Download Heat midterm note

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
HEAT TRANSFER OPERATION
MIDTERM NOTE
I.
LAW OF HEAT TRANSFER:
1. Fundamental law:
Define: ALWAYS HAVE TO SATISFY, REGARDLESS OF SITUATION.
(Xài lúc nào cũng đúng)
a. Types of system consider:
_ Closed system:
+ Fix amount of matter (𝑡𝑜𝑡𝑎𝑙 𝑚𝑜𝑙𝑒𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)
+ No mass flows across the system boundaries (𝑚𝑎𝑠𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)
+ Energy flow may occur across the boundaries (exchange heat, work to surrounding)
+ The boundaries may change with time (𝑉 𝑐ℎ𝑎𝑛𝑔𝑒)
_Open System - Control Volume
+ Volume of fixed size containing matter
+ Mass flows across the system boundaries (𝑚𝑎𝑠𝑠 𝑐ℎ𝑎𝑛𝑔𝑒)
+ Energy flow occur across the boundaries
+ The boundaries may change with time
b. Law of Conservation of Mass:
_For closed system : 𝑚𝑎𝑠𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (vô TH này thì mass trước = mass sau)
_ Fluid flow through a control volume:
𝑟𝑎𝑡𝑒 𝑚𝑎𝑠𝑠𝑖𝑛 − 𝑟𝑎𝑡𝑒 𝑚𝑎𝑠𝑠𝑜𝑢𝑡 − 𝑚𝑎𝑠𝑠 𝑎𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑦𝑠𝑡𝑒𝑚 = 0
With:
𝑟𝑎𝑡𝑒 𝑚𝑎𝑠𝑠 =
𝑑𝑚
𝑑𝑉
𝑑𝑥
=𝜌
= 𝜌𝑑𝐴
= 𝜌𝐴𝑣 (1 − 𝐷𝑖𝑚𝑒𝑠𝑖𝑜𝑛, 𝑠𝑚𝑎𝑙𝑙 𝐴)
𝑑𝑡
𝑑𝑡
𝑑𝑡
𝑟𝑎𝑡𝑒 𝑚𝑎𝑠𝑠𝑖𝑛 = ∬
𝜌𝑣𝑖𝑛 𝑑𝐴𝑖𝑛 (𝑖𝑛𝑡𝑒𝑟𝑔𝑒𝑟𝑎𝑡𝑒𝑑 𝑎𝑏𝑜𝑣𝑒 𝑓𝑜𝑟 ℎ𝑜𝑙𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒)
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑟𝑎𝑡𝑒 𝑚𝑎𝑠𝑠𝑖𝑛 = ∬𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝜌𝑣𝑜𝑢𝑡 𝑑𝐴𝑜𝑢𝑡
𝑚𝑎𝑠𝑠 𝑎𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑦𝑠𝑡𝑒𝑚 =
𝜕
∭
𝜌𝑑𝑉
𝜕𝑡 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒
Equation (1)
∬
𝜌𝑣𝑖𝑛 𝑑𝐴𝑖𝑛 − ∬
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝜌𝑣𝑜𝑢𝑡 𝑑𝐴𝑜𝑢𝑡 =
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝜕
{∭
𝜌𝑑𝑉 }
𝜕𝑡
𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒
(Description : Rate of mass tại 1 điểm là 𝜌𝐴𝑣 vói v theo phương x, do xét trong hệ vật
diện tich cố định, Rate of mass trên cả mặt của vật thì lấy nguyên hàm 2 phương y, z.
