œπ‘™ π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’
πœ•
{∭
πœŒπ‘‘π‘‰ }
πœ•π‘‘
πΆπ‘œπ‘›π‘‘π‘Ÿπ‘œπ‘™ π‘£π‘œπ‘™π‘’π‘šπ‘’
(Description : Rate of mass tαΊ‘i 1 Δ‘iểm là πœŒπ΄π‘£ vói v theo phΖ°Ζ‘ng x, do xét trong hệ vαΊ­t
diện tich cα»‘ Δ‘α»‹nh, Rate of mass trên cαΊ£ mαΊ·t của vαΊ­t thì lαΊ₯y nguyên hàm 2 phΖ°Ζ‘ng y, z.
TΖ°Ζ‘ng tα»± vα»›i mass accumulation nαΊΏu V Δ‘α»•i theo 3 phΖ°Ζ‘ng thì ta nguyên hàm theo 3
phΖ°Ζ‘ng Δ‘êr có Δ‘α»₯owc tα»•ng thay Δ‘α»•i của V)
Types of fluids
Steady state
(No accumulation)
Compressible fluid
Non-steady state
∬ πœŒπ‘£π‘–π‘› 𝑑𝐴𝑖𝑛 = ∬ πœŒπ‘£π‘œπ‘’π‘‘ π‘‘π΄π‘œπ‘’π‘‘
𝐢.𝑉
Incompressible fluid
(𝜌 = π‘π‘œπ‘›π‘ π‘‘)
𝐢.𝑉
∬ 𝑣𝑖𝑛 𝑑𝐴𝑖𝑛 = ∬ π‘£π‘œπ‘’π‘‘ π‘‘π΄π‘œπ‘’π‘‘
𝐢.𝑉
Equation (1)
Equation (1)
𝐢.𝑉
_In 1 dimensional : Remove term rate mass out of the integrate (Do A không Δ‘α»•i theo
phΖ°Ζ‘ng y,z; A tαΊ‘i Δ‘iểm vào và ra của mass là hαΊ±ng sα»‘)
Types of fluids
Steady state
(No accumulation)
πœŒπ‘–π‘› 𝑣𝑖𝑛 𝐴𝑖𝑛 = πœŒπ‘œπ‘’π‘‘ π‘£π‘œπ‘’π‘‘ π΄π‘œπ‘’π‘‘
Compressible fluid
𝑣𝑖𝑛 𝐴𝑖𝑛 = π‘£π‘œπ‘’π‘‘ π΄π‘œπ‘’π‘‘
Incompressible fluid
(𝜌 = π‘π‘œπ‘›π‘ π‘‘)
Non-steady state
πœŒπ‘–π‘› 𝑣𝑖𝑛 𝐴𝑖𝑛 βˆ’ πœŒπ‘œπ‘’π‘‘ π‘£π‘œπ‘’π‘‘ π΄π‘œπ‘’π‘‘ = π‘Žπ‘π‘’π‘šπ‘’π‘™π‘Žπ‘‘π‘’
𝑣𝑖𝑛 𝐴𝑖𝑛 βˆ’ π‘£π‘œπ‘’π‘‘ π΄π‘œπ‘’π‘‘ = π‘Žπ‘π‘’π‘šπ‘’π‘™π‘Žπ‘‘π‘’
c. Newton’s Second law of motion:
_For close system: βˆ‘ 𝐹⃗ =
𝑑
𝑑𝑑
(π‘šπ‘£βƒ—) (π‘“π‘œπ‘™π‘œπ‘€ π‘‘β„Žπ‘’ π‘‘π‘–π‘Ÿπ‘’π‘π‘‘π‘–π‘œπ‘› π‘¦π‘œπ‘’ π‘β„Žπ‘œπ‘ π‘’)
_Fluid flow through a control volume:
π‘†π‘’π‘š π‘“π‘œπ‘Ÿπ‘π‘’ = π‘Ÿπ‘Žπ‘‘π‘’ π‘œπ‘“ π‘šπ‘œπ‘šπ‘’π‘›π‘‘ π‘œπ‘’π‘‘ βˆ’ π‘Ÿπ‘Žπ‘‘π‘’ π‘œπ‘“ π‘šπ‘œπ‘šπ‘’π‘›π‘‘ 𝑖𝑛 + π΄π‘π‘’π‘šπ‘’π‘™π‘Žπ‘‘π‘’
