Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 3 Random vector and their numerical characteristics CHAPTER 3 RANDOM VECTORS AND THEIR NUMERICAL CHARACTERISTICS A lot of random phenomenon or a randomized trial will need to visit a few random variables. For example, examine the development of preschool children in a certain area, it is needed to observe their height and weight; fired a shell that require the simultaneous study of several point of impact coordinates; study of market supply model, taking into account the need to supply of goods, consumer income and the market price and other factors, and so on. In general, these random variables require them as a whole (or vector) to be studied, so it is inevitably to define in the same sample space on multiple random variables describe them. Multidimensional random variable (or random vector) concept is in the context of these real concerned. This chapter focuses on two-dimensional random vector, mainly including random vector (function) of the distribution, independence, and numerical characteristics. § 3.1 Random vectors and their distribution functions 1. n -dimensional random vector Definition 3.1 Let X1 , X 2 , , X n be n random variables defined on the same sample space, it is said that X ( X1 ,..., X n ) is a n -dimensional random variable or random vector. For n-dimensional random vector, each of its components is a one-dimensional random variable, one can study it separately. But in addition, there are linkages between the various components, in many problems, it is more important. The method for studying random vector is analogue to the one used in one-dimensional random variable study----with distribution function, probability density, or distribution of the column to describe its statistical law. 2. The joint distribution function of random vector Definition 3.2 for any x1 , x2 , , xn , define F ( x1 , x2 , ,nx )( P 1X 1 x, 2X 2x, n, X n x) (3.1) the n dimensional joint distribution function of random vector ( X 1 , X 2 , , X n ) , where ( X1 x1 , X 2 x2 , , X n xn ) stands for 1 n i 1 ( X i xi ) . Chapter 3 Random vector and their numerical characteristics From now on, we just focus on the joint distribution of two-dimensional random vector, and one can easily find that the same idea can be fitted in more dimensional case. Two-dimensional random vector ( X , Y ) is a random point in a plane with coordinates, the value of distribution function F ( x, y ) on the point ( x, y ) is the probability that random point fall in area shown in Figure 3-1. Figure 3-1 Figure3-2 By figure 3-2 one can easily find that the probability of ( X , Y ) fall in {( x, y) : x1 x x2 , y1 y y2 } is P( x1 X x2 , y1 Y y2 ) F ( x2 , y2 ) F ( x1 , y2 ) F ( x2 , y1 ) F ( x1, y1 ). (3.2) 3.Characteristics of joint distribution Theorem 3.1 Joint distribution function F ( x, y ) has the following characteristics. (1)Monotonic F ( x, y ) are non-decreasing with respect to x or y respectively, i.e., for any fixed y, x1 x2 implies F ( x1 , y) F ( x2 , y) ;for any fixed x, y1 y2 时有 F ( x, y1 ) F ( x, y2 ) ; (2)Normalized For any x and y , 0 F ( x, y ) 1 2 Chapter 3 Random vector and their numerical characteristics F (, y ) F (, ) lim F ( x, y ) 0, F ( x, ) lim F ( x, y) 0, x y lim F ( x, y ) 1; x , y (3) Right continuous F ( x, y ) are right continuous with respect to x or y , F ( x 0 , y ) F ( x , y ) ,F (x ,y 0 ) F ; x( y, ) (4) Nonnegative For all a b, c d , P(a X b, c Y d ) F (b, d ) F (a, d ) F (b, c) F (a, c) 0 Characteristic (1)-(4) is necessary for any bivariate joint distribution. The following example show us even condition (1)-(3) is satisfied, F ( x, y ) is not a joint distribution yet. 0, x y 0; Example3.1 Let G ( x, y ) Then, G ( x, y ) fulfill characteristics 1, x y 0. (1) (2) (3), but not fulfill (4) and thus G ( x, y ) not a distribution function. In fact, (1) Suppose x 0, if x y 0, since x x y 0, G ( x, y ) G ( x x, y ) 1. Then G ( x, y ) 0 if x y 0 ; G ( x x, y ) 0 , if x x y 0 ; G ( x x, y ) 1 if x x y 0 . That is to say G ( x, y ) G ( x x, y ). G ( x, y ) is non-decreasing w.r.t. x , similarly, one can find that G ( x, y ) is non-decreasing w.r.t. y . (2) If x y 0 , lim G( x x, y) lim G( x, y y) 0 G( x, y). x0 y 0 And lim G( x x, y) lim G( x, y y) 1 G( x, y) if x y 0 . This proves x0 y0 that G ( x, y ) is right continuous w.r.t. x or y respectively. 