Download B. subtilis

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Microbial Genomics and Secondary Metabolites
MedILS, Split, Croatia
June 29, 2007
First insights into bacterial Ser/Thr/Tyr
phosphoproteome
Boris Maček
Department of Proteomics and Signal Transduction
Max Planck Institute of Biochemistry
Martinsried, Germany
Our workflow: „GeLC-MS“
Aebersold R, Mann M. 2003. Nature 422: 198-207
High-resolution, accurate, fast scanning MS: FT-MS
Hybrid linear ion trap FT-MS instruments
Electrostatic field:
Electromagnetic field:
LTQ-FTICR MS
Olsen JV et al., MCP2005
Non-destructive
Detection:
Olsen JV et al., MCP2004
k

m/ z
qB
v
1.535611  10 7  B
fc 


2r 2  m
m/z
Parts per million mass accuracy
In a 7-Tesla magnetic field an ion with m/z =100 will spin 1,000,000 cycles (travel
~ 30 km) in a 1 sec. observation period
High-mass accuracy – why is it
important?
Consider all theoretical tryptic peptide masses from the
human IPI database (> 40,000 protein sequence entries)
Example: Tryptic HSP-70
peptide: ELEEIVQPIISK, mass
1396.7813 Da
Instrument
LCQ
(ion trap)
LTQ
(ion trap)
Q-TOF
LTQ-FT
LTQ-FT (SIM)
Mass accuracy
[ppm]
1000
300
50
10
2
Mass accuracy
[Dalton]
+/- 1.4
+/- 0.42
+/- 0.07
+/- 0.014
+/- 0.0028
960
344
202
26
11
# of tryptic
peptides for
m/z 1396.7813
Quantitation with Stable Isotope
Labeling
Unlabeled peptide:
Labeled peptide:
Element
Stable Isotope
1H
2H
12C
13C
14N
15N
16O
18O
Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)
Stable isotope dilution: same physico-chemical properties
Upregulated protein. Peptide ratio >1
”normal AA”
”heavy AA”
Arg-12C6
Arg-13C6
Resting cells
Treated (drug, GF)
Combine and lyse,
protein purification
or fractionation
Arg13C
6
Arg12C
6
Background protein. Peptide ratio 1:1
Arg12C
6
Arg13C
6
Proteolysis
(trypsin, Lys-C, etc.)
Quantitation and identification by MS
(nanoscale LC-MS/MS)
Ong SE et. al., Mol Cell Proteomics 2002
m/z
SILAC requirements
• Cell/organism must be auxotrophic for the corresponding AA
• Growth in defined media lacking the SILAC labeling amino
acid (e.g. Arg, Lys)
• Stable Isotope Labeled Amino Acids:
NH2
C
H2N
H2
C
H
N
H2N
C
H2
CH
C
H2
NH
H2N
O
OH
C
O
L-arginine
Arg-13C6 (Δm=6 Da)
Arg-13C615N4 (Δm=10 Da)
H2C
CH2
H2C
CH
CH2
C
OH
L-lysine
Lys-13C6 (Δm=6 Da)
Lys-13C615N2 (Δm=8 Da)
• Growth supplements (e.g. dialyzed serum) if necessary
Quantitation Software –
http://msquant.sourceforge.net
Protein Quantitation
(Myosin IX)
No.
1
2
3
4
5
6
7
8
9
10
11
12
Peptide Sequence
GILTPR
WLVLR
NCAAYLR
NTNPNFVR
GALALEEKR
GDLPFVVTR
ALELDSNLYR
AGVLAHLEEER
LDPHLVLDQLR
VSHLLGINVTDFTR
AGKLDPHLVLDQLR
KQELEEICHDLEAR
Average Peptide Ratio
1.065±4.92%*
1.048±5.58%
0.999±4.54%
1.068±4.36%
1.055±5.80%
1.084±6.47%
1.024±4.91%
1.073±2.33%
0.992±2.61%
0.954±5.51%
1.073±2.68%
1.040±4.44%
Average Protein Abundance Ratio
SD
1.04
RSD (%)
3.82%
* Relative standard deviation
0.04
Gel-free phosphoproteome analysis workflow
Cell culture
days
Cell harvest
& trypsin
digestion
½ - 1 day
Strong cation
TiO2
exchange
Chromatography
Chromatography
pH<3 (bind)
pH<3
pH>10 (elute)
O.N.