With:
π‘Ÿπ‘Žπ‘‘π‘’ π‘šπ‘œπ‘šπ‘’π‘›π‘‘π‘’π‘š =
𝑑𝐹
π‘‘π‘š
𝑑π‘₯
= 𝑣⃗
= π‘£βƒ—πœŒπ‘‘π΄
= π‘£βƒ—πœŒπ΄π‘£π‘› (1 βˆ’ π·π‘–π‘šπ‘’π‘ π‘–π‘œπ‘›, π‘ π‘šπ‘Žπ‘™π‘™ 𝐴)
𝑑𝑑
𝑑𝑑
𝑑𝑑
n
n
𝑣⃗: π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ π‘œπ‘“ π‘£π‘’π‘π‘‘π‘œπ‘Ÿ (π‘‘π‘–π‘Ÿπ‘’π‘π‘‘π‘–π‘œπ‘› 𝑒𝑠𝑒 π‘β„Žπ‘œπ‘ π‘’)
𝑛⃗⃗ ∢ π‘‰π‘’π‘π‘‘π‘œπ‘Ÿ π‘›π‘œπ‘Ÿπ‘šπ‘Žπ‘™ π‘‘π‘œ π‘‘β„Žπ‘’ π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’
v in
𝑣𝑛 = |𝑣||𝑛|π‘π‘œπ‘ πœƒ
_Fluid flow through in 1 direction:
βˆ‘ 𝐹π‘₯ = βˆ’ ∬ 𝑣π‘₯ πœŒπ‘£π‘› 𝑑𝐴𝑖𝑛 + ∬ 𝑣π‘₯ πœŒπ‘£π‘› π‘‘π΄π‘œπ‘’π‘‘ +
𝐢𝑆
𝐢𝑆
πœ•
{∭ πœŒπ‘£π‘₯ 𝑑𝑉 }
πœ•π‘‘
𝐢𝑉
(𝑣𝑛 là tích vector có phΖ°Ζ‘ng của vector vαΊ­n tα»‘c, và vector vuông góc vα»›i mαΊ·t phαΊ³ng vαΊ­t,
trong slide cth chung là 𝑣. 𝑛 thì tích có hΖ°α»›ng này sαΊ½ âm nαΊΏu v và n ngược chiều lúc Δ‘i
vào)
d. 1st Law of Thermodynamics:
_For closed system:
𝛿𝑄
𝛿𝑑
βˆ’
π›Ώπ‘Š
𝛿𝑑
=
𝛿𝐸
𝛿𝑑
Usually no work involve: Heat change equal energy change:
𝛿𝑄 𝛿𝐸
=
𝛿𝑑
𝛿𝑑
2. Subsidiary law:
a. Fourier’s law of heat conduction:
π‘ž
πœ•π‘‡
= βˆ’πΎ
𝐴
πœ•π‘›
π‘ž
π‘Š
π‘ž: β„Žπ‘’π‘Žπ‘‘ π‘Ÿπ‘Žπ‘‘π‘’ (π‘Š π‘œπ‘Ÿ 𝐽/𝑠), : π»π‘’π‘Žπ‘‘ 𝑓𝑙𝑒π‘₯ (π‘Š/π‘š2 ), 𝐾: π‘‡β„Žπ‘’π‘Ÿπ‘šπ‘Žπ‘™ π‘π‘œπ‘›π‘‘π‘’π‘π‘‘π‘–π‘£π‘–π‘‘π‘¦ (
)
𝐴
π‘š. 𝐾
πœ•π‘‡
: π‘‡π‘’π‘šπ‘π‘’π‘Ÿπ‘Žπ‘‘π‘’π‘Ÿπ‘’ π‘”π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘›π‘‘ 𝑖𝑛 π‘π‘œπ‘Ÿπ‘‘π‘–π‘›π‘Žπ‘‘π‘’
πœ•π‘›
_If K constant: isotropic material
_One dimension, steady state situation:
+Infinite slab:
π‘ž
𝑇𝐻 βˆ’ 𝑇𝐢
=𝐾
𝐴
𝑏
𝑇𝐻 /𝑇𝐢 ∢ π‘‘π‘’π‘šπ‘ π‘Žπ‘‘ β„Žπ‘œπ‘‘/π‘π‘œπ‘™π‘‘ 𝑠𝑖𝑑𝑒, 𝑏: π‘‘β„Žπ‘–π‘π‘˜ 𝑛𝑒𝑠𝑠 π‘œπ‘“ π‘‘β„Žπ‘’ π‘€π‘Žπ‘™π‘™/π‘ π‘™π‘Žπ‘ (π‘š)
v out