3 Chapter 3 Random vector and their numerical characteristics (3) Obviously, 0 G ( x, y ) 1 and G (, y ) G ( x, ) 0, G(, ) 1. One can also find that G (1,1) G (1, 1) G (1,1) G(1, 1) 1 1 1 0 1 0, thus, G ( x, y ) does not fulfill (4) and thus not a joint distribution function. 4. Marginal distribution function If the joint d.f. of X , Y is known, then the d.f. of X , Y can be derived from the joint d.f. and denote by FX ( x), FY ( y ) the d.f. of X , Y respectively, i.e., FX ( x) P( X x) P( X x, Y ) F ( x, ) lim F ( x, y); y FY ( y ) P(Y y ) P( X , Y y ) F (, y ) lim F ( x, y ). x Generally, if the joint d.f. of n -dimensional r.v. ( X1 , X 2 , F ( x1 , , X n ) is given by , xn ) ,then the marginal k (1 k n) -dimensional d.f. of ( X1 , X 2 , , X n ) is derived easily. For example, the marginal d.f. of X1 ,( X1 , X 2 ),( X1 , X 2 , X 3 ) is FX1 ( x1 ) F ( x1 , , , ), FX1 , X 2 ( x1 , x2 ) F ( x1 , x2 , , , ), FX1 , X 2 , X 3 ( x1 , x2 , x3 ) F ( x1 , x2 , x3 , , ). Example 3.2 Assume that the joint d.f. of ( X , Y ) is x F ( x ,y ) A B a r c t anC 2 y a r c t, a nwhere A, B, C are 2 constants and x (, ), y (, ) , (1) give the value of A,B,C;(2) give the marginal d.f. of X and Y;(3) determine P( X 2). Answer 4 Chapter 3 Random vector and their numerical characteristics (1) F (+, ) lim F ( x, y) A B C 1 and x 2 2 y F ( , ) A B C 0, F (, ) A B C 0 2 2 2 2 Yields A 1 2 ,B 2 (2) FX ( x) F ( x, ) FY ( y ) F ( y, ) ,C 2 and F ( x, y ) 1 x y arctan arctan . 2 2 2 2 2 1 x 1 1 x arctan arctan , x (, ) 2 2 2 2 2 1 2 2 2 2 y 1 1 a r c tan 2 2 y a r yc t a n , 2 ( 1 1 1 (3) P( X 2) 1 P( X 2) 1 FX (2) 1 2 4 4 5. Discrete bivariate distribution law Definition 3.3 If ( X , Y ) assumes only finite or countable ( xi , y j ) , ( X , Y ) is said to be a discrete bivariable. Definition 3.4 Let ( X , Y ) assumes value ( xi , y j ) , i, j 1, 2, . and define pij P( X xi , Y y j ), i, j 1, 2, The joint distribution law of ( X , Y ) and the following characteristics holds: (1) pij 0; (2) p i 1 j 1 ij 1. Usually, the joint d.f. of ( X , Y ) is specified by the following table. Table 3.1 5 , ) Chapter 3 Random vector and their numerical characteristics Y y1 y2 yj p11 p12 p1 j p21 p22 p2 j X x1 x2 xi pi1 pi 2 pij Example 3.3 Put one number from 1,2,3,4 and write it down with X , and put one from 1, , X and denote it by Y ,try to determine the joint distribution law of ( X , Y ) and P ( X Y ) . Answer The d.f. of X is P( X i ) 1 , i 1, 2,3, 4. Y possibly assumes value 4 1,2,3,4 and denote j the value of Y , then if j i , P( X i, Y j ) P( ) 0. If 1 j i 4 , P( X i, Y j ) P( X i ) P(Y j | X i ) 1 1 . So the joint 4 i distribution law is Table 3.2 Y 1 2 3 4 1 1/4 0 0 0 2 1/8 1/8 0 0 3 1/12 1/12 1/12 0 4 1/16 1/16 1/16 1/16 X And 6 Chapter 3 Random vector and their numerical characteristics 1 1 1 1 25 0.5208. 4 8 12 16 48 P( X Y ) p11 p22 p33 p44 Marginal distribution law Suppose that the joint distribution law of ( X , Y ) is given by P( X xi , Y y j ) pij , i, j 1, 2, , One problem is how to determine the marginal d.f. of X , Y . Since X possibly assume value x1 , x2 , ( X xi ) , i , and Y possibly assume value y1 , y2 , , and (Y y j ) , Thus j + + P( X xi ) P X xi , (Y y j ) P ( X xi , Y y j ) = P ( X xi , Y y j ) j 1 j 1 j 1 pij j 1 pi i =1,2, P(Y y j ) P ( X xi ), Y y j P ( X xi , Y y j ) P ( X xi , Y y j ) i 1 i 1 i 1 pij i 1 p j , j 1, 2, Where pi and p j denote j 1 i 1 pij , pij respectively and represent the probability of evens ( X xi ) and (Y y j ) , which is shown in Table 3.3 Table 3.3 Y X x1 y1 y2 yj p11 p12 p1 j 7 P( X xi ) p1 Chapter 3 Random vector and their numerical characteristics p21 x2 xi pi 2 pi1 P (Y y j ) p2 j p22 pi pij p2 p1 p2 p 1 j Example 3.4 The joint d.f. of ( X , Y ) is given by Table 3.4, try to determine the marginal d.f. of X and Y . Table 3.4 Y -1 0 2 0 0.1 0.2 0 1 0.3 0.05 0.1 2 0.15 0 0.1 X Answer 表 3.5 Y -1 0 2 pi 0 0.1 0.2 0 0.3 1 0.3 0.05 0.1 0.45 2 0.15 0 0.1 0.25 0.55 0.25 0.2 1 X p j 8 Chapter 3 Random vector and their numerical characteristics Continuous bivariate joint distribution Definition 3.4 It is said that ( X , Y ) have a continuous distribution if there exists a nonnegative function p( x, y ) such that for any x and y , F ( x, y) x y p(u, v)dudv, And p( x, y ) is called the density function of ( X , Y ) . By the definition, p( x, y ) fulfills the following characteristics. (1) (2) p ( x, y ) 0; p( x, y) 1. (3) for any continuous point of p( x, y ) , 2 F ( x, y) p( x, y) . xy In fact, (3.3) y x y F ( x, y ) p(u, v)dv du p( x, v)dv x x y 2 F ( x, y ) p( x, v) d v x y y (4) P(( X , Y ) G) p( x, y )dxdy . p( ,x )y (3.4) G Example 3.5 Suppose that the joint density function of ( X , Y ) is specified as follows: ke ( x y ) , p( x, y) 0, x 0, y 0 其它 (1) Determine constant k ; (2) determine F ( x, y ) , the joint d.f. of ( X , Y ) ; (3) 9 Chapter 3 Random vector and their numerical characteristics (X 1, Y 1) . determine P Answer (1) Since f ( x, y)dxdy 1 , 1 0 k 0 x y (2)F ( x, y ) = 0 ke ( x y ) dxdy e x dx 0 e y dy k (e x |0 )2 k f ( x, y ) dxdy x y e ( x y ) dxdy (1 e x )(1 e y ), x 0, y 0 0 0 0, 其它 1 1 1 (3) P( X 1, Y 1) dx e ( x y ) dy 1 . 1 0 e e Marginal density Suppose p( x, y ) the joint density function of ( X , Y ) . Then FX ( x) P( X x) ,x Y ) P( X x [ p( u, y) , d ]y d u And thus p X ( x) pY ( y) p( x, y)dy . (3.5) p( x, y)dx . (3.6) p X ( x) and pY ( y ) are called the marginal density function of ( X , Y ) . Example 3.6 Suppose the joint density function of ( X , Y ) is specified by 8 xy, 0 x y 1 p ( x, y ) 其他 0, Try to determine the marginal density function of X and Y . Answer By (3.5) and (3.6), we have 10 Chapter 3 Random vector and their numerical characteristics pX ( x) p( x, y) ,dy 1 if 0 x 1 , p X ( x) 8 xydy 4 x(1 x 2 ) ; x if x 0 or x 1 , pX ( x) 0 . Thus, 4 x ( 1 x 2 , ) 0 x 1 . p X ( x) 0 , 其它 4 y3, 0 y 1 pY ( y) . 0, 其它 TWO IMPORTANT MULTIDIMENSIONAL DISTRIBUTIONS 1. Multivariate distribution Suppose D a bounded area in R n and S D its measurement, if the joint density function of multivariate ( X 1 , X 2 , , X n ) is specified by 1 , ( x1 , x2 , , xn ) D, p( x1 , x2 , , xn ) S D 0, 其它. (3.7) Then ( X 1 , X 2 , , X n ) is called follows a multivariate-uniform distribution and denoted it by ( X1 , X 2 , , X n ) ~ U(D). Example 3.7 Suppose D is a circle with r the radar and defined on plane, ( X , Y ) is distributed uniformly on D and the density function is give by 1 , x2 y 2 r 2 , p ( x, y ) r 2 0, x 2 y 2 r 2 . r Try to determine the value of P ( X ). 2 Answer 11 Chapter 3 Random vector and their numerical characteristics r P (| X | ) 2 r 2 r 2 x2 r 2 1 1 2 2 r 2 dydx r 2 r x 1 x [ x r 2 x 2 r 2 arcsin ] |r/r2/ 2 2 r r 1 r2 1 2 [ r r 2r 2 arcsin ] 2 r 4 2 1 [ r/2 r / 2 2 r 2 x 2 dx 3 ] 0.609. 2 3 2. Two-dimensional normal distribution If the density function of ( X , Y ) is given by p ( x, y ) 1 ( x 1 )2 ( x 1 )( y 2 ) ( y 2 ) 2 1 [ 2 ]}, x, y 2(1 2 ) 12 1 2 22 exp{ 2 1 2 1 2 (3.8) It is said that ( X , Y ) follows the binormal distribution, and denoted it with ( X , Y ) ~ N ( 1 , 2 , 12 , 22 , ), where 1 , 2 ;1 , 2 0; 1 1. Example 3.8 Suppose ( X , Y ) ~ N ( 1 , 2 , 12 , 22 , ) ,try to determine the X ( x) and Y ( y) . Answer X ( x) p( x, y)dy. 令 s 1 2 1 1 2 X ( x) 1 e 2 1 i.e. X ~ N (1 , 12 ) . ( x 1 )2 212 e x 1 1 1 2(1 2 ) ,t y 2 ,得 2 ( s 2 2 st t 2 ) dt 1 2 1 2 e ( t s )2 2(1 2 1 ) dt e 2 1 imilarly, one can find that Y ~ N ( 2 , 22 ) . 12 ( x 1 )2 212 , Chapter 3 Random vector and their numerical characteristics § 3.2 INDEPENDENCE OF RANDOM VARIABLE The concept of independence of random variables is very important in probability theory, which is the promotion of independent random events. Definition 3.5 Suppose that ( X , Y ) has joint d.f. F ( x, y ) ,and marginal d.f. FX ( x) and FY ( y ) respectively, if for any x, y R , the following equation holds F ( x ,y ) FX x( FY) y (, ) (3.9) i.e. P( X x, Y y ) P( X x) P(Y y ) , it is said that X and are Y independent. We give the following theorem without proof. Theorem 3.2 A sufficient and necessary condition for X and Y to be independent is for any real number set A and B such that { X A},{Y B} are well-defined, the following equations holds. P( X A, Y B) P( X A) P(Y B) . (3.10) Theorem 3.3 If X and Y are independent, then for any continuously or piece-wise continuous function f ( x), g ( x) , f ( X ) and g (Y ) are also independent . Definition 3.6 Suppose F ( x1 , x2 , , xn ) is the d.f. of n -dimensional random vector ( X 1 , X 2 , , X n ) , Fi ( xi ) is the marginal d.f. of X i , if for any real number x1 , x2 , , xn , n F ( x1 , x2 , , xn ) Fi ( xi ) (3.11) i 1 X1 , X 2 , , X n is said to be mutual independent. Independent discrete random vector 13 Chapter 3 Random vector and their numerical characteristics Theorem 3.4 Suppose values ( xi , y j ), i, j 1, 2, ( X ,Y ) are discrete distributed and assume , then the sufficient and necessary condition for X and Y to be independent is for all i, j 1, 2, the following equations holds. P( X xi , Y y j ) P( X xi ) P(Y y j ) . (3.12) Example 3.10 Let the d.f. of ( X , Y ) is given by the Talbe 3.6, Table 3.6 Y 1 2 1 1/3 1/6 2 a 1/9 3 b 1/18 X Try to determine the value of constant a , b such that X and Y independent. Answer The marginal d.f. of ( X , Y ) is Table 3.7 X 1 P 2 a 1/ 9 1/2 3 b 1/18 Table 3.8 Y P 1 2 a b 1/ 3 1/ 3 To make sure X and Y independent, by pij pi. p. j we have P( X 2, Y 2) P( X 2) P(Y 2) , P( X 3, Y 2) P( X 3) P(Y 2) ,i.e. 14 are Chapter 3 Random vector and their numerical characteristics 1 1 1 2 a 9 a 9 3 9 1 b 1 1 b 1 18 18 3 9 Independent continuous random vector Theorem 3.5 Suppose the joint density function of ( X , Y ) is p( x, y ) and is continuous everywhere, then the sufficient and necessary condition for X and Y to be independent is p( x ,y ) pX x( p) Y y (. ) (3.13) Example 3.11 If the density functions of ( X , Y ) is 15 x 2 y, 0 x y 1 p( x, y) else 0, (1)Try to find the marginal distribution of X , Y ; (2) X is independent with Y or not? 1 15 2 2 4 15 x ydy, 0 x 1 ( x x ), 0 x 1 Answer pX ( x) p( x, y )dy x 2 0, else 0, else y 2 x 0 y 1 5 y 4, 0 y 1 1 5x y d, pY ( x ) p x( y, dx) 0 0, 其它 0, 其它 Since p( x, y ) are not equal to pX ( x) pY ( y ) everywhere, X is not independent with Y . Example 3.12 Let ( X , Y ) ~ N (1 , 2 , 12 , 22 , ) , then, the sufficient and necessary condition for X and Y to be independent is 0. § 3.3 CONDITIONAL DISTRIBUTIONS 15 Chapter 3 Random vector and their numerical characteristics The relationships between two random variables ( X , Y ) can mainly be divided into two types: independent or dependent. In many situations, the values of X or Y is an influence on each other, which makes the conditional a powerful tool for study the dependent of two random variables, this is the topic of this section. Discrete conditional distributions Suppose the joint distribution law of ( X , Y ) is specified by pij P( X xi , Y y j ), i, j 1,2, . By the definition of conditional probability, one can easily give the definition of conditional distribution law: Definition 3.7 Suppose is an discrete two-dimensional ( X ,Y ) distribution, for given j , if P( Y y j ) 0 , then the conditional distribution law for X given Y y j can be represented by pi| j which is defined as P( X xi Y y j ) P( X xi , Y y j ) P(Y y j ) pij p• j , (3.14) and (1) pi| j 0; (2) pi| j 1. i Similarly, given X xi the conditional distribution law of Y is represented by { p j|i : j 1, 2, }, where p j|i pij pi. . FX |Y ( x | y j ) P( X xi | Y y j ) pi| j We can also similarly define xi x FY | X ( y | xi ) or P(Y y yj y j | X xi ) p yj y j |i . xi x the conditional d.f. for given X xi Y y j respectively. Continuous Conditional distributions 16 and Chapter 3 Random vector and their numerical characteristics Suppose that now ( X , Y ) has continuous joint distribution density function p( x, y ) and marginal d.f. pX ( x), pY ( y) .It should be noted that P( X x) 0 for any x and conditional distribution for P( A | B) have not been defined in the case that P( B) 0 . Therefore, in order that it is possible to derive conditional probability for X when ( X , Y ) has a continuous joint distribution, the concept of conditional probability will be extended by considering the conditional density function of Y given X x . One natural way is to consider the limit of P(Y y | x X x x) when x 0 instead of considering P(Y y | X x) directly. Definition 3.9 Suppose that for any x 0 , P( x X x x) 0 holds, if P(Y y, x X x x) exist, then the limit is x 0 P( x X x x) lim P(Y y | x X x x) lim x 0 called the conditional distribution of Y for given X x and denoted it by P(Y y | X x) or FY | X ( y | x) . Theorem 3.6 Suppose that ( X , Y ) has continuous density function p( x, y ) and pX ( x) 0, then FY | X ( y |x ) y p( x ,v dv ) p X ( x) is a continuous d.f. and its density function is , (3.15) p ( x, y ) , which is called the