½ day
½ day
LC-MS
pH~1
1-2 days
Data
Analysis
1-2 days
Phosphopetide enrichment by Titansphere (TiO2) chromatography
Competitive binding of peptides with DHB
<
<
Larsen et al. (2005) Mol Cell Proteomics 4:873-886
LC separation
• Proxeon nano-ESI source
• Agilent 1100, Proxeon nano-HPLC systems
• self-packed 75 μm x ~10 cm Porous C18 HPLC columns
• flow ~250 nL/min
Hybrid linear ion trap FTICR MS:
LTQ FT (Thermo Scientific)
qB
v
1.535611  10 7  B
fc 


2r 2  m
m/z
LTQ-FT data-dependent experiments
Two Mass Spectrometers in one - High duty-cycle
Ion trap MS: + sensitivity (MS/MS mode) and speed
 resolution, mass accuracy and dynamic range
FTICR MS: + resolution, mass accuracy and dynamic range
 sensitivity (MS/MS mode) and speed
LTQ-FT: The best from both instruments
LTQ-FT MS/MS optimized scan cycle:
FT-MS
MS-Full
IT-MS
SIM-MS 1st
MS2
0
300
SIM-MS 2nd
MS2
600
900
Time [msec]
1200
SIM-MS 3rd
Scan type
AGC
MS2
FT-MS Full
5,000,000
FT-MS SIM
50,000
IT-MS/MS
10,000
1500
1800
Phosphopeptide-directed MS3
Beausoleil SA et al. (2004) PNAS 101:12130-35.
Recent advances in FT-MS: LTQ-Orbitrap (Thermo)
Non-destructive
Detection:

FT:
LTQ:
Full
SIM1 SIM2 SIM3
MS2 MS3 MS2 MS3 MS2 MS3
0
1
Time [s]
2
Orbitrap:
LTQ:
Full scan
MS2 MS2 MS2 MS2 MS2
0
1
Time [s]
2
k
m/ z
LTQ-Orbitrap in the analysis of PTMs
„Hot“ CID
Multi-stage activation
CID with Multi-Stage Activation (MSA)
Pseudo
m/z
MS3
30ms
30ms
30ms
30ms
- 32.6 Da
- 49 Da
- 98 Da
wb
Precursor
Easy to identify multiply-phosphorylated peptides:
4, 5 and 6 phosphates
TiO2-enrichment of flow through from SCX (HeLa_EGF_CE_0_5_10)
CID in the C-trap (”Hot” CID or HCD)
Informative low mass ions – reporter ions
(Phosphotyrosine immonium ion, m/z = 216.0426)
Intracellular signaling networks (EGFR, HeLa)
(www.phosida.com)
• identified more than 2200 phosphoproteins
• determined more than 6600 phosphorylation sites
• pS (87%)/pT (12%)/pY (1.5%)
• less than 15% sites regulated by EGF treatment
→ systems biology modeling of signaling networks
Olsen et al. (2006) Cell 127(3):635-648
Protein phosphorylation in bacteria
Two-component system
Protein phosphorylation in bacteria
Phosphoenolpyruvate:carbohydrate
phosphotransferase system (PTS)
Overview of Ser/Thr/Tyr phosphorylation
in prokaryotes
• many putative Ser/Thr/Tyr kinases identified (mostly in silico)
• 2D gel studies suggest presence of hundred(s) of phosphoproteins
However:
• only about 150 proteins from about 35 species shown to be phosphorylated
• only about 70 Ser/Thr/Tyr phosphorylation sites identified
• phosphorylation analysis mostly in vitro!