𝑇 π‘Žπ‘‘ π‘π‘’π‘Ÿπ‘‘π‘Žπ‘–π‘› π‘π‘œπ‘–π‘›π‘‘ π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ π‘₯ π‘“π‘œπ‘Ÿπ‘š β„Žπ‘œπ‘‘ π‘“π‘Žπ‘π‘’:
𝑇𝐻 βˆ’ 𝑇
π‘₯
=
𝑇𝐻 βˆ’ 𝑇𝐢 𝑏
+Infinite long hollow cylinder
π‘Ÿπ‘œ (π‘Ÿπ‘– ): π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘  π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’(𝑖𝑛𝑠𝑖𝑑𝑒), 𝐿: π‘™π‘’π‘›π‘”β„Ž π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘¦π‘™π‘–π‘›π‘‘π‘’π‘Ÿ
π‘‡π‘œ (𝑇𝑖 ): π‘‘π‘’π‘šπ‘π‘’π‘Ÿπ‘Žπ‘‘π‘’π‘Ÿπ‘’ π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’(𝑖𝑛𝑠𝑖𝑑𝑒)
π‘Ÿπ‘–
𝑇𝑖
π‘ž
π‘ž
πœ•π‘‡
π‘ž
πœ•π‘Ÿ
π‘ž
π‘Ÿπ‘–
=
= βˆ’πΎ
↔
∫
= βˆ’πΎ ∫ πœ•π‘‡ ↔
𝑙𝑛 ( ) = βˆ’πΎ(𝑇𝑖 βˆ’ π‘‡π‘œ )
𝐴 2πœ‹π‘ŸπΏ
πœ•π‘Ÿ
2πœ‹πΏ
π‘Ÿ
2πœ‹πΏ
π‘Ÿπ‘œ
π‘Ÿπ‘œ
π‘‡π‘œ
β†”π‘ž=βˆ’
2πœ‹πΎπΏ(𝑇𝑖 βˆ’ π‘‡π‘œ )
π‘Ÿ
𝑙𝑛 (π‘Ÿπ‘– )
π‘œ
𝑇 π‘Žπ‘‘ π‘π‘’π‘Ÿπ‘‘π‘Žπ‘–π‘› π‘Ÿ ∢
𝑇 βˆ’ 𝑇𝑖
𝑙𝑛(π‘Ÿ/π‘Ÿπ‘– )
=
𝑇𝑖 βˆ’ π‘‡π‘œ 𝑙𝑛(π‘Ÿπ‘œ /π‘Ÿπ‘– )
_At not steady state:
Coordinate
Cartesian (slab)
Cylindrical
Sphere
x
π‘₯=π‘₯
πœ•π‘‡ πœ•π‘‡
↔
=
πœ•π‘› πœ•π‘₯
π‘₯ = π‘Ÿ π‘π‘œπ‘ πœƒ = π‘Ÿ
↔ πœ•π‘₯ = πœ•π‘Ÿ
πœ•π‘‡ πœ•π‘‡
↔
=
πœ•π‘₯ πœ•π‘Ÿ
(radial heat transfer)
y
𝑦=𝑦
πœ•π‘‡ πœ•π‘‡
↔
=
πœ•π‘› πœ•π‘¦
z
𝑧=𝑧
πœ•π‘‡ πœ•π‘‡
↔
=
πœ•π‘› πœ•π‘§
𝑦 = π‘Ÿ π‘ π‘–π‘›πœƒ = π‘Ÿπœƒ
↔ πœ•π‘¦ = π‘Ÿπœ•πœƒ
πœ•π‘‡ 1 πœ•π‘‡
↔
=
πœ•π‘¦ π‘Ÿ πœ•πœƒ
𝑧=𝑧
πœ•π‘‡ πœ•π‘‡
↔
=
πœ•π‘› πœ•π‘§
𝐴𝑑 π‘ π‘šπ‘Žπ‘™π‘™ πœƒ: π‘ π‘–π‘›πœƒ β‰ˆ πœƒ, π‘π‘œπ‘ πœƒ β‰ˆ 1
𝑦 = π‘Ÿ 𝑠𝑖𝑛 πœƒ π‘ π‘–π‘›πœ‘ = π‘Ÿπœƒπœ‘
π‘₯ = π‘Ÿ 𝑠𝑖𝑛 πœƒ π‘π‘œπ‘ πœ‘ = π‘Ÿπœƒ
↔ πœ•π‘¦ = π‘Ÿπœƒ πœ•πœ‘
↔ πœ•π‘₯ = π‘Ÿπœ•πœƒ
πœ•π‘‡
1 πœ•π‘‡
πœ•π‘‡ 1 πœ•π‘‡
↔
=
↔
=
πœ•π‘¦ π‘Ÿπœƒ πœ•πœ‘
πœ•π‘₯ π‘Ÿ πœ•πœƒ
b. Newton’s law of cooling
:
π‘ž
= β„Ž(π‘‡π‘Š βˆ’ 𝑇𝑓 )
