Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
HEAT TRANSFER OPERATION
MIDTERM NOTE
I.
LAW OF HEAT TRANSFER:
1. Fundamental law:
Define: ALWAYS HAVE TO SATISFY, REGARDLESS OF SITUATION.
(Xài lúc nào cΕ©ng Δúng)
a. Types of system consider:
_ Closed system:
+ Fix amount of matter (π‘ππ‘ππ πππππ = ππππ π‘πππ‘)
+ No mass flows across the system boundaries (πππ π = ππππ π‘πππ‘)
+ Energy flow may occur across the boundaries (exchange heat, work to surrounding)
+ The boundaries may change with time (π πβππππ)
_Open System - Control Volume
+ Volume of fixed size containing matter
+ Mass flows across the system boundaries (πππ π πβππππ)
+ Energy flow occur across the boundaries
+ The boundaries may change with time
b. Law of Conservation of Mass:
_For closed system : πππ π = ππππ π‘πππ‘ (vô TH này thì mass trΖ°α»c = mass sau)
_ Fluid flow through a control volume:
πππ‘π πππ π ππ β πππ‘π πππ π ππ’π‘ β πππ π πππ’ππ’πππ‘ππππ π¦π π‘ππ = 0
With:
πππ‘π πππ π =
ππ
ππ
ππ₯
=π
= πππ΄
= ππ΄π£ (1 β π·ππππ πππ, π ππππ π΄)
ππ‘
ππ‘
ππ‘
πππ‘π πππ π ππ = β¬
ππ£ππ ππ΄ππ (πππ‘πππππππ‘ππ ππππ£π πππ βπππ π π’πππππ)
ππππ‘πππ π π’πππππ
πππ‘π πππ π ππ = β¬ππππ‘πππ π π’πππππ ππ£ππ’π‘ ππ΄ππ’π‘
πππ π πππ’ππ’πππ‘ππππ π¦π π‘ππ =
π
β
πππ
ππ‘ πΆπππ‘πππ π£πππ’ππ
Equation (1)
β¬
ππ£ππ ππ΄ππ β β¬
ππππ‘πππ π π’πππππ
ππ£ππ’π‘ ππ΄ππ’π‘ =
ππππ‘πππ π π’πππππ
π
{β
πππ }
ππ‘
πΆπππ‘πππ π£πππ’ππ
(Description : Rate of mass tαΊ‘i 1 Δiα»m là ππ΄π£ vói v theo phΖ°Ζ‘ng x, do xét trong hα» vαΊt
diα»n tich cα» Δα»nh, Rate of mass trên cαΊ£ mαΊ·t cα»§a vαΊt thì lαΊ₯y nguyên hàm 2 phΖ°Ζ‘ng y, z.
TΖ°Ζ‘ng tα»± vα»i mass accumulation nαΊΏu V Δα»i theo 3 phΖ°Ζ‘ng thì ta nguyên hàm theo 3
phΖ°Ζ‘ng Δêr có Δα»₯owc tα»ng thay Δα»i cα»§a V)
Types of fluids
Steady state
(No accumulation)
Compressible fluid
Non-steady state
β¬ ππ£ππ ππ΄ππ = β¬ ππ£ππ’π‘ ππ΄ππ’π‘
πΆ.π
Incompressible fluid
(π = ππππ π‘)
πΆ.π
β¬ π£ππ ππ΄ππ = β¬ π£ππ’π‘ ππ΄ππ’π‘
πΆ.π
Equation (1)
Equation (1)
πΆ.π
_In 1 dimensional : Remove term rate mass out of the integrate (Do A không Δα»i theo
phΖ°Ζ‘ng y,z; A tαΊ‘i Δiα»m vào và ra cα»§a mass là hαΊ±ng sα»)
Types of fluids
Steady state