→ clear need for in-depth detection and characterization of protein
phosphorylation in vivo
Ser/Thr/Tyr phosphorylation in B. subtilis
Bacillus
subtilis 168*
Previous studies
# of
genes
Expressed
4100
60%
(log)
P-proteins
P-sites
13
16
*Macek et al. 2006. Mol Cell Proteomics 6(4): 697-707
Ser/Thr/Tyr phosphorylation in B. subtilis
Bacillus
subtilis 168*
Previous studies
# of
genes
Expressed
4100
60%
(log)
This study
P-proteins
P-sites
P-proteins
P-sites
13
16
78
78
*Macek et al. 2006. Mol Cell Proteomics 6(4): 697-707
y*19 y*18 y*17
y14 y13
y11
y7 y6 y5 y4 y3 y2
Hpr protein V T A D pS G I H A R P A T V L V Q T A S K
y14++
100
90
80
740.427
Orbitrap full scan
C-trap MS/MS (HCD)
Precursor m=0.91ppm
Fragment m<2ppm
+++
y*18+++ y*19
70
Relative Abundance
y*18++
917.504
635.683
y*17+++
60
y13++
y7
573.662
50
40
y16++
y2
825.480
y4
234.145
406.229
30
y11
y14+++
y5
y*17
y3
20
1114.647
++
305.182
946.560
10
1017.598
0
200
300
400
500
600
700
m/z
800
900
1000
1100
CodY – Global regulator of transcription
y8 y7 y6 y5
90
80
Relative Abundance
70
60
50
pS V I V N A L R K
491.36
100
FT-ICR full scan
ion-trap MS/MS (CID)
Precursor m=6.39 ppm
Fragment m<0.5 Da
[M+2H]2+
-H3PO4
y3
b2 b3 b4
540.2988
b6
b8
40
30
20
0
505.00
283.00
10
350.55
186.82 213.09 254.27
200
300
400
700.27
566.18 601.27 643.27
500
600
m/z
MS3
b3
100
482.73
407.27
740.18 771.73 836.36 873.55
700
800
y5
936.73 982.09 1022.18 1062.18
900
1000
y6
601.31
700.30
282.13
90
80
70
Relative Abundance
y7++
60
y6++
50
254.20
40
407.44
b4
30
20
10
y3
y8
++
572.31
566.43
416.39 456.61
b2
185.10
213.15
169.10
381.19
301.41
461.97
683.42
613.40
835.35
712.48
667.45
499.42
813.50
854.58
877.74
769.45
0
150
200
250
300
350
400
450
500
b8
y7
b6
550
m/z
600
650
700
750
800
850
900
950
Phosphorylation in the main pathways
of carbohydrate metabolism (B. subtilis)
GLYCOLYSIS
Enolase (eno)
L-lactate dehydrogenase (lctE)
Triose phosphate isomerase (tpi)
G-3-P dehydrogenase (gap)
Pyruvate kinase (pykA)
Malate dehydrogenase (citH)
Phosphoglycerate mutase (pgm)
Glucose-6-phosphate isomerase (pgi)
Fructose-bisphosphate aldolase (fbaA)
Pyruvate dehydrogenase (pdhB)
Phosphoglycerate kinase (pgk)
Phosphoglucomutase (ybbT)
TCA CYCLE
Citrate synthase II (citZ)
Succinyl-CoA synthetase (sucC, sucD)
Is S/T/Y phosphorylation common in bacteria?
Overview of prokaryotes studied so far
Previous studies
# of
genes
Expressed
Bacillus subtilis
168*
4100
Escherichia
coli K12**
This study
P-proteins
P-sites
P-proteins
P-sites
60%
(log)
13
16
78
78
4289
87%
(log)
20
12
79
81
Lactococcus
lactis
2250
?
(log)
1
1
52
68
Halobacterium
salinarum
2605
~80%
(stat)
1
1
18
15
E. coli vs. B. Subtilis phosphoproteome
• phosphoproteomes similar in:
• size
• distribution of S/T/Y phosphorylation
• classes of phosphorylated proteins
• increased essentiality
Essential
Essential
pT pY
phosphogenes
(%) (%)
proteins
(%)
(%)
67.9 23.5 8.6 17
>27
69.2 20.5 10.3 6.6
15.4
Genome No. of
No. of detected
pS
size
phospho- phosphorylation
(%)
(ORFs) proteins events
E. coli
B. subtilis
~4300
~4100
79
78
105
103
*Macek et al. 2007. submitted
Evolutionary conservation of bacterial
S/T/Y phosphoproteins
• test set of 9 archaeal, 53 bacterial and 8 eukaryotic proteomes
• look for orthologs of bacterial phosphoproteins (2-directional BLAST; Needle)
• reported as average % of identified phosphoprotein orthologs in tested species
• compared to the random protein population
E. coli phosphoproteome
phosphoproteome
B. subtilis phosphoproteome
phosphoproteome
proteome
proteome
60
70
60
50
50
40
%
%
40
30
30
20
20
10
10
0
0
bacteria
eukaryotes
archaea
bacteria
eukaryotes
archaea
Evolutionary conservation of bacterial
S/T/Y phosphorylation sites
→ phosphoserine:
Conservation of phosphoserines - B. subtilis
Conservation of phosphoserine - E. coli
50
60.00
45
50.00
40
35
40.00
30.00
non-pS
%
%
30
pS
pS
25
non-pS
20
20.00
15
10
10.00
5
0.00
0
Bacteria
Eukaryotes
Archaea
Bacteria
Eukaryotes
Archaea
Evolutionary conservation of bacterial
S/T/Y phosphorylation sites
→ phosphothreonine:
Conservation of phosphothreonine - B. subtilis
70
60
50
40
%
pT
non-pT
30
20
10
0
Bacteria
Eukaryotes
Archaea
Bacterial S/T/Y phosphoproteins with P-sites
conserved from Archaea to H. sapiens
• cysteinyl t-RNA synthetase
• phosphoglucomutase
• nucleoside diphosphate kinase
• pyruvate kinase
• enolase
• predicted GTP-binding protein
• D-3 phosphoglycerate dehydrogenase
• phosphoglucosamine mutase
• elongation factor Ef-Tu
→ mutases are good internal standards for “quality control”!