𝐴
𝑧 = π‘Ÿ π‘π‘œπ‘ πœƒ = π‘Ÿ
πœ•π‘‡ πœ•π‘‡
↔
=
πœ•π‘§ πœ•π‘Ÿ
π‘‡π‘Š : π»π‘’π‘Žπ‘‘ π‘œπ‘“ π‘œπ‘π‘—π‘’π‘π‘‘, 𝑇𝑓 : β„Žπ‘’π‘Žπ‘‘ π‘œπ‘“ 𝑓𝑙𝑒𝑖𝑑, β„Ž: π»π‘’π‘Žπ‘‘ π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘“π‘’π‘Ÿ π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘ (
π‘Š
)
π‘š2 𝐾
c. Stefan-Boltzmann Law:
π‘ž
= πœŽπ‘‡ 4
𝐴
π‘Š
𝐡𝑑𝑒
𝜎 = 5.67 × 10βˆ’8 ( 2 4 ) = 1.7134 (
) : π‘†π‘‘π‘’π‘“π‘Žπ‘› βˆ’ π΅π‘œπ‘™π‘‘π‘§π‘šπ‘Žπ‘› π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘
π‘š 𝐾
β„Ž. 𝑓𝑑 2 ℉4
d. Thermal resistance: (nhiệt trở, na ná Δ‘iện trở)
Infinite slab
Thermal resistance
(π‘π‘‘β„Ž )
Infinite hollow
Cylinder
𝑙𝑛(π‘Ÿπ‘œ /π‘Ÿπ‘– )
2πœ‹π‘…πΎπΏ
𝑏
𝐾𝐴
Surface of liquid
1
β„Žπ΄
If the wall have only 1 way to transfer heat (many layers wall): similar to resistance put
in series:
π‘π‘‘β„Ž,π‘‘π‘œπ‘‘π‘Žπ‘™ = βˆ‘ π‘π‘‘β„Ž
If the wall have more than 1 way to transfer heat similar to resistance put in parallel:
(Ex: The wall have 1 nail stick through its, heat can transfer in two paths: Through nail or
through wall)
1
π‘π‘‘β„Ž,π‘‘π‘œπ‘‘π‘Žπ‘™
=βˆ‘
1
π‘π‘‘β„Ž,π‘π‘Žπ‘‘β„Ž 𝑖
(1 π‘π‘Žπ‘‘β„Ž π‘šπ‘Žπ‘¦ β„Žπ‘Žπ‘£π‘’ π‘šπ‘Žπ‘›π‘¦ π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ 𝑖𝑛 π‘ π‘’π‘Ÿπ‘–π‘’π‘ )
We can calculate the resistance of the path to find temperature of cold side knowing hot
side and heat rate:
π‘ž=
βˆ†π‘‡
π‘π‘‘β„Ž,π‘‘π‘œπ‘‘π‘Žπ‘™
Ex: Calculate the temp at intersection of 2, 3 layers in 3 layers wall
π‘π‘‘β„Ž,π‘‘π‘œπ‘‘π‘Žπ‘™ = 𝑍1 + 𝑍2
Z1
Z2
Z3
Or if do not have A we can call calculate: Overall heat transfer coefficient
π‘ˆ = π΄π‘π‘‘β„Ž,π‘‘π‘œπ‘‘π‘Žπ‘™
II.