Tương tự với mass accumulation nếu V đổi theo 3 phương thì ta nguyên hàm theo 3
phương đêr có đụowc tổng thay đổi của V)
Types of fluids
Steady state
(No accumulation)
Compressible fluid
Non-steady state
∬ 𝜌𝑣𝑖𝑛 𝑑𝐴𝑖𝑛 = ∬ 𝜌𝑣𝑜𝑢𝑡 𝑑𝐴𝑜𝑢𝑡
𝐶.𝑉
Incompressible fluid
(𝜌 = 𝑐𝑜𝑛𝑠𝑡)
𝐶.𝑉
∬ 𝑣𝑖𝑛 𝑑𝐴𝑖𝑛 = ∬ 𝑣𝑜𝑢𝑡 𝑑𝐴𝑜𝑢𝑡
𝐶.𝑉
Equation (1)
Equation (1)
𝐶.𝑉
_In 1 dimensional : Remove term rate mass out of the integrate (Do A không đổi theo
phương y,z; A tại điểm vào và ra của mass là hằng số)
Types of fluids
Steady state
(No accumulation)
𝜌𝑖𝑛 𝑣𝑖𝑛 𝐴𝑖𝑛 = 𝜌𝑜𝑢𝑡 𝑣𝑜𝑢𝑡 𝐴𝑜𝑢𝑡
Compressible fluid
𝑣𝑖𝑛 𝐴𝑖𝑛 = 𝑣𝑜𝑢𝑡 𝐴𝑜𝑢𝑡
Incompressible fluid
(𝜌 = 𝑐𝑜𝑛𝑠𝑡)
Non-steady state
𝜌𝑖𝑛 𝑣𝑖𝑛 𝐴𝑖𝑛 − 𝜌𝑜𝑢𝑡 𝑣𝑜𝑢𝑡 𝐴𝑜𝑢𝑡 = 𝑎𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒
𝑣𝑖𝑛 𝐴𝑖𝑛 − 𝑣𝑜𝑢𝑡 𝐴𝑜𝑢𝑡 = 𝑎𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒
c. Newton’s Second law of motion:
_For close system: ∑ 𝐹⃗ =
𝑑
𝑑𝑡
(𝑚𝑣⃗) (𝑓𝑜𝑙𝑜𝑤 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑦𝑜𝑢 𝑐ℎ𝑜𝑠𝑒)
_Fluid flow through a control volume:
𝑆𝑢𝑚 𝑓𝑜𝑟𝑐𝑒 = 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑢𝑡 − 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡 𝑖𝑛 + 𝐴𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒
With:
𝑟𝑎𝑡𝑒 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 =
𝑑𝐹
𝑑𝑚
𝑑𝑥
= 𝑣⃗
= 𝑣⃗𝜌𝑑𝐴
= 𝑣⃗𝜌𝐴𝑣𝑛 (1 − 𝐷𝑖𝑚𝑒𝑠𝑖𝑜𝑛, 𝑠𝑚𝑎𝑙𝑙 𝐴)
𝑑𝑡
𝑑𝑡
𝑑𝑡
n
n
𝑣⃗: 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑢𝑠𝑒 𝑐ℎ𝑜𝑠𝑒)
𝑛⃗⃗ ∶ 𝑉𝑒𝑐𝑡𝑜𝑟 𝑛𝑜𝑟𝑚𝑎𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒
v in
𝑣𝑛 = |𝑣||𝑛|𝑐𝑜𝑠𝜃
_Fluid flow through in 1 direction:
∑ 𝐹𝑥 = − ∬ 𝑣𝑥 𝜌𝑣𝑛 𝑑𝐴𝑖𝑛 + ∬ 𝑣𝑥 𝜌𝑣𝑛 𝑑𝐴𝑜𝑢𝑡 +
𝐶𝑆
𝐶𝑆
𝜕
{∭ 𝜌𝑣𝑥 𝑑𝑉 }
𝜕𝑡
𝐶𝑉
(𝑣𝑛 là tích vector có phương của vector vận tốc, và vector vuông góc với mặt phẳng vật,
trong slide cth chung là 𝑣. 𝑛 thì tích có hướng này sẽ âm nếu v và n ngược chiều lúc đi
vào)
d. 1st Law of Thermodynamics:
_For closed system:
𝛿𝑄
𝛿𝑡
−
𝛿𝑊
𝛿𝑡
=
𝛿𝐸
𝛿𝑡