p X ( x) conditional density function of Y given the condition X x and denoted it by pY | X ( y | x). Proof 17 Chapter 3 Random vector and their numerical characteristics P ( x X x x, Y y ) P{x X x x} [ F ( x x, y ) F ( x, y ) / x lim x 0 [ F ( x x ) F ( x )] / x X X FY | X ( y | x) lim x 0 lim[ F ( x x, y ) F ( x, y )] / x x 0 lim[ FX ( x x) FX ( x)] / x x 0 F ( x, y ) F X ( x ) / x x y p ( x, v ) dv p X ( x) Differentiate with respect to y on both side of aforementioned equation yields pY | X ( y | x) p ( x, y ) . p X ( x) (3.16) Similarly, given Y y , the conditional d.f. and conditional density function of X is specified as follows: FX |Y ( x | y) x p X |Y ( x | y ) p (u , y ) du pY ( y ) , (3.17) p ( x, y ) . pY ( y ) (3.18) Example 3.14 Suppose that ( X , Y ) is uniformly distributed on the area x 2 y 2 1, try to determine the conditional density function p X |Y ( x | y ). Answer The joint density function of ( X , Y ) is 1 2 2 , x y 1 p x, y 0, 其它 When 1 y 1 , pY ( y ) 1 y 2 1 1 y 2 p( x, y )dx 18 dx 2 1 y2 . Chapter 3 Random vector and their numerical characteristics 2 1 y 2, 1 y 1; Thus pY y 0, el se. and 1 , 1 y 2 x 1 y 2; 2 pX Y x y 2 1 y 0, el se. That is to say when 1 y 1 , the conditional d.f. of X for given Y y is an uniform distribution on interval 1 y 2 Example 3.15 Suppose ( X , Y ) ~ N (1 , 2 , 12 , 22 , ) , 1 y2 . TRY TO DETERMINE p X |Y ( x | y ). Answer Since ( X , Y ) ~ N (1 , 2 , 12 , 22 , ) , Y ~ N ( 2 , 22 ) and p X |Y ( x | y ) p ( x, y ) pY ( y ) 1 2 1 2 1 2 exp{ ( x 1 ) 2 ( x 1 )( y 2 ) ( y 2 ) 2 1 [ 2 ]} 2(1 2 ) 12 1 2 22 ( y 2 ) 2 1 exp{ } 2 22 2 2 2 1 1 exp 2 x 1 y 2 2 2 1 1 2 2 1 1 2 1 x Thus for given Y y , X N 1 1 y 2 , 12 1 2 . 2 Similarly, for given X x , Y N 2 2 x 1 , 22 1 2 . 1 19 Chapter 3 Random vector and their numerical characteristics §3.4 Functions of random variables 1. Discrete distributed random vectors Example 3.16 Suppose the joint d.f. of ( X , Y ) is specified as follows: Y 1 2 1 1/5 1/5 2 0 1/5 3 1/5 1/5 X Try to find the d.f. of Z1 X Y , Z 2 max{X , Y } . Answer Z1 assumes values 2,3,4,5 and P(Z1=2)=P(X+Y=2)=P(X=1,Y=1)=1/5 P(Z1=3)=P(X+Y=3)=P(X=1,Y=2)+ P(X=2,Y=1) =1/5 P(Z1=4)=P(X+Y=4)=P(X=2,Y=2)+ P(X=3,Y=1) =2/5 P(Z1=5)=P(X+Y=5)=P(X=3,Y=2)=1/5 3 4 5 2 Thus the distribution law of Z1 is . 1/ 5 1/ 5 2 / 5 1/ 5 Z 2 max{ X , Y } assumes 1,2,3 and P(Z2=1)=P(X=1,Y=1)=1/5 P(Z2=2)=P(X=1,Y=2)+P(X=2,Y=1)+P(X=2,Y=2) =1/5+0+1/5=2/5 20 Chapter 3 Random vector and their numerical characteristics P(Z2=3)=P(X=3,Y=1)+P(X=3,Y=2) =1/5+1/5=2/5 2 3 1 and Z 2 is distributed as . 1/ 5 2 / 5 2 / 5 Generally, suppose that the joint d.f. of ( X , Y ) is specified by P( X xi,Y yi ) pij (i,j 1,, 2 ) And denote zk , (k 1, 2, ) the values that Z g ( X , Y ) assumed. Then, the d.f. of Z is give by the following formula: P Z zk P g ( X , Y ) zk i , j:g ( xi,y j ) zk P X xi , Y y j , k 1,, 2 (3.19) Particularly, if Z X Y , then P( Z zk ) P( X xi , Y zk xi ) i P ( X zk y j , Y y j ) j When X and Y are independent of each other, then P( Z zk ) P( X xi ) P(Y zk xi ) i P( X zk y j ) P(Y y j ) j Example 3.17 Suppose X ~ P(1 ), Y ~ P(2 ), and X is independent of Y then Z X Y ~ P(1 2 ). Proof Z X Y possibly assume 0,1, 2,3, 21 Chapter 3 Random vector and their numerical characteristics k P( Z k ) P( X Y k ) P( X i ) P(Y k i ) i 0 k i 0 i 1 i! e 1 k i 2 (k i )! e 2 (1 2 )k ( 1 2 ) 1 k k! i k i e 1 2 k ! i 0 i !(k i )! k! e ( 1 2 ) where k 0,1, 2,3, Remark If X 1 , n Xi i 1 P(1 2 ) . that is to say Z , X n are mutually independent and X i P(i ),1 i n, then n P( i ). i 1 Example 3.18 Suppose X ~ b(n, p), Y ~ b(m, p), and X is independent of Y , then Z X Y ~ b(m n, p). 1,, 2 ,n m Proof Z X Y possibly assume value 0, k P( Z k) P( X Y )k (P X ) i (P Y k) i i 0 By considering the coefficient of x k in equation (1 x)nm (1 x)n (1 x)m , it is b C C not difficult to find that i a k i m i n Cnk m . Then b P( Z k ) P( X i ) P(Y k i ) i a b Cni pi q n i Cmk i p k i q m( k i ) i a pk q n m b k C C i a C k nm k p q n i m k i nmk Where k 0,1, 2,3, , n m , namely, Z 22 B(n m, p) . Chapter 3 Random vector and their numerical characteristics Remark If X 1 , , X k are mutually independent, and X i ~ B(ni , p),1 i k , then k X i 1 ~ B(n1 nk , p ) . i Particularly, if X 1 , , X n are mutually independent and n X i ~ B(1, p),1 i n , then X i ~ B ( n, p ) . i 1 2. Variables with continuous distributions (1) Distribution of Z X Y Let p( x, y ) be the joint density function of ( X , Y ) , then the density function of Z X Y can be given by the following way. Fz ( z ) P( Z z ) P( X Y z ) p ( x, y )dxdy D x y z zx p ( x, y )dxy [ p( x, y )dy ]dx z z 令u y x dx p( x, u x)du p( x, u x)dx du Differentiate w.r.t. z on both side one can obtain the density function of Z , which is denoted by pZ ( z ) and pZ ( z) pZ ( z ) p( x, z x)dx . p( z y, y)dy . Example 3.20 Suppose that X and Y are independent and uniformly distributed on interval (0,1) , let Z X Y , try to determine the density function of Z. x Answer Since both X and Y are independent and uniformly x=z distributed on x=z-1 1 23 O 1 2 z Chapter 3 Random vector and their numerical characteristics interval (0,1) , 1 0 x 1 pX x 其它 0 and pZ z 1 0 y 1 pY y 其它 0 p x p z x dx X Y Note that the integrand is 1 when 0 x 1, 0 z x 1 and 0 for else case, that is 0 x 1, and z 1 x z . (1) When z 0 or z 2 , pZ ( z ) 0; z (2) When 0 z 1, pZ ( z ) 1dx z; 0 1 (3) When 1 z 2, pZ ( z ) 1dx 2 z. z 1 0 z 1 z Summarily, pZ z 2 z 1 z 2 . 0 else Example 3.21 Suppose X ~ N ( 1 , 12 ), Y ~ N ( 2 , 22 ) and independent, prove that Z X Y ~ N ( 1 2 , 12 22 ). Proof PZ ( z ) p X ( x) pY ( z x)dx ( x 1 ) 2 ( z x 2 ) 2 1 1 exp{ } exp{ }dx 2 12 2 22 2 1 2 2 1 ( x 1 ) 2 ( z x 2 ) 2 exp{ [ ]}dx 2 1 2 2 12 22 1 24 are mutually Chapter 3 Random vector and their numerical characteristics 1 2 1 2 exp{ 1 2 12 22 1 2 12 22 12 22 12 ( z 1 2 ) 2 ( z 1 2 ) 2 ( x ) }dx 1 2 12 22 12 22 2( 12 22 ) exp{ exp{ ( z 1 2 ) 2 } 2( 12 22 ) 2 1 1 2 12 22 ( x 1 exp{ 2( 12 ( z 1 2 ) 2 ) 12 22 dx 1 2 2 12 22 ) ( z 1 2 ) 2 }, 2( 12 22 ) That is to say Z X Y ~ N ( 1 2 , 12 22 ). Remark If X i (i 1, 2, Xi N ( i , i ) , then 2 , n) are mutually independent random variables and n c X i 1 i i n n i 1 i 1 ~ N ( ci i , ci2 i2 ) (2) Transformation of a two-dimensional probability density function u g1 ( x, y), Suppose p( x, y ) is the density function of ( X , Y ) and has v g2 ( x, y). x x(u , v), continuous partial derivatives, the inverse transformation exists, the y y (u, v) Jacobian determinant J is defined as follows: x ( x, y ) u J (u, v) x v y 1 u (u, v) y ( x, y ) v U g1 ( X , Y ) Define V g 2 ( X , Y ), u x v x u y v y 1 0. then the joint density function of (U ,V ) can be determined as p(u, v) p( x(u, v), y(u, v)) J . Example 3.22 Suppose that X and Y 25 are independent, identically and Chapter 3 Random vector and their numerical characteristics U X Y , N ( , 2 ) distributed, denote V X Y . u x y, v x y Since x u J x v with inverse transformation x (u v) / 2, y (u v) / 2, and y 1 u 1/ 2 1/ 2 . y 1/ 2 1/ 2 2 v Thus the joint density function of (U ,V ) is 1 p(u, v) p( x(u, v), y (u, v)) | J | p X ((u v) / 2) pY ((u v) / 2) | | 2 2 1 [(u v) / 2 ] 1 [(u v) / 2 ]2 exp{ } exp{ } 2 2 2 2 2 2 2 1 4 exp{ 2 (u 2 ) 2 v 2 }, 4 2 Which shows that (U ,V ) N (2 ,0, 2 2 , 2 2 ,0) and the marginal distribution is U ~ N (2 ,2 2 ), V ~ N (0,2 2 ) ,thus p(u, v) pU (u) pV (v) .That is to say that U and V are independent. Remark To find the function of ( X , Y ) ,denoted by U g ( X , Y ) , one way is to implement a variable V h( X , Y ) (for example, let V X or V Y ) and applying the formula mentioned in section 3, one can derive the joint density of (U ,V ) ,denote it by p (u , v) . The last step is to integrate p (u , v) with respect to v , and then the density of U is derived. Example 3.23 Suppose that X is independent of Y with marginal density p X ( x) and pY ( y ) respectively, then the density function of U XY is specified by pU (u ) pX (u v) pY (v) 1 dv. v 26 Chapter 3 Random vector and their numerical characteristics u xy x u / v In fact, denote V Y and , the inverse transformation is and v y yv the Jacobian determinant is 1 J v 0 u 1 v 2 , thus the joint density of (U ,V ) is v 1 p(u, v) p X (u / v) pY (v) | J | p X (u / v) pY (v) 1 . |v| Integrate p (u , v) w.r.t. v , one can obtain the density function of U XY : pU (u ) p X (u v) pY (v) 1 dv. v Remark Under the conditions of Example 3.23, one can easily find the density function of U X Y is pU (u) pX (uv) pY (v) v dv. §3.5 Numerical characteristics of random vector Expectations of the functions of random vectors Theorem 3.7 Suppose that P( X xi , Y y j ) (or p( x, y ) ) is the joint density function of ( X , Y ) , then the expectation of Z g ( X , Y ) is defined as g ( xi , y j ) P( X xi , Y y j ), i n di scr et e di st r i but ed case, i j E (Z ) g ( x, y ) p( x, y )dxdy, i n cont i nuous di st r i but ed case. Example 26 Independently put two point two random point X and Y in a segment with the length a , try to determine the average length of two points. Answer X , Y ~ U (0, a) , and X is independent of Y ,then the joint density 27 Chapter 3 Random vector and their numerical characteristics 1 , 0 x a, 0 y a; function of ( X , Y ) is p( x, y ) a 2 0, 其它 Thus the average length of X and Y is E (| X Y |) a 0 a 0 | x y| 1 dxdy a2 a a 1 a x { ( x y )dydx ( y x)dydx} 2 0 0 0 x a 1 a a2 a 2 { ( x 2 ax )dx} . 0 a 2 3 Properties of the expectation and variance Proposition 1 E ( X Y ) EX EY . Proof Suppose that ( X , Y ) has density function p( x, y ) and marginal density function PX ( x) and PY ( y) respectively, then E( X Y ) ( x y) p( x, y)dxdy xp( x, y )dxdy xP ( x)dx yP ( y )dy yp( x, y )dxdy X Y EX EY . Remark E ( X1 X 2 X n ) EX1 EX 2 EX n . Proposition 2 If X and Y are independent, then EXY EXEY . Proof Since X and Y are independent, then p( x, y) pX ( x) pY ( y) .Consequently, EXY xyp( x, y)dxdy xyp ( x) p ( y )dxdy [ xp ( x)] [ yp ( y )] X Y X Y EXEY 28 Chapter 3 Random vector and their numerical characteristics Remark If X1 , X 2 , , X n are mutually independent, then E( X1 X 2 X n ) EX1EX 2 EX n . Proposition 3 If X and Y are independent, then D( X Y ) DX DY . Proof By the definition of variance, one have D( X Y ) E[( X Y ) 2 ] [ E ( X Y )]2 E[ X 2 Y 2 2XY ] [ E ( X Y )]2 [ EX 2 EY 2 2EXEY ] [( EX ) 2 ( EY ) 2 2 EXEY ] {EX 2 ( EX ) 2 } {EY 2 ( EY ) 2 } DX DY . Remark If X1 , X 2 , , X n are mutually independent, then D( X1 X 2 X n ) DX1 DX 2 DX n Example 3.29 Let X ~ B (n, p ) , try to determine EX , DX . Answer Suppose that in n trials Bernoulli experiment, with the probability p that the outcome is A , let l ,i s 1,t he out come of i t r i a A X i s. n o t 0,t he out come of i t r i a l i A EX i p,DX i pq,i 1 , 2 , n , Then . the number that the outcome is A n can be specified by X X i , X ~ B(n, p) , i 1 n n i 1 i 1 n n EX EX i p np, DX DX i pq npq. i 1 i 1 Covariance If X Otherwise and Y are independent, then If X E ( X EX )(Y EY ) 0 , 29 and Y are independent. Chapter 3 Random vector and their numerical characteristics which indicates that X and Y are no longer independent, but are dependent. In order to define a numerical characteristic to describe the dependent relations of X and Y , we give the following definition. Definition 3.10 suppose that ( X , Y ) are dependent two-dimensional random vector, if E[( X EX )(Y EY )] exsits, it is called the covariance of Cov( X , Y ) E[( X EX )(Y EY )] . Y .That is to say X and Particularly, we have Cov( X , X ) DX . X and Y are discrete distributed, then (i) If C ov( X , Y ) [ xi EX ][ y j EY ]pij , where i j P( X xi , Y y j ) pij , i, j 1, 2, (ii) If X and Y are continuous distributed Cov( X , Y ) [ x EX ][ y EY ] p( x, y)dxdy. Properties of Covariance 1 Cov( X , Y ) EXY EXEY . 2 If X and Y are discrete distributed, then Cov( X , Y ) 0 . 3 or any given ( X , Y ) , D( X Y ) DX DY 2Cov( X , Y ) Remark In fact, for any given X1 , X 2 , , X n , n n i 1 i 1 n i 1 D( X i ) DX i 2 Cov( X i , X j ) . i 1 j 1 Example 3.31 Suppose that the joint density function of ( X , Y ) is specified by 30 Chapter 3 Random vector and their numerical characteristics 3x, 0 y x 1, p ( x, y ) 0, 其他. Try to determine Cov( X , Y ) . Answer: 1 3 3 x 3 xdydx 3 x dx . 0 0 0 4 3 1 x 1 3x 3 EY y 3xdydx dx . 0 0 0 2 8 1 x 1 3x 4 3 EXY xy 3xdydx dx . 0 0 0 2 10 EX 1 x Cov( X , Y ) 3 3 3 3 0. 