(No accumulation)
πππ π£ππ π΄ππ = πππ’π‘ π£ππ’π‘ π΄ππ’π‘
Compressible fluid
π£ππ π΄ππ = π£ππ’π‘ π΄ππ’π‘
Incompressible fluid
(π = ππππ π‘)
Non-steady state
πππ π£ππ π΄ππ β πππ’π‘ π£ππ’π‘ π΄ππ’π‘ = πππ’ππ’πππ‘π
π£ππ π΄ππ β π£ππ’π‘ π΄ππ’π‘ = πππ’ππ’πππ‘π
c. Newtonβs Second law of motion:
_For close system: β πΉβ =
π
ππ‘
(ππ£β) (πππππ€ π‘βπ ππππππ‘πππ π¦ππ’ πβππ π)
_Fluid flow through a control volume:
ππ’π πππππ = πππ‘π ππ ππππππ‘ ππ’π‘ β πππ‘π ππ ππππππ‘ ππ + π΄ππ’ππ’πππ‘π
With:
πππ‘π ππππππ‘π’π =
ππΉ
ππ
ππ₯
= π£β
= π£βπππ΄
= π£βππ΄π£π (1 β π·ππππ πππ, π ππππ π΄)
ππ‘
ππ‘
ππ‘
n
n
π£β: π£ππππππ‘π¦ ππ π£πππ‘ππ (ππππππ‘πππ π’π π πβππ π)
πββ βΆ ππππ‘ππ ππππππ π‘π π‘βπ π π’πππππ
v in
π£π = |π£||π|πππ π
_Fluid flow through in 1 direction:
β πΉπ₯ = β β¬ π£π₯ ππ£π ππ΄ππ + β¬ π£π₯ ππ£π ππ΄ππ’π‘ +
πΆπ
πΆπ
π
{β ππ£π₯ ππ }
ππ‘
πΆπ
(π£π là tích vector có phΖ°Ζ‘ng cα»§a vector vαΊn tα»c, và vector vuông góc vα»i mαΊ·t phαΊ³ng vαΊt,
trong slide cth chung là π£. π thì tích có hΖ°α»ng này sαΊ½ âm nαΊΏu v và n ngược chiα»u lúc Δi
vào)
d. 1st Law of Thermodynamics:
_For closed system:
πΏπ
πΏπ‘
β
πΏπ
πΏπ‘
=
πΏπΈ
πΏπ‘
Usually no work involve: Heat change equal energy change:
πΏπ πΏπΈ
=
πΏπ‘
πΏπ‘
2. Subsidiary law:
a. Fourierβs law of heat conduction:
π
ππ
= βπΎ
π΄
ππ
π
π
π: βπππ‘ πππ‘π (π ππ π½/π ), : π»πππ‘ πππ’π₯ (π/π2 ), πΎ: πβπππππ πππππ’ππ‘ππ£ππ‘π¦ (
)
π΄
π. πΎ
ππ
: ππππππππ‘π’ππ ππππππππ‘ ππ ππππππππ‘π
ππ
_If K constant: isotropic material
_One dimension, steady state situation:
+Infinite slab:
π
ππ» β ππΆ
=πΎ
π΄
π
ππ» /ππΆ βΆ π‘πππ ππ‘ βππ‘/ππππ π πππ, π: π‘βπππ πππ π ππ π‘βπ π€πππ/π πππ (π)
v out
π ππ‘ ππππ‘πππ πππππ‘ πππ π‘ππππ π₯ ππππ βππ‘ ππππ:
ππ» β π
π₯
=
ππ» β ππΆ π
+Infinite long hollow cylinder
ππ (ππ ): πππππ’π ππ’π‘π πππ(πππ πππ), πΏ: ππππβ ππ π‘βπ ππ¦ππππππ
ππ (ππ ): π‘πππππππ‘π’ππ ππ’π‘π πππ(πππ πππ)
ππ
ππ
π
π
ππ
π
ππ
π
ππ
=
= βπΎ
β
β«
= βπΎ β« ππ β
ππ ( ) = βπΎ(ππ β ππ )
π΄ 2πππΏ
ππ
2ππΏ
π
2ππΏ
ππ
ππ
ππ
βπ=β
2ππΎπΏ(ππ β ππ )
π
ππ (ππ )
π
π ππ‘ ππππ‘πππ π βΆ
π β ππ
ππ(π/ππ )
=
ππ β ππ ππ(ππ /ππ )
_At not steady state:
Coordinate
Cartesian (slab)
Cylindrical
Sphere
x
π₯=π₯
ππ ππ
β
=