Usually no work involve: Heat change equal energy change:
𝛿𝑄 𝛿𝐸
=
𝛿𝑡
𝛿𝑡
2. Subsidiary law:
a. Fourier’s law of heat conduction:
𝑞
𝜕𝑇
= −𝐾
𝐴
𝜕𝑛
𝑞
𝑊
𝑞: ℎ𝑒𝑎𝑡 𝑟𝑎𝑡𝑒 (𝑊 𝑜𝑟 𝐽/𝑠), : 𝐻𝑒𝑎𝑡 𝑓𝑙𝑢𝑥 (𝑊/𝑚2 ), 𝐾: 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (
)
𝐴
𝑚. 𝐾
𝜕𝑇
: 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑖𝑛 𝑐𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒
𝜕𝑛
_If K constant: isotropic material
_One dimension, steady state situation:
+Infinite slab:
𝑞
𝑇𝐻 − 𝑇𝐶
=𝐾
𝐴
𝑏
𝑇𝐻 /𝑇𝐶 ∶ 𝑡𝑒𝑚𝑝 𝑎𝑡 ℎ𝑜𝑡/𝑐𝑜𝑙𝑑 𝑠𝑖𝑑𝑒, 𝑏: 𝑡ℎ𝑖𝑐𝑘 𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑎𝑙𝑙/𝑠𝑙𝑎𝑏 (𝑚)
v out
𝑇 𝑎𝑡 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑝𝑜𝑖𝑛𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑥 𝑓𝑜𝑟𝑚 ℎ𝑜𝑡 𝑓𝑎𝑐𝑒:
𝑇𝐻 − 𝑇
𝑥
=
𝑇𝐻 − 𝑇𝐶 𝑏
+Infinite long hollow cylinder
𝑟𝑜 (𝑟𝑖 ): 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝑖𝑛𝑠𝑖𝑑𝑒), 𝐿: 𝑙𝑒𝑛𝑔ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
𝑇𝑜 (𝑇𝑖 ): 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝑖𝑛𝑠𝑖𝑑𝑒)
𝑟𝑖
𝑇𝑖
𝑞
𝑞
𝜕𝑇
𝑞
𝜕𝑟
𝑞
𝑟𝑖
=
= −𝐾
↔
∫
= −𝐾 ∫ 𝜕𝑇 ↔
𝑙𝑛 ( ) = −𝐾(𝑇𝑖 − 𝑇𝑜 )
𝐴 2𝜋𝑟𝐿
𝜕𝑟
2𝜋𝐿
𝑟
2𝜋𝐿
𝑟𝑜
𝑟𝑜
𝑇𝑜
↔𝑞=−
2𝜋𝐾𝐿(𝑇𝑖 − 𝑇𝑜 )
𝑟
𝑙𝑛 (𝑟𝑖 )
𝑜
𝑇 𝑎𝑡 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑟 ∶
𝑇 − 𝑇𝑖
𝑙𝑛(𝑟/𝑟𝑖 )
=
𝑇𝑖 − 𝑇𝑜 𝑙𝑛(𝑟𝑜 /𝑟𝑖 )
_At not steady state:
Coordinate
Cartesian (slab)
Cylindrical
Sphere
x
𝑥=𝑥
𝜕𝑇 𝜕𝑇
↔
=
𝜕𝑛 𝜕𝑥
𝑥 = 𝑟 𝑐𝑜𝑠𝜃 = 𝑟
↔ 𝜕𝑥 = 𝜕𝑟
𝜕𝑇 𝜕𝑇
↔
=
𝜕𝑥 𝜕𝑟
(radial heat transfer)
y
𝑦=𝑦
𝜕𝑇 𝜕𝑇
↔
=
𝜕𝑛 𝜕𝑦
z
𝑧=𝑧
𝜕𝑇 𝜕𝑇
↔
=
𝜕𝑛 𝜕𝑧
𝑦 = 𝑟 𝑠𝑖𝑛𝜃 = 𝑟𝜃
↔ 𝜕𝑦 = 𝑟𝜕𝜃
𝜕𝑇 1 𝜕𝑇
↔
=
𝜕𝑦 𝑟 𝜕𝜃
𝑧=𝑧
𝜕𝑇 𝜕𝑇
↔
=
𝜕𝑛 𝜕𝑧
𝐴𝑡 𝑠𝑚𝑎𝑙𝑙 𝜃: 𝑠𝑖𝑛𝜃 ≈ 𝜃, 𝑐𝑜𝑠𝜃 ≈ 1
𝑦 = 𝑟 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛𝜑 = 𝑟𝜃𝜑
𝑥 = 𝑟 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠𝜑 = 𝑟𝜃
↔ 𝜕𝑦 = 𝑟𝜃 𝜕𝜑
↔ 𝜕𝑥 = 𝑟𝜕𝜃
𝜕𝑇
1 𝜕𝑇
𝜕𝑇 1 𝜕𝑇
↔
=
↔
=
𝜕𝑦 𝑟𝜃 𝜕𝜑
𝜕𝑥 𝑟 𝜕𝜃
b. Newton’s law of cooling
:
𝑞
= ℎ(𝑇𝑊 − 𝑇𝑓 )
𝐴
𝑧 = 𝑟 𝑐𝑜𝑠𝜃 = 𝑟
𝜕𝑇 𝜕𝑇
↔
=
𝜕𝑧 𝜕𝑟
