Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Microbial Genomics and Secondary Metabolites MedILS, Split, Croatia June 29, 2007 First insights into bacterial Ser/Thr/Tyr phosphoproteome Boris Maček Department of Proteomics and Signal Transduction Max Planck Institute of Biochemistry Martinsried, Germany Our workflow: „GeLC-MS“ Aebersold R, Mann M. 2003. Nature 422: 198-207 High-resolution, accurate, fast scanning MS: FT-MS Hybrid linear ion trap FT-MS instruments Electrostatic field: Electromagnetic field: LTQ-FTICR MS Olsen JV et al., MCP2005 Non-destructive Detection: Olsen JV et al., MCP2004 k m/ z qB v 1.535611 10 7 B fc 2r 2 m m/z Parts per million mass accuracy In a 7-Tesla magnetic field an ion with m/z =100 will spin 1,000,000 cycles (travel ~ 30 km) in a 1 sec. observation period High-mass accuracy – why is it important? Consider all theoretical tryptic peptide masses from the human IPI database (> 40,000 protein sequence entries) Example: Tryptic HSP-70 peptide: ELEEIVQPIISK, mass 1396.7813 Da Instrument LCQ (ion trap) LTQ (ion trap) Q-TOF LTQ-FT LTQ-FT (SIM) Mass accuracy [ppm] 1000 300 50 10 2 Mass accuracy [Dalton] +/- 1.4 +/- 0.42 +/- 0.07 +/- 0.014 +/- 0.0028 960 344 202 26 11 # of tryptic peptides for m/z 1396.7813 Quantitation with Stable Isotope Labeling Unlabeled peptide: Labeled peptide: Element Stable Isotope 1H 2H 12C 13C 14N 15N 16O 18O Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Stable isotope dilution: same physico-chemical properties Upregulated protein. Peptide ratio >1 ”normal AA” ”heavy AA” Arg-12C6 Arg-13C6 Resting cells Treated (drug, GF) Combine and lyse, protein purification or fractionation Arg13C 6 Arg12C 6 Background protein. Peptide ratio 1:1 Arg12C 6 Arg13C 6 Proteolysis (trypsin, Lys-C, etc.) Quantitation and identification by MS (nanoscale LC-MS/MS) Ong SE et. al., Mol Cell Proteomics 2002 m/z SILAC requirements • Cell/organism must be auxotrophic for the corresponding AA • Growth in defined media lacking the SILAC labeling amino acid (e.g. Arg, Lys) • Stable Isotope Labeled Amino Acids: NH2 C H2N H2 C H N H2N C H2 CH C H2 NH H2N O OH C O L-arginine Arg-13C6 (Δm=6 Da) Arg-13C615N4 (Δm=10 Da) H2C CH2 H2C CH CH2 C OH L-lysine Lys-13C6 (Δm=6 Da) Lys-13C615N2 (Δm=8 Da) • Growth supplements (e.g. dialyzed serum) if necessary Quantitation Software – http://msquant.sourceforge.net Protein Quantitation (Myosin IX) No. 1 2 3 4 5 6 7 8 9 10 11 12 Peptide Sequence GILTPR WLVLR NCAAYLR NTNPNFVR GALALEEKR GDLPFVVTR ALELDSNLYR AGVLAHLEEER LDPHLVLDQLR VSHLLGINVTDFTR AGKLDPHLVLDQLR KQELEEICHDLEAR Average Peptide Ratio 1.065±4.92%* 1.048±5.58% 0.999±4.54% 1.068±4.36% 1.055±5.80% 1.084±6.47% 1.024±4.91% 1.073±2.33% 0.992±2.61% 0.954±5.51% 1.073±2.68% 1.040±4.44% Average Protein Abundance Ratio SD 1.04 RSD (%) 3.82% * Relative standard deviation 0.04 Gel-free phosphoproteome analysis workflow Cell culture days Cell harvest & trypsin digestion ½ - 1 day Strong cation TiO2 exchange Chromatography Chromatography pH<3 (bind) pH<3 pH>10 (elute) O.N. ½ day ½ day LC-MS pH~1 1-2 days Data Analysis 1-2 days Phosphopetide enrichment by Titansphere (TiO2) chromatography Competitive binding of peptides with DHB < < Larsen et al. (2005) Mol Cell Proteomics 4:873-886 LC separation • Proxeon nano-ESI source • Agilent 1100, Proxeon nano-HPLC systems • self-packed 75 μm x ~10 cm Porous C18 HPLC columns • flow ~250 nL/min Hybrid linear ion trap FTICR MS: LTQ FT (Thermo Scientific) qB v 1.535611 10 7 B fc 2r 2 m m/z LTQ-FT data-dependent experiments Two Mass Spectrometers in one - High duty-cycle Ion trap MS: + sensitivity (MS/MS mode) and speed resolution, mass accuracy and dynamic range FTICR MS: + resolution, mass accuracy and dynamic range sensitivity (MS/MS mode) and speed LTQ-FT: The best from both instruments LTQ-FT MS/MS optimized scan cycle: FT-MS MS-Full IT-MS SIM-MS 1st MS2 0 300 SIM-MS 2nd MS2 600 900 Time [msec] 1200 SIM-MS 3rd Scan type AGC MS2 FT-MS Full 5,000,000 FT-MS SIM 50,000 IT-MS/MS 10,000 1500 1800 Phosphopeptide-directed MS3 Beausoleil SA et al. (2004) PNAS 101:12130-35. Recent advances in FT-MS: LTQ-Orbitrap (Thermo) Non-destructive Detection: FT: LTQ: Full SIM1 SIM2 SIM3 MS2 MS3 MS2 MS3 MS2 MS3 0 1 Time [s] 2 Orbitrap: LTQ: Full scan MS2 MS2 MS2 MS2 MS2 0 1 Time [s] 2 k m/ z LTQ-Orbitrap in the analysis of PTMs „Hot“ CID Multi-stage activation CID with Multi-Stage Activation (MSA) Pseudo m/z MS3 30ms 30ms 30ms 30ms - 32.6 Da - 49 Da - 98 Da wb Precursor Easy to identify multiply-phosphorylated peptides: 4, 5 and 6 phosphates TiO2-enrichment of flow through from SCX (HeLa_EGF_CE_0_5_10) CID in the C-trap (”Hot” CID or HCD) Informative low mass ions – reporter ions (Phosphotyrosine immonium ion, m/z = 216.0426) Intracellular signaling networks (EGFR, HeLa) (www.phosida.com) • identified more than 2200 phosphoproteins • determined more than 6600 phosphorylation sites • pS (87%)/pT (12%)/pY (1.5%) • less than 15% sites regulated by EGF treatment → systems biology modeling of signaling networks Olsen et al. (2006) Cell 127(3):635-648 Protein phosphorylation in bacteria Two-component system Protein phosphorylation in bacteria Phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) Overview of Ser/Thr/Tyr phosphorylation in prokaryotes • many putative Ser/Thr/Tyr kinases identified (mostly in silico) • 2D gel studies suggest presence of hundred(s) of phosphoproteins However: • only about 150 proteins from about 35 species shown to be phosphorylated • only about 70 Ser/Thr/Tyr phosphorylation sites identified • phosphorylation analysis mostly in vitro! → clear need for in-depth detection and characterization of protein phosphorylation in vivo Ser/Thr/Tyr phosphorylation in B. subtilis Bacillus subtilis 168* Previous studies # of genes Expressed 4100 60% (log) P-proteins P-sites 13 16 *Macek et al. 2006. Mol Cell Proteomics 6(4): 697-707 Ser/Thr/Tyr phosphorylation in B. subtilis Bacillus subtilis 168* Previous studies # of genes Expressed 4100 60% (log) This study P-proteins P-sites P-proteins P-sites 13 16 78 78 *Macek et al. 2006. Mol Cell Proteomics 6(4): 697-707 y*19 y*18 y*17 y14 y13 y11 y7 y6 y5 y4 y3 y2 Hpr protein V T A D pS G I H A R P A T V L V Q T A S K y14++ 100 90 80 740.427 Orbitrap full scan C-trap MS/MS (HCD) Precursor m=0.91ppm Fragment m<2ppm +++ y*18+++ y*19 70 Relative Abundance y*18++ 917.504 635.683 y*17+++ 