ππ ππ₯
π₯ = π πππ π = π
β ππ₯ = ππ
ππ ππ
β
=
ππ₯ ππ
(radial heat transfer)
y
π¦=π¦
ππ ππ
β
=
ππ ππ¦
z
π§=π§
ππ ππ
β
=
ππ ππ§
π¦ = π π πππ = ππ
β ππ¦ = πππ
ππ 1 ππ
β
=
ππ¦ π ππ
π§=π§
ππ ππ
β
=
ππ ππ§
π΄π‘ π ππππ π: π πππ β π, πππ π β 1
π¦ = π π ππ π π πππ = πππ
π₯ = π π ππ π πππ π = ππ
β ππ¦ = ππ ππ
β ππ₯ = πππ
ππ
1 ππ
ππ 1 ππ
β
=
β
=
ππ¦ ππ ππ
ππ₯ π ππ
b. Newtonβs law of cooling
:
π
= β(ππ β ππ )
π΄
π§ = π πππ π = π
ππ ππ
β
=
ππ§ ππ
ππ : π»πππ‘ ππ ππππππ‘, ππ : βπππ‘ ππ πππ’ππ, β: π»πππ‘ π‘ππππ πππ πππππππππππ‘ (
π
)
π2 πΎ
c. Stefan-Boltzmann Law:
π
= ππ 4
π΄
π
π΅π‘π’
π = 5.67 × 10β8 ( 2 4 ) = 1.7134 (
) : ππ‘ππππ β π΅πππ‘π§πππ ππππ π‘πππ‘
π πΎ
β. ππ‘ 2 β4
d. Thermal resistance: (nhiα»t trα», na ná Δiα»n trα»)
Infinite slab
Thermal resistance
(ππ‘β )
Infinite hollow
Cylinder
ππ(ππ /ππ )
2ππ
πΎπΏ
π
πΎπ΄
Surface of liquid
1
βπ΄
If the wall have only 1 way to transfer heat (many layers wall): similar to resistance put
in series:
ππ‘β,π‘ππ‘ππ = β ππ‘β
If the wall have more than 1 way to transfer heat similar to resistance put in parallel:
(Ex: The wall have 1 nail stick through its, heat can transfer in two paths: Through nail or
through wall)
1
ππ‘β,π‘ππ‘ππ
=β
1
ππ‘β,πππ‘β π
(1 πππ‘β πππ¦ βππ£π ππππ¦ πππ ππ π‘ππππ ππ π πππππ )
We can calculate the resistance of the path to find temperature of cold side knowing hot
side and heat rate:
π=
βπ
ππ‘β,π‘ππ‘ππ
Ex: Calculate the temp at intersection of 2, 3 layers in 3 layers wall
ππ‘β,π‘ππ‘ππ = π1 + π2
Z1
Z2
Z3
Or if do not have A we can call calculate: Overall heat transfer coefficient
π = π΄ππ‘β,π‘ππ‘ππ
II.
The Differential Equation of Heat Conduction:
There are several step to derive equation of heat conduction as problem give:
Step 1: Chose the shape:
_Slab with 3D: (x,y,z)
π
ππ
π
ππ
π
ππ
ππ
(πΎ. ) +
(πΎ. ) + (πΎ. ) + πΜ
= ππΆπ
ππ₯
ππ₯
ππ¦
ππ¦
ππ§
ππ§
ππ‘
With: πΆπ (π½/πΎπ. πΎ): π πππππππ βπππ‘ πππππππ‘π¦
π
πΜ
( 3 ) : βπππ‘ πππππππ‘πππ
π
_ 3D cylindrical coordinate system: (π, π, π§)
1π
ππ
1 π
ππ
π
ππ
ππ
(πΎ. π ) + 2
(πΎ. ) + (πΎ. ) + πΜ
= ππΆπ
π ππ
ππ
π ππ
ππ
ππ§
ππ§
ππ‘
_3D spherical coordinate system (π, π, π)
1π
π(ππ)
1
π
ππ
1
π
ππ
ππ
(πΎ.