10 4 8 160 Coefficients Definition 3.11 Suppose that ( X , Y ) is 2-dimensional random vector and DX 0, DY 0 , the coefficient is defined as: X ,Y Cov( X , Y ) Cov( X , Y ) XY DX DY Example 3.32 The coefficient of N ( 1 , 2 , 12 , 22 , ) . Proof Obviously, we have E X 1 , DX 12 , EY 2 , DY 22 . Since p( x, y) Put s 1 21 2 x 1 1 ,t x 1 2 2 x 1 y 2 y 2 2 1 exp 2 2 2 2 1 1 2 2 1 2 1 y 2 2 , then 31 Chapter 3 Random vector and their numerical characteristics Cov( X , Y ) ( x )( y ) p( x, y)dxdy 1 2 = 1 2 1 2 1 2 1 2 2 te t2 2 1 2 ste 1 2(1 )2 [ s 2 2 st t 2 ] 1 2 dsdt s ( 2 1 2 e ( s t )2 2(1 2 ) ds )dt 2 t 1 te 2 ( t )dt 2 1 2 2 1 2 t2 t e dt 2 1 2 1 2 Properties of coefficients (1) | X ,Y | 1. Proof D( X * Y * ) D( X * ) D(Y * ) 2Cov( X * , Y * ) 1 1 2Cov( X * , Y * ) 2(1 XY ) 0, | XY | 1 . i.e. Definition 3.12 It is said that X and Y are uncorrelated if X ,Y 0 , are negative correlated if 1 X ,Y 0 , are positive correlated if 0 X ,Y 1 . The following assertions are equivalent: (1) Cov( X , Y ) 0; (2) EXY EXEY ; (3) D( X Y ) DX DY ; A sufficient and necessary condition for X ,Y 1 holds is tha their (2) exists (4) X 与 Y 不相关. a constant a( 0) and b X ,Y 1 , a 0 ; when X ,Y 1 , a 0 . 32 such that P(Y aX b) 1 .When Chapter 3 Random vector and their numerical characteristics Proof Suppose that Y aX b , then EY aEX b, DY a 2 DX , then Cov( X , Y ) E{[ X EX ][aX b aEX b]} aE{[ X EX ]2 } aDX . That is to say aDX XY DX a 2 DX a |a| i.e. when a 0 , XY 1 ;when a 0 , XY -1 . (2) Suppose that XY 1 , since XY 1 implies D( X * Y * ) 0 , X * Y * assume value 1with probability 1.Thus when XY 1 时, X * Y * =0 and X EX DX Y EY DY , b EY 0 ,i.e. Y aX b , where a DX DY Example 3.33 DY EX . DX If X ~ N (0,1), Y X 2 ,is that X and Y are correlated? 2 Answer Since X even function on N (0,1) and the density function is p ( x) 1 x2 e ,which is a 2 EX EX 3 0 . Then it is R , thus easy to find cov( X , Y ) EXY EXEY EX 3 EXEX 2 0 and XY cov( X , Y ) 0. DX DY This indicates that X and Y are uncorrelated, however, since Y X 2 , they are obviously not independent. Remark If ( X ,Y ) N ( 1 , 2 , 12 , 22 , ) independent X , Y are uncorrelated. 33 then X ,Y are Chapter 3 Random vector and their numerical characteristics Example 3.34 Assume that DX DY 1 , X and Y are uncorrelated, put X1 X Y , X 2 X Y ( 2 2 0), try to determine X1 , X 2 . Answer Since X and Y are uncorrelated, sp do X and Y , then D( X Y ) D( X ) D( Y ) 2 2 , D( X Y ) D( X ) D( Y ) 2 2 , Cov( X Y , X Y ) 2Cov( X , X ) Cov( X , Y ) Cov(Y , X ) 2Cov(Y , Y ) 2 2, and X ,X 1 2 Cov( X 1 , X 2 ) 2 2 2 . 2 DX1 DX 2 Exercise 3 1. Suppose that F ( x, y ) is the joint d.f. of ( X , Y ) ,please represent the probability of following events with F ( x, y ) : (1) P(a X b, c Y d ); (2) P(a X b, Y y ); (3) P( X a, Y y ); (4) P( X x). 2. If the density function of ( X , Y ) is specified by 1 , 0 x 1, 0 y 2; p( x, y) 2 0, else. Try to find the probability that one of X or Y is less than 3. If the density function of ( X , Y ) is specified by 34 1 . 2 Chapter 3 Random vector and their numerical characteristics ke3 x4 y , x 0, y 0; p( x, y) el se. 0, Determine:(1)value of k ;(2) F ( x, y ) ;(3) P(0 X 1, 0 Y 2). 4. If the density function of ( X , Y ) is specified by e y , 0 x y, p( x, y) 0 , el se . Try to determine P( X Y 1) . 5. If the density function of ( X , Y ) is specified by 3 xy, 0 x 4 , 0 y x; p ( x ,y ) 32 0, else. Please determine the marginal density function of X , Y . 1 0 1 , 1 1 4 2 4 6. Suppose that X 1 Y 0 1 1 1 2 2 and P( XY 0) 1 . Determine (1) The joint d.f. of X and Y ; (2) Whether X and Y are independent or not? why? 7. If the density function of ( X , Y ) is specified by e y , x 0, y x, p( x, y) 其他. 0, Determine (1) the marginal distribution of X , Y ; (2) conditional distribution of ( X , Y ) ; (3) P ( X 2 | Y 4). 35 Chapter 3 Random vector and their numerical characteristics 8. Suppose that X and Y are two independent r.v. with density functions 1, 0 x 1, p X ( x) 0, el se, e y , pY ( y) 0, y 0, y 0. Try to determine the density function of Z X Y . 9.Suppose that X and Y are independent and identically distributed with e x , x 0, density function p( x) 0, x 0. Determine the joint distribution of U X Y and V X and judge X Y whether U and V are independent or not? 10. If the density function of ( X , Y ) is specified by xe x (1 y ) , x 0, y 0; p( x, y) 0,el se. Determine the density function of Z XY . 11.Suppose that X and Y are independent and follow exponential distribution X with parameter =1 ,please determine the density function of Z . Y 12. If the distribution law of ( X , Y ) is specified by -1 Y 0 1 X 1/6 1/3 0 1/6 1 1/6 1/6 0 Determine Cov( X , Y ) and XY . 13. If the density function of ( X , Y ) is specified by 36 Chapter 3 Random vector and their numerical characteristics 1 ( x y ), 0 x 2, 0 y 2, p ( x, y ) 8 0, 其他. Determine E ( X ), E (Y ), Cov( X , Y ), XY , D( X Y ). 37