𝑇𝑊 : 𝐻𝑒𝑎𝑡 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡, 𝑇𝑓 : ℎ𝑒𝑎𝑡 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑, ℎ: 𝐻𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (
𝑊
)
𝑚2 𝐾
c. Stefan-Boltzmann Law:
𝑞
= 𝜎𝑇 4
𝐴
𝑊
𝐵𝑡𝑢
𝜎 = 5.67 × 10−8 ( 2 4 ) = 1.7134 (
) : 𝑆𝑡𝑒𝑓𝑎𝑛 − 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝑚 𝐾
ℎ. 𝑓𝑡 2 ℉4
d. Thermal resistance: (nhiệt trở, na ná điện trở)
Infinite slab
Thermal resistance
(𝑍𝑡ℎ )
Infinite hollow
Cylinder
𝑙𝑛(𝑟𝑜 /𝑟𝑖 )
2𝜋𝑅𝐾𝐿
𝑏
𝐾𝐴
Surface of liquid
1
ℎ𝐴
If the wall have only 1 way to transfer heat (many layers wall): similar to resistance put
in series:
𝑍𝑡ℎ,𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑍𝑡ℎ
If the wall have more than 1 way to transfer heat similar to resistance put in parallel:
(Ex: The wall have 1 nail stick through its, heat can transfer in two paths: Through nail or
through wall)
1
𝑍𝑡ℎ,𝑡𝑜𝑡𝑎𝑙
=∑
1
𝑍𝑡ℎ,𝑝𝑎𝑡ℎ 𝑖
(1 𝑝𝑎𝑡ℎ 𝑚𝑎𝑦 ℎ𝑎𝑣𝑒 𝑚𝑎𝑛𝑦 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑠𝑒𝑟𝑖𝑒𝑠)
We can calculate the resistance of the path to find temperature of cold side knowing hot
side and heat rate:
𝑞=
∆𝑇
𝑍𝑡ℎ,𝑡𝑜𝑡𝑎𝑙
Ex: Calculate the temp at intersection of 2, 3 layers in 3 layers wall
𝑍𝑡ℎ,𝑡𝑜𝑡𝑎𝑙 = 𝑍1 + 𝑍2
Z1
Z2
Z3
Or if do not have A we can call calculate: Overall heat transfer coefficient
𝑈 = 𝐴𝑍𝑡ℎ,𝑡𝑜𝑡𝑎𝑙
II.
The Differential Equation of Heat Conduction:
There are several step to derive equation of heat conduction as problem give:
Step 1: Chose the shape:
_Slab with 3D: (x,y,z)
𝜕
𝜕𝑇
𝜕
𝜕𝑇
𝜕
𝜕𝑇
𝜕𝑇
(𝐾. ) +
(𝐾. ) + (𝐾. ) + 𝑞̅ = 𝜌𝐶𝑝
𝜕𝑥
𝜕𝑥
𝜕𝑦
𝜕𝑦
𝜕𝑧
𝜕𝑧
𝜕𝑡
With: 𝐶𝑝 (𝐽/𝐾𝑔. 𝐾): 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑊
𝑞̅ ( 3 ) : ℎ𝑒𝑎𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
𝑚
_ 3D cylindrical coordinate system: (𝑟, 𝜃, 𝑧)
1𝜕
𝜕𝑇
1 𝜕
𝜕𝑇
𝜕
𝜕𝑇
𝜕𝑇
(𝐾. 𝑟 ) + 2
(𝐾. ) + (𝐾. ) + 𝑞̅ = 𝜌𝐶𝑝
𝑟 𝜕𝑟
𝜕𝑟
𝑟 𝜕𝜃
𝜕𝜃
𝜕𝑧
𝜕𝑧
𝜕𝑡
_3D spherical coordinate system (𝑟, 𝜃, 𝜑)
1𝜕
𝜕(𝑟𝑇)
1
𝜕
𝜕𝑇
1
𝜕
𝜕𝑇
𝜕𝑇
(𝐾.