)+ 2
(πΎ. π πππ ) + 2 2
(πΎ. ) + πΜ
= ππΆπ
π ππ
ππ
π π πππ ππ
ππ
π π ππ π ππ
ππ
ππ‘
Step 2: Chose the condition: (more than 1 usually applied)
Condition
K Constant
Absence of
heat generation
Meaning
Ex: in 3D slab
π
ππ
π
ππ
π
ππ
(πΎ. ) +
(πΎ. ) + (πΎ. )
ππ₯
ππ₯
ππ¦
ππ¦
ππ§
ππ§
π ππ
π ππ
π ππ
= πΎ{ ( )+
( ) + ( )}
ππ₯ ππ₯
ππ¦ ππ¦
ππ§ ππ§
2
= πΎβ π
πΜ
= 0
Equation change
πΜ
1 ππ
β2 π + =
πΎ πΌ ππ‘
With
πΎ
πΌ=
; π‘βπππππ πππππ’π ππ‘π¦
ππΆπ
(π2 /π )
Steady state
In 1 direction
ππ
=0
ππ‘
Ex: 3D cylindrical: Assume temperature
change only on r coordinate (radial heat
transfer)
ππ ππ
=
=0
ππ ππ§
With (π’π£)β² = π’β²π£ + π’π£β²
In (*)
π
: ππ πππππππππ‘ππ π€ππ‘β π,
ππ
Step 3: find π» πππ
Into equation in I.2.b
(πΎβ2 π = 0)
1π
ππ
πΜ
1 ππ
(π ) + =
π ππ ππ
πΎ πΌ ππ‘
1 ππ
π 2π
β ( + π 2 ) + β― (β)
π ππ
ππ
ππ
πππ π ππ ππ’πππ‘πππ ππ π
ππ
ππ»
ππ
ππ πππππππ
ππ ππππ
πππ ππππ
πππππ βΆ
Ex: for 1D slab (condition 4), steady state (condition 2) and K constant (condition 1)
General equation become:
π 2 π πΜ
π 2π
πΜ
+
=
0
β
=
β
ππ₯ 2 πΎ
ππ₯ 2
πΎ
β
ππ
πΜ
= β π₯ + πΆ1
ππ₯
πΎ
β π(π₯) = β
πΜ
π₯ 2
+ πΆ1 π₯ + πΆ2
πΎ 2
Ex: for 1D hollow cylinder (condition 4), steady state (condition 2) and K constant
(condition 1)
1π
ππ
πΜ
1 ππ
π 2π
πΜ
(πΎ. π ) + = 0 β ( + π 2 ) + = 0
π ππ
ππ
πΎ
π ππ
ππ
πΎ
1 ππ π 2 π
πΜ
β
+ 2 =β
π ππ ππ
πΎ
β
βπ
ππ
π 2π
πΜ
+ π 2 = β π (ππ’ππ‘ππππ¦ π πππ πππβ π πππ)
ππ
ππ
πΎ
ππ
πΜ
π 2
ππ
πΜ
π
πΜ
π 2
=β
(πππ‘πππππ 2 π πππ) β
=β
β π(π) = β
+ πΆ1
ππ
πΎ 2
ππ
πΎ2
πΎ 4
Step 4: Find boundary condition for solving C1 and C2 (normally maximum 2 is
require):
Boundary condition
Temperature of surface is maintain at ππ π’π
(π₯ = π, π = ππ )
Knowing heat flux (q/A) at surface
(π₯ = π, π = ππ )
Special case for heat Insulation surface
flux
Thermal symmetry
(Heat flow in/out from
2 side to center)
Convection Boundary Condition
(Have fluid flow to cool/heat surface with
temperature ππ and h)
π(π) = ππ π’π
(ππ π’π is a number, position of surface
depend on how you put the origin and
coordinate)
ππ
π/π΄ = ( )
ππ₯ π₯=π
ππ
( )
=0
ππ₯ π₯=π
ππ
( )
=0
ππ₯ π₯=π/2
(b is the thickness of wall, if chose x =0 at
center change the x=b/2 by x=0)
ππ
βπΎ ( )
= ββ(ππ β ππ₯=π )
ππ₯ π₯=π
Step 5: Put C1 and C2 to equation.
(TO SEE HOLD SOLVING CAN SEE TAKE HOME PRACTICE)
III.