The Differential Equation of Heat Conduction:
There are several step to derive equation of heat conduction as problem give:
Step 1: Chose the shape:
_Slab with 3D: (x,y,z)
πœ•
πœ•π‘‡
πœ•
πœ•π‘‡
πœ•
πœ•π‘‡
πœ•π‘‡
(𝐾. ) +
(𝐾. ) + (𝐾. ) + π‘žΜ… = πœŒπΆπ‘
πœ•π‘₯
πœ•π‘₯
πœ•π‘¦
πœ•π‘¦
πœ•π‘§
πœ•π‘§
πœ•π‘‘
With: 𝐢𝑝 (𝐽/𝐾𝑔. 𝐾): 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 β„Žπ‘’π‘Žπ‘‘ π‘π‘Žπ‘π‘Žπ‘π‘–π‘‘π‘¦
π‘Š
π‘žΜ… ( 3 ) : β„Žπ‘’π‘Žπ‘‘ π‘”π‘’π‘›π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›
π‘š
_ 3D cylindrical coordinate system: (π‘Ÿ, πœƒ, 𝑧)
1πœ•
πœ•π‘‡
1 πœ•
πœ•π‘‡
πœ•
πœ•π‘‡
πœ•π‘‡
(𝐾. π‘Ÿ ) + 2
(𝐾. ) + (𝐾. ) + π‘žΜ… = πœŒπΆπ‘
π‘Ÿ πœ•π‘Ÿ
πœ•π‘Ÿ
π‘Ÿ πœ•πœƒ
πœ•πœƒ
πœ•π‘§
πœ•π‘§
πœ•π‘‘
_3D spherical coordinate system (π‘Ÿ, πœƒ, πœ‘)
1πœ•
πœ•(π‘Ÿπ‘‡)
1
πœ•
πœ•π‘‡
1
πœ•
πœ•π‘‡
πœ•π‘‡
(𝐾.
)+ 2
(𝐾. π‘ π‘–π‘›πœ‘ ) + 2 2
(𝐾. ) + π‘žΜ… = πœŒπΆπ‘
π‘Ÿ πœ•π‘Ÿ
πœ•π‘Ÿ
π‘Ÿ π‘ π‘–π‘›πœ‘ πœ•πœ‘
πœ•πœ‘
π‘Ÿ 𝑠𝑖𝑛 πœ‘ πœ•πœƒ
πœ•πœƒ
πœ•π‘‘
Step 2: Chose the condition: (more than 1 usually applied)
Condition
K Constant
Absence of
heat generation
Meaning
Ex: in 3D slab
πœ•
πœ•π‘‡
πœ•
πœ•π‘‡
πœ•
πœ•π‘‡
(𝐾. ) +
(𝐾. ) + (𝐾. )
πœ•π‘₯
πœ•π‘₯
πœ•π‘¦
πœ•π‘¦
πœ•π‘§
πœ•π‘§
πœ• πœ•π‘‡
πœ• πœ•π‘‡
πœ• πœ•π‘‡
= 𝐾{ ( )+
( ) + ( )}
πœ•π‘₯ πœ•π‘₯
πœ•π‘¦ πœ•π‘¦
πœ•π‘§ πœ•π‘§
2
= πΎβˆ‡ 𝑇
π‘žΜ… = 0
Equation change
π‘žΜ… 1 πœ•π‘‡
βˆ‡2 𝑇 + =
𝐾 𝛼 πœ•π‘‘
With
𝐾
𝛼=
; π‘‘β„Žπ‘’π‘Ÿπ‘šπ‘Žπ‘™ 𝑑𝑖𝑓𝑓𝑒𝑠𝑖𝑑𝑦
πœŒπΆπ‘
(π‘š2 /𝑠)
Steady state
In 1 direction
πœ•π‘‡
=0
πœ•π‘‘
Ex: 3D cylindrical: Assume temperature
change only on r coordinate (radial heat
transfer)
πœ•π‘‡ πœ•π‘‡
=
=0
πœ•πœƒ πœ•π‘§
With (𝑒𝑣)β€² = 𝑒′𝑣 + 𝑒𝑣′
In (*)
πœ•
: 𝑖𝑠 π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘‘π‘Žπ‘™ π‘€π‘–π‘‘β„Ž π‘Ÿ,
πœ•π‘Ÿ
Step 3: find 𝑻 𝒂𝒏𝒅
Into equation in I.2.b
(πΎβˆ‡2 𝑇 = 0)
1πœ•
πœ•π‘‡
π‘žΜ… 1 πœ•π‘‡
(π‘Ÿ ) + =
π‘Ÿ πœ•π‘Ÿ πœ•π‘Ÿ
𝐾 𝛼 πœ•π‘‘
1 πœ•π‘‡
πœ• 2𝑇
↔ ( + π‘Ÿ 2 ) + β‹― (βˆ—)