)+ 2
(𝐾. 𝑠𝑖𝑛𝜑 ) + 2 2
(𝐾. ) + 𝑞̅ = 𝜌𝐶𝑝
𝑟 𝜕𝑟
𝜕𝑟
𝑟 𝑠𝑖𝑛𝜑 𝜕𝜑
𝜕𝜑
𝑟 𝑠𝑖𝑛 𝜑 𝜕𝜃
𝜕𝜃
𝜕𝑡
Step 2: Chose the condition: (more than 1 usually applied)
Condition
K Constant
Absence of
heat generation
Meaning
Ex: in 3D slab
𝜕
𝜕𝑇
𝜕
𝜕𝑇
𝜕
𝜕𝑇
(𝐾. ) +
(𝐾. ) + (𝐾. )
𝜕𝑥
𝜕𝑥
𝜕𝑦
𝜕𝑦
𝜕𝑧
𝜕𝑧
𝜕 𝜕𝑇
𝜕 𝜕𝑇
𝜕 𝜕𝑇
= 𝐾{ ( )+
( ) + ( )}
𝜕𝑥 𝜕𝑥
𝜕𝑦 𝜕𝑦
𝜕𝑧 𝜕𝑧
2
= 𝐾∇ 𝑇
𝑞̅ = 0
Equation change
𝑞̅ 1 𝜕𝑇
∇2 𝑇 + =
𝐾 𝛼 𝜕𝑡
With
𝐾
𝛼=
; 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑡𝑦
𝜌𝐶𝑝
(𝑚2 /𝑠)
Steady state
In 1 direction
𝜕𝑇
=0
𝜕𝑡
Ex: 3D cylindrical: Assume temperature
change only on r coordinate (radial heat
transfer)
𝜕𝑇 𝜕𝑇
=
=0
𝜕𝜃 𝜕𝑧
With (𝑢𝑣)′ = 𝑢′𝑣 + 𝑢𝑣′
In (*)
𝜕
: 𝑖𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑎𝑙 𝑤𝑖𝑡ℎ 𝑟,
𝜕𝑟
Step 3: find 𝑻 𝒂𝒏𝒅
Into equation in I.2.b
(𝐾∇2 𝑇 = 0)
1𝜕
𝜕𝑇
𝑞̅ 1 𝜕𝑇
(𝑟 ) + =
𝑟 𝜕𝑟 𝜕𝑟
𝐾 𝛼 𝜕𝑡
1 𝜕𝑇
𝜕 2𝑇
↔ ( + 𝑟 2 ) + ⋯ (∗)
𝑟 𝜕𝑟
𝜕𝑟
𝜕𝑇
𝑎𝑛𝑑 𝑟 𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟
𝜕𝑟
𝝏𝑻
𝝏𝒙
𝒕𝒐 𝒂𝒑𝒑𝒍𝒊𝒆𝒅 𝒊𝒏 𝒃𝒐𝒖𝒅𝒂𝒓𝒚 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 ∶
Ex: for 1D slab (condition 4), steady state (condition 2) and K constant (condition 1)
General equation become:
𝜕 2 𝑇 𝑞̅
𝜕 2𝑇
𝑞̅
+
=
0
↔
=
−
𝜕𝑥 2 𝐾
𝜕𝑥 2
𝐾
→
𝜕𝑇
𝑞̅
= − 𝑥 + 𝐶1
𝜕𝑥
𝐾
→ 𝑇(𝑥) = −
𝑞̅ 𝑥 2
+ 𝐶1 𝑥 + 𝐶2
𝐾 2
Ex: for 1D hollow cylinder (condition 4), steady state (condition 2) and K constant
(condition 1)
1𝜕
𝜕𝑇
𝑞̅
1 𝜕𝑇
𝜕 2𝑇
𝑞̅
(𝐾. 𝑟 ) + = 0 ↔ ( + 𝑟 2 ) + = 0
𝑟 𝜕𝑟
𝜕𝑟
𝐾
𝑟 𝜕𝑟
𝜕𝑟
𝐾
1 𝜕𝑇 𝜕 2 𝑇
𝑞̅
↔
+ 2 =−
𝑟 𝜕𝑟 𝜕𝑟
𝐾
↔
↔𝑟
𝜕𝑇
𝜕 2𝑇
𝑞̅
+ 𝑟 2 = − 𝑟 (𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 𝑟 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑖𝑑𝑒)
𝜕𝑟
𝜕𝑟
𝐾
𝜕𝑇
𝑞̅ 𝑟 2
𝜕𝑇
𝑞̅ 𝑟
𝑞̅ 𝑟 2
=−
(𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 2 𝑠𝑖𝑑𝑒) ↔
=−
→ 𝑇(𝑟) = −
+ 𝐶1
𝜕𝑟
𝐾 2
𝜕𝑟
𝐾2
𝐾 4
Step 4: Find boundary condition for solving C1 and C2 (normally maximum 2 is