Is S/T/Y phosphorylation a dynamic process?
Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC):
Bacillus subtilis (Arg-, Lys-)
”normal AA”
”heavy AA” (+8Da)
Lys-13C615N2
Lys12C 14N
6
2
Treated cells
Peptide ratio 1:1 - No change.
Control cells
(succinate or low P)
Combine and lyse
GeLC-MS
Proteolysis
(trypsin)
m/z
Peptide ratio >1 - Downregulation.
Strong cation exchange
chromatography(SCX)
control
Titanium oxide chromatography
treated
nanoLC-MS/MS
(Quantitation and identification by MS)
log(2)
Dynamics of protein expression in B. subtilis :
Growth on succinate
10
9
8
7
6
5
4
3
2
1
0
-1 0
-2
-3
-4
-5
-6
-7
-8
-9
-10
argininosuccinate synthase
methionyl-tRNA synthetase
transcriptional regulator CodY
DNA polymerase III
succinyl-CoA synthetase
100
200
300
transcriptional regulator GutR
similar to phosphoglucomutase
400
500
600
glucose kinase
PTS glucose-specific enzyme II
beta-glucosidase
similar to phosphomannomutase
6-phospho-beta-glucosidase
700
Dynamics of protein phosphorylation in B. subtilis :
Growth on succinate
4
3
log(2)
2
protein
1
phospho
0
-1
-2
ybbT rsbW yerA ispU yvcT rocA fbaA rocD
protein
phospho
ptsH ptsH
(S12) (S46)
0.321 0.538 3.489 2.466 -0.19 0.072 0.469 0.246 0.225 0.225
0.6
0.407 2.593 1.059 0.804 -0.15 -0.43 -0.59 -0.32 -1.22
Growth on low succinate: Hpr protein
Ser46: pSIMGVMSLGIAK
GAEITISASGADENDALNALEETMK
Ser12: VTADpSGIHARPATVLVQTASK
GAEITISASGADENDALNALEETMK
NH2
COOH
S12 H15
S46
log(2)
Dynamics of protein expression in B. subtilis :
Growth under low PO4310
9
8
7
6
5
4
3
2
1
0
-1
-2 0
-3
-4
-5
-6
-7
-8
-9
-10
PTS sucrose-specific enzyme II
alkaline phosphatase A
inositol-monophosphate dehydrogenase
carbon starvation-induced protein
ATP synthase
GroEL
100
200
300
400
500
600
PTS enzyme I
DNA polymerase III
cysteine synthase
700
800
900
Dynamics of protein phosphorylation in B. subtilis :
Growth under low PO43-
4.00
2.00
log(2)
0.00
Protein
-2.00
Phospho
-4.00
-6.00
-8.00
ybbT ypfD sodA
Protein
ptsH ptsH
yfkK ypsB yvaB
(S46) (S12)
tpi
yvcT fbaA
pta
rocA
-3.06 -3.97 0.53 0.40 0.40 0.29 1.31 -0.49 -4.15 -5.33 -6.43 -4.27 -4.99
Phospho -3.05 -3.22 0.47 0.36 1.76 2.19 2.65 2.76 0.88 -2.67 -1.91 -3.37 -1.60
Growth on low PO43-: Hpr protein
Ser46: pSIMGVMSLGIAK
YDADVNLEYNGK
Ser12: VTADpSGIHARPATVLVQTASK
YDADVNLEYNGK
NH2
COOH
S12 H15
S46
Conclusions
• SCX + TiO2 + FT MS - a powerful and generic strategy for phosphopeptide
enrichment and detection
• bacteria posess an elaborate Ser/Thr/Tyr phosphoproteome
• majority of enzymes in the main pathways of carbohydrate metabolism are
phosphorylated
• enzymes of the PTS system are phosphorylated on Ser/Thr/Tyr
→ possible cross-talk
• Ser/Thr/Tyr phosphorylation is dynamic process
→ likely regulatory role
• phosphoroteins and phosphorylation sites show increased evolutionary
conservation
• at least 9 P-sites conserved from Archaea to man: ancient regulatory role?
Acknowledgements
Max-Planck-Institute for Biochemistry
Matthias Mann
Florian Gnad
Jesper V. Olsen
Chanchal Kumar
Technical University of Denmark
Ivan Mijakovic
Boumediene Soufi
Dina Petranovic
Thermo Scientific
Stevan Horning
Oliver Lange
Related documents