π‘Ÿ πœ•π‘Ÿ
πœ•π‘Ÿ
πœ•π‘‡
π‘Žπ‘›π‘‘ π‘Ÿ 𝑖𝑠 π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘Ÿ
πœ•π‘Ÿ
𝝏𝑻
𝝏𝒙
𝒕𝒐 π’‚π’‘π’‘π’π’Šπ’†π’… π’Šπ’ π’ƒπ’π’–π’…π’‚π’“π’š π’„π’π’π’…π’Šπ’•π’Šπ’π’ ∢
Ex: for 1D slab (condition 4), steady state (condition 2) and K constant (condition 1)
General equation become:
πœ• 2 𝑇 π‘žΜ…
πœ• 2𝑇
π‘žΜ…
+
=
0
↔
=
βˆ’
πœ•π‘₯ 2 𝐾
πœ•π‘₯ 2
𝐾
β†’
πœ•π‘‡
π‘žΜ…
= βˆ’ π‘₯ + 𝐢1
πœ•π‘₯
𝐾
β†’ 𝑇(π‘₯) = βˆ’
π‘žΜ… π‘₯ 2
+ 𝐢1 π‘₯ + 𝐢2
𝐾 2
Ex: for 1D hollow cylinder (condition 4), steady state (condition 2) and K constant
(condition 1)
1πœ•
πœ•π‘‡
π‘žΜ…
1 πœ•π‘‡
πœ• 2𝑇
π‘žΜ…
(𝐾. π‘Ÿ ) + = 0 ↔ ( + π‘Ÿ 2 ) + = 0
π‘Ÿ πœ•π‘Ÿ
πœ•π‘Ÿ
𝐾
π‘Ÿ πœ•π‘Ÿ
πœ•π‘Ÿ
𝐾
1 πœ•π‘‡ πœ• 2 𝑇
π‘žΜ…
↔
+ 2 =βˆ’
π‘Ÿ πœ•π‘Ÿ πœ•π‘Ÿ
𝐾
↔
β†”π‘Ÿ
πœ•π‘‡
πœ• 2𝑇
π‘žΜ…
+ π‘Ÿ 2 = βˆ’ π‘Ÿ (π‘šπ‘’π‘™π‘‘π‘–π‘π‘™π‘¦ π‘Ÿ π‘“π‘œπ‘Ÿ π‘’π‘Žπ‘β„Ž 𝑠𝑖𝑑𝑒)
πœ•π‘Ÿ
πœ•π‘Ÿ
𝐾
πœ•π‘‡
π‘žΜ… π‘Ÿ 2
πœ•π‘‡
π‘žΜ… π‘Ÿ
π‘žΜ… π‘Ÿ 2
=βˆ’
(π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ 2 𝑠𝑖𝑑𝑒) ↔
=βˆ’
β†’ 𝑇(π‘Ÿ) = βˆ’
+ 𝐢1
πœ•π‘Ÿ
𝐾 2
πœ•π‘Ÿ
𝐾2
𝐾 4
Step 4: Find boundary condition for solving C1 and C2 (normally maximum 2 is
require):
Boundary condition
Temperature of surface is maintain at π‘‡π‘ π‘’π‘Ÿ
(π‘₯ = 𝑏, π‘Ÿ = π‘Ÿπ‘œ )
Knowing heat flux (q/A) at surface
(π‘₯ = 𝑏, π‘Ÿ = π‘Ÿπ‘œ )
Special case for heat Insulation surface
flux
Thermal symmetry
(Heat flow in/out from
2 side to center)
Convection Boundary Condition
(Have fluid flow to cool/heat surface with
temperature 𝑇𝑓 and h)
𝑇(𝑏) = π‘‡π‘ π‘’π‘Ÿ
(π‘‡π‘ π‘’π‘Ÿ is a number, position of surface
depend on how you put the origin and
coordinate)
πœ•π‘‡
π‘ž/𝐴 = ( )
πœ•π‘₯ π‘₯=𝑏
πœ•π‘‡
( )
=0
πœ•π‘₯ π‘₯=𝑏
πœ•π‘‡
( )
=0
πœ•π‘₯ π‘₯=𝑏/2
(b is the thickness of wall, if chose x =0 at
center change the x=b/2 by x=0)
πœ•π‘‡
βˆ’πΎ ( )
= βˆ’β„Ž(𝑇𝑓 βˆ’ 𝑇π‘₯=𝑏 )
πœ•π‘₯ π‘₯=𝑏
Step 5: Put C1 and C2 to equation.
(TO SEE HOLD SOLVING CAN SEE TAKE HOME PRACTICE)
III.