require):
Boundary condition
Temperature of surface is maintain at 𝑇𝑠𝑢𝑟
(𝑥 = 𝑏, 𝑟 = 𝑟𝑜 )
Knowing heat flux (q/A) at surface
(𝑥 = 𝑏, 𝑟 = 𝑟𝑜 )
Special case for heat Insulation surface
flux
Thermal symmetry
(Heat flow in/out from
2 side to center)
Convection Boundary Condition
(Have fluid flow to cool/heat surface with
temperature 𝑇𝑓 and h)
𝑇(𝑏) = 𝑇𝑠𝑢𝑟
(𝑇𝑠𝑢𝑟 is a number, position of surface
depend on how you put the origin and
coordinate)
𝜕𝑇
𝑞/𝐴 = ( )
𝜕𝑥 𝑥=𝑏
𝜕𝑇
( )
=0
𝜕𝑥 𝑥=𝑏
𝜕𝑇
( )
=0
𝜕𝑥 𝑥=𝑏/2
(b is the thickness of wall, if chose x =0 at
center change the x=b/2 by x=0)
𝜕𝑇
−𝐾 ( )
= −ℎ(𝑇𝑓 − 𝑇𝑥=𝑏 )
𝜕𝑥 𝑥=𝑏
Step 5: Put C1 and C2 to equation.
(TO SEE HOLD SOLVING CAN SEE TAKE HOME PRACTICE)
III.
Unsteady State Heat Conduction:
1. Some dimension for use:
𝐵𝑖𝑜𝑡 𝑛𝑢𝑚𝑏𝑒𝑟: 𝐵𝑖 =
ℎ𝐿
(𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑍𝑡ℎ 𝑜𝑓 𝑠𝑜𝑙𝑖𝑑 𝑎𝑛𝑑 𝑍𝑡ℎ 𝑜𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑒)
𝐾
𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑁𝑢𝑚𝑏𝑒𝑟: 𝑋 =
𝛼=
𝛼𝑡
𝐾𝑡
=
(𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 𝑜𝑓 𝑡𝑖𝑚𝑒)
𝐿2 𝜌𝐶𝑝 𝐿2
𝐾
; 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑡𝑦 (𝑚2 /𝑠)
𝜌𝐶𝑝
1
𝐵𝑖𝑜𝑡
𝑥
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛: 𝑛 =
𝐿
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒: 𝑚 =
Shape
Infinite slab
Infinite slab 1 side insulate
L (Characteristic dimension)
Thickness (b) divide by 2 (b/2)
Treat as infinite slab with thickness: 2b
(double thickness of original slab) cal equal
b
Radius (r)
𝑉
𝐿=
𝐴𝑠𝑢𝑟
Infinite cylinder/sphere
Other shape
2. Way to solve:
Step 1: Define the shape: infinite slab, infinite cylinder, sphere, or cubic,…
If not find K, you can look for the material and find in Appendix H.