Unsteady State Heat Conduction:
1. Some dimension for use:
π΅πππ‘ ππ’ππππ: π΅π =
βπΏ
(π
ππ‘ππ ππ ππ‘β ππ π ππππ πππ ππ‘β ππ π π’πππππ)
πΎ
πΉππ’ππππ ππ’ππππ: π =
πΌ=
πΌπ‘
πΎπ‘
=
(ππππππ ππππππ π ππ π‘πππ)
πΏ2 ππΆπ πΏ2
πΎ
; π‘βπππππ πππππ’π ππ‘π¦ (π2 /π )
ππΆπ
1
π΅πππ‘
π₯
π
ππππ‘ππ£π πππ ππ‘πππ: π =
πΏ
π
ππππ‘ππ£π πππ ππ π‘ππππ: π =
Shape
Infinite slab
Infinite slab 1 side insulate
L (Characteristic dimension)
Thickness (b) divide by 2 (b/2)
Treat as infinite slab with thickness: 2b
(double thickness of original slab) cal equal
b
Radius (r)
π
πΏ=
π΄π π’π
Infinite cylinder/sphere
Other shape
2. Way to solve:
Step 1: Define the shape: infinite slab, infinite cylinder, sphere, or cubic,β¦
If not find K, you can look for the material and find in Appendix H.
Step 2: Define the shape in component infinite slab and infinite cylinder:
Shape
Finite cylinder
Box (cubic)
Component
Infinite of cylinder and infinite slab
3 infinite slabs different (same) thickness
Step 3: Calculate Biot Number: (if more than 1 component Cal for each component)
_If π΅π < 0.1: Neglect internal temperature gradient
βπ΄π‘
π β ππ
π
β
=
= π ππΆπ π = π βπ΅π×π
ππ ππ β ππ
_ If π΅π > 0.1:
π
Step 4: Define π ππ that shape:
π
3
π
π
πΈπ₯: ( )
= [( )
]
ππ ππ’πππ
ππ πππππππ‘π π πππ
π
Step 5: Calculate Biot, Fourier, m, n for each component and find for π in Appendix F:
π
If there are no line near with youβre calculate m:
Ex: m = 0.6, but in chart only have 0.5 and 0.75:
π
π
π
π
You can find π for 0.5 and 0.75, assume m and π are linear:
π
= ππ + π
ππ
And use 2 point at 0.5 and 0.75 you are found to calculate a and b
π
Step 6: Found the π of the shape and calculate T
π
ο·
There are some problem like give you T and make you find t:
π
Step 1: You will calculate π of the shape and write it component:
π
Ex:
π
π
π
( )
=( )
( )
ππ ππ ππ¦π
ππ ππππ ππ¦π ππ ππππ π πππ
Step 2: Then you calculate the Fourier number of component through time:
Ex:πππππ π πππ = π × π‘,
πππππ ππ¦π = π × π‘
Step 3: Then you will guess :)))))) any relation you want: (CHOSE ONLY 1 COMPONENT)
Ex
π
π
π
π
( )
= β( )
ππ ( )
= 1/2 ( )
ππ ππππ ππ¦π
ππ ππ ππ¦π
ππ ππππ ππ¦π
ππ ππ ππ¦π
(πππ’ πππ βππ£π π‘βπ πππβπ‘ πβππ π πππ¦ ππππ ππππ π‘βπ πππ‘ππ ππ πππβ πΏ ππ πππβ ππππππππ‘)
π
Step 4: Then put it in(π )
π
of the shape to calculate each of component, put in appendix
ππππ ππ¦π
of find time by each component.
π
π
π
π
Step 5Take that time to find other componentπ . Then cal (π )
π βπππ
π
Step 6: If π of the shape not fit, adjust t and try again
π
3. Fin:
a. Some equation:
We have the fin with:
ππ₯π‘πππππ πΏ , π΄π‘ππ ππ ππππ ππ π‘βπ π‘ππ πππ π ππ πππππππ‘ππ ππ π‘βπ π‘ππ
π = ββππΎπ΄π‘ππ ,
πππ ππππππ‘ππ£ππππ π : ππ =
π=β
βπ
πΎπ΄π‘ππ
ππ
βπππ‘ π‘ππππ πππ π€ππ‘β πππ
=
π
βπππ‘ π‘ππππ πππ π€ππ‘βππ’π‘ π‘βπ πππ
πΎπ
ππ = β
π‘ππβ(ππΏ) (πππππππ‘ππ πππ)
βπ΄π π’πππππ
πππ ππππππππππ¦: ππ =
πππππ
πππππ
=
ππππππ (βπππ‘ ππ‘ π‘ππ πππ’ππ ππ‘ πππ π) βπ΄π π’π (π β ππΏ )
b. Calculation:
_For only pin fin:
_For circular and other strainght fin:
(ππΏ β ππ )