Unsteady State Heat Conduction:
1. Some dimension for use:
π΅π‘–π‘œπ‘‘ π‘›π‘’π‘šπ‘π‘’π‘Ÿ: 𝐡𝑖 =
β„ŽπΏ
(π‘…π‘Žπ‘‘π‘–π‘œ π‘œπ‘“ π‘π‘‘β„Ž π‘œπ‘“ π‘ π‘œπ‘™π‘–π‘‘ π‘Žπ‘›π‘‘ π‘π‘‘β„Ž π‘œπ‘“ π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’)
𝐾
πΉπ‘œπ‘’π‘Ÿπ‘–π‘’π‘Ÿ π‘π‘’π‘šπ‘π‘’π‘Ÿ: 𝑋 =
𝛼=
𝛼𝑑
𝐾𝑑
=
(π‘‘π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘›π‘™π‘’π‘ π‘  π‘œπ‘“ π‘‘π‘–π‘šπ‘’)
𝐿2 πœŒπΆπ‘ 𝐿2
𝐾
; π‘‘β„Žπ‘’π‘Ÿπ‘šπ‘Žπ‘™ 𝑑𝑖𝑓𝑓𝑒𝑠𝑖𝑑𝑦 (π‘š2 /𝑠)
πœŒπΆπ‘
1
π΅π‘–π‘œπ‘‘
π‘₯
π‘…π‘’π‘™π‘Žπ‘‘π‘–π‘£π‘’ π‘π‘œπ‘ π‘–π‘‘π‘–π‘œπ‘›: 𝑛 =
𝐿
π‘…π‘’π‘™π‘Žπ‘‘π‘–π‘£π‘’ π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’: π‘š =
Shape
Infinite slab
Infinite slab 1 side insulate
L (Characteristic dimension)
Thickness (b) divide by 2 (b/2)
Treat as infinite slab with thickness: 2b
(double thickness of original slab) cal equal
b
Radius (r)
𝑉
𝐿=
π΄π‘ π‘’π‘Ÿ
Infinite cylinder/sphere
Other shape
2. Way to solve:
Step 1: Define the shape: infinite slab, infinite cylinder, sphere, or cubic,…
If not find K, you can look for the material and find in Appendix H.
Step 2: Define the shape in component infinite slab and infinite cylinder:
Shape
Finite cylinder
Box (cubic)
Component
Infinite of cylinder and infinite slab
3 infinite slabs different (same) thickness
Step 3: Calculate Biot Number: (if more than 1 component Cal for each component)
_If 𝐡𝑖 < 0.1: Neglect internal temperature gradient
β„Žπ΄π‘‘
𝑇 βˆ’ 𝑇𝑓
πœƒ
βˆ’
=
= 𝑒 πœŒπΆπ‘ 𝑉 = 𝑒 βˆ’π΅π‘–×𝑋
πœƒπ‘œ π‘‡π‘œ βˆ’ 𝑇𝑓
_ If 𝐡𝑖 > 0.1:
πœƒ
Step 4: Define πœƒ 𝒐𝒇 that shape:
π‘œ
3
πœƒ
πœƒ
𝐸π‘₯: ( )
= [( )
]
πœƒπ‘œ 𝑐𝑒𝑏𝑖𝑐
πœƒπ‘œ 𝑖𝑛𝑓𝑖𝑛𝑖𝑑𝑒 π‘ π‘™π‘Žπ‘
πœƒ
Step 5: Calculate Biot, Fourier, m, n for each component and find for πœƒ in Appendix F:
π‘œ
If there are no line near with you’re calculate m:
Ex: m = 0.6, but in chart only have 0.5 and 0.75:
πœƒ
πœƒ
π‘œ
π‘œ
You can find πœƒ for 0.5 and 0.75, assume m and πœƒ are linear:
πœƒ
= π‘Žπ‘š + 𝑏
πœƒπ‘œ
And use 2 point at 0.5 and 0.75 you are found to calculate a and b
πœƒ
Step 6: Found the πœƒ of the shape and calculate T
π‘œ
ο‚·