Step 2: Define the shape in component infinite slab and infinite cylinder:
Shape
Finite cylinder
Box (cubic)
Component
Infinite of cylinder and infinite slab
3 infinite slabs different (same) thickness
Step 3: Calculate Biot Number: (if more than 1 component Cal for each component)
_If 𝐵𝑖 < 0.1: Neglect internal temperature gradient
ℎ𝐴𝑡
𝑇 − 𝑇𝑓
𝜃
−
=
= 𝑒 𝜌𝐶𝑝 𝑉 = 𝑒 −𝐵𝑖×𝑋
𝜃𝑜 𝑇𝑜 − 𝑇𝑓
_ If 𝐵𝑖 > 0.1:
𝜃
Step 4: Define 𝜃 𝒐𝒇 that shape:
𝑜
3
𝜃
𝜃
𝐸𝑥: ( )
= [( )
]
𝜃𝑜 𝑐𝑢𝑏𝑖𝑐
𝜃𝑜 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑙𝑎𝑏
𝜃
Step 5: Calculate Biot, Fourier, m, n for each component and find for 𝜃 in Appendix F:
𝑜
If there are no line near with you’re calculate m:
Ex: m = 0.6, but in chart only have 0.5 and 0.75:
𝜃
𝜃
𝑜
𝑜
You can find 𝜃 for 0.5 and 0.75, assume m and 𝜃 are linear:
𝜃
= 𝑎𝑚 + 𝑏
𝜃𝑜
And use 2 point at 0.5 and 0.75 you are found to calculate a and b
𝜃
Step 6: Found the 𝜃 of the shape and calculate T
𝑜

There are some problem like give you T and make you find t:
𝜃
Step 1: You will calculate 𝜃 of the shape and write it component:
𝑜
Ex:
𝜃
𝜃
𝜃
( )
=( )
( )
𝜃𝑜 𝑓𝑖 𝑐𝑦𝑙
𝜃𝑜 𝑖𝑛𝑓𝑖 𝑐𝑦𝑙 𝜃𝑜 𝑖𝑛𝑓𝑖 𝑠𝑙𝑎𝑏
Step 2: Then you calculate the Fourier number of component through time:
Ex:𝑋𝑖𝑛𝑓𝑖 𝑠𝑙𝑎𝑏 = 𝑎 × 𝑡,
𝑋𝑖𝑛𝑓𝑖 𝑐𝑦𝑙 = 𝑏 × 𝑡
Step 3: Then you will guess :)))))) any relation you want: (CHOSE ONLY 1 COMPONENT)
Ex
𝜃
𝜃
𝜃
𝜃
( )
= √( )
𝑜𝑟 ( )
= 1/2 ( )
𝜃𝑜 𝑖𝑛𝑓𝑖 𝑐𝑦𝑙
𝜃𝑜 𝑓𝑖 𝑐𝑦𝑙
𝜃𝑜 𝑖𝑛𝑓𝑖 𝑐𝑦𝑙
𝜃𝑜 𝑓𝑖 𝑐𝑦𝑙
(𝑌𝑜𝑢 𝑐𝑎𝑛 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑐ℎ𝑜𝑠𝑒 𝑏𝑎𝑦 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑒𝑎𝑐ℎ 𝐿 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑡)
𝜃
Step 4: Then put it in(𝜃 )
𝑜
of the shape to calculate each of component, put in appendix
𝑖𝑛𝑓𝑖 𝑐𝑦𝑙
of find time by each component.
𝜃
𝜃
𝑜
𝑜
Step 5Take that time to find other component𝜃 . Then cal (𝜃 )
𝑠ℎ𝑎𝑝𝑒
𝜃
Step 6: If 𝜃 of the shape not fit, adjust t and try again
𝑜
3. Fin:
a. Some equation:
We have the fin with:
𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝐿 , 𝐴𝑡𝑖𝑝 𝑖𝑠 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑖𝑝 𝑎𝑛𝑑 𝑃 𝑖𝑠 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑖𝑝
𝑀 = √ℎ𝑃𝐾𝐴𝑡𝑖𝑝 ,
𝑓𝑖𝑛 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠: 𝜀𝑓 =
𝑚=√
ℎ𝑃
𝐾𝐴𝑡𝑖𝑝
𝑞𝑓
ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑤𝑖𝑡ℎ 𝑓𝑖𝑛
=
𝑞
ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡ℎ𝑒 𝑓𝑖𝑛
𝐾𝑃
𝜀𝑓 = √
𝑡𝑎𝑛ℎ(𝑚𝐿) (𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 𝑓𝑖𝑛)
ℎ𝐴𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑓𝑖𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦: 𝑛𝑓 =
𝑞𝑟𝑒𝑎𝑙
𝑞𝑟𝑒𝑎𝑙
=
𝑞𝑖𝑑𝑒𝑎𝑙 (ℎ𝑒𝑎𝑡 𝑎𝑡 𝑡𝑖𝑝 𝑒𝑞𝑢𝑎𝑙 𝑎𝑡 𝑏𝑎𝑠𝑒) ℎ𝐴𝑠𝑢𝑟 (𝑇 − 𝑇𝐿 )
b. Calculation:
_For only pin fin:
_For circular and other strainght fin:
(𝑟𝐿 − 𝑟𝑜 )