There are some problem like give you T and make you find t:
πœƒ
Step 1: You will calculate πœƒ of the shape and write it component:
π‘œ
Ex:
πœƒ
πœƒ
πœƒ
( )
=( )
( )
πœƒπ‘œ 𝑓𝑖 𝑐𝑦𝑙
πœƒπ‘œ 𝑖𝑛𝑓𝑖 𝑐𝑦𝑙 πœƒπ‘œ 𝑖𝑛𝑓𝑖 π‘ π‘™π‘Žπ‘
Step 2: Then you calculate the Fourier number of component through time:
Ex:𝑋𝑖𝑛𝑓𝑖 π‘ π‘™π‘Žπ‘ = π‘Ž × π‘‘,
𝑋𝑖𝑛𝑓𝑖 𝑐𝑦𝑙 = 𝑏 × π‘‘
Step 3: Then you will guess :)))))) any relation you want: (CHOSE ONLY 1 COMPONENT)
Ex
πœƒ
πœƒ
πœƒ
πœƒ
( )
= √( )
π‘œπ‘Ÿ ( )
= 1/2 ( )
πœƒπ‘œ 𝑖𝑛𝑓𝑖 𝑐𝑦𝑙
πœƒπ‘œ 𝑓𝑖 𝑐𝑦𝑙
πœƒπ‘œ 𝑖𝑛𝑓𝑖 𝑐𝑦𝑙
πœƒπ‘œ 𝑓𝑖 𝑐𝑦𝑙
(π‘Œπ‘œπ‘’ π‘π‘Žπ‘› β„Žπ‘Žπ‘£π‘’ π‘‘β„Žπ‘’ π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘β„Žπ‘œπ‘ π‘’ π‘π‘Žπ‘¦ π‘π‘œπ‘›π‘ π‘–π‘‘π‘’π‘Ÿ π‘‘β„Žπ‘’ π‘Ÿπ‘Žπ‘‘π‘–π‘œ π‘œπ‘“ π‘’π‘Žπ‘β„Ž 𝐿 π‘œπ‘“ π‘’π‘Žπ‘β„Ž π‘π‘œπ‘šπ‘π‘œπ‘›π‘’π‘‘)
πœƒ
Step 4: Then put it in(πœƒ )
π‘œ
of the shape to calculate each of component, put in appendix
𝑖𝑛𝑓𝑖 𝑐𝑦𝑙
of find time by each component.
πœƒ
πœƒ
π‘œ
π‘œ
Step 5Take that time to find other componentπœƒ . Then cal (πœƒ )
π‘ β„Žπ‘Žπ‘π‘’
πœƒ
Step 6: If πœƒ of the shape not fit, adjust t and try again
π‘œ
3. Fin:
a. Some equation:
We have the fin with:
𝑒π‘₯𝑑𝑒𝑛𝑑𝑒𝑑 𝐿 , 𝐴𝑑𝑖𝑝 𝑖𝑠 π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘‘β„Žπ‘’ 𝑑𝑖𝑝 π‘Žπ‘›π‘‘ 𝑃 𝑖𝑠 π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘œπ‘“ π‘‘β„Žπ‘’ 𝑑𝑖𝑝
𝑀 = βˆšβ„Žπ‘ƒπΎπ΄π‘‘π‘–π‘ ,
𝑓𝑖𝑛 𝑒𝑓𝑓𝑒𝑐𝑑𝑖𝑣𝑒𝑛𝑒𝑠𝑠: πœ€π‘“ =
π‘š=√
β„Žπ‘ƒ
𝐾𝐴𝑑𝑖𝑝
π‘žπ‘“
β„Žπ‘’π‘Žπ‘‘ π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘“π‘’π‘Ÿ π‘€π‘–π‘‘β„Ž 𝑓𝑖𝑛
=
π‘ž
β„Žπ‘’π‘Žπ‘‘ π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘“π‘’π‘Ÿ π‘€π‘–π‘‘β„Žπ‘œπ‘’π‘‘ π‘‘β„Žπ‘’ 𝑓𝑖𝑛
𝐾𝑃
πœ€π‘“ = √
π‘‘π‘Žπ‘›β„Ž(π‘šπΏ) (π‘Žπ‘‘π‘–π‘Žπ‘π‘Žπ‘‘π‘–π‘ 𝑓𝑖𝑛)
β„Žπ΄π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’
𝑓𝑖𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦: 𝑛𝑓 =
π‘žπ‘Ÿπ‘’π‘Žπ‘™
π‘žπ‘Ÿπ‘’π‘Žπ‘™
=
π‘žπ‘–π‘‘π‘’π‘Žπ‘™ (β„Žπ‘’π‘Žπ‘‘ π‘Žπ‘‘ 𝑑𝑖𝑝 π‘’π‘žπ‘’π‘Žπ‘™ π‘Žπ‘‘ π‘π‘Žπ‘ π‘’) β„Žπ΄π‘ π‘’π‘Ÿ (𝑇 βˆ’ 𝑇𝐿 )
b. Calculation:
_For only pin fin:
_For circular and other strainght fin:
(π‘ŸπΏ βˆ’ π‘Ÿπ‘œ )