60 y13++ y7 573.662 50 40 y16++ y2 825.480 y4 234.145 406.229 30 y11 y14+++ y5 y*17 y3 20 1114.647 ++ 305.182 946.560 10 1017.598 0 200 300 400 500 600 700 m/z 800 900 1000 1100 CodY – Global regulator of transcription y8 y7 y6 y5 90 80 Relative Abundance 70 60 50 pS V I V N A L R K 491.36 100 FT-ICR full scan ion-trap MS/MS (CID) Precursor m=6.39 ppm Fragment m<0.5 Da [M+2H]2+ -H3PO4 y3 b2 b3 b4 540.2988 b6 b8 40 30 20 0 505.00 283.00 10 350.55 186.82 213.09 254.27 200 300 400 700.27 566.18 601.27 643.27 500 600 m/z MS3 b3 100 482.73 407.27 740.18 771.73 836.36 873.55 700 800 y5 936.73 982.09 1022.18 1062.18 900 1000 y6 601.31 700.30 282.13 90 80 70 Relative Abundance y7++ 60 y6++ 50 254.20 40 407.44 b4 30 20 10 y3 y8 ++ 572.31 566.43 416.39 456.61 b2 185.10 213.15 169.10 381.19 301.41 461.97 683.42 613.40 835.35 712.48 667.45 499.42 813.50 854.58 877.74 769.45 0 150 200 250 300 350 400 450 500 b8 y7 b6 550 m/z 600 650 700 750 800 850 900 950 Phosphorylation in the main pathways of carbohydrate metabolism (B. subtilis) GLYCOLYSIS Enolase (eno) L-lactate dehydrogenase (lctE) Triose phosphate isomerase (tpi) G-3-P dehydrogenase (gap) Pyruvate kinase (pykA) Malate dehydrogenase (citH) Phosphoglycerate mutase (pgm) Glucose-6-phosphate isomerase (pgi) Fructose-bisphosphate aldolase (fbaA) Pyruvate dehydrogenase (pdhB) Phosphoglycerate kinase (pgk) Phosphoglucomutase (ybbT) TCA CYCLE Citrate synthase II (citZ) Succinyl-CoA synthetase (sucC, sucD) Is S/T/Y phosphorylation common in bacteria? Overview of prokaryotes studied so far Previous studies # of genes Expressed Bacillus subtilis 168* 4100 Escherichia coli K12** This study P-proteins P-sites P-proteins P-sites 60% (log) 13 16 78 78 4289 87% (log) 20 12 79 81 Lactococcus lactis 2250 ? (log) 1 1 52 68 Halobacterium salinarum 2605 ~80% (stat) 1 1 18 15 E. coli vs. B. Subtilis phosphoproteome • phosphoproteomes similar in: • size • distribution of S/T/Y phosphorylation • classes of phosphorylated proteins • increased essentiality Essential Essential pT pY phosphogenes (%) (%) proteins (%) (%) 67.9 23.5 8.6 17 >27 69.2 20.5 10.3 6.6 15.4 Genome No. of No. of detected pS size phospho- phosphorylation (%) (ORFs) proteins events E. coli B. subtilis ~4300 ~4100 79 78 105 103 *Macek et al. 2007. submitted Evolutionary conservation of bacterial S/T/Y phosphoproteins • test set of 9 archaeal, 53 bacterial and 8 eukaryotic proteomes • look for orthologs of bacterial phosphoproteins (2-directional BLAST; Needle) • reported as average % of identified phosphoprotein orthologs in tested species • compared to the random protein population E. coli phosphoproteome phosphoproteome B. subtilis phosphoproteome phosphoproteome proteome proteome 60 70 60 50 50 40 % % 40 30 30 20 20 10 10 0 0 bacteria eukaryotes archaea bacteria eukaryotes archaea Evolutionary conservation of bacterial S/T/Y phosphorylation sites → phosphoserine: Conservation of phosphoserines - B. subtilis Conservation of phosphoserine - E. coli 50 60.00 45 50.00 40 35 40.00 30.00 non-pS % % 30 pS pS 25 non-pS 20 20.00 15 10 10.00 5 0.00 0 Bacteria Eukaryotes Archaea Bacteria Eukaryotes Archaea Evolutionary conservation of bacterial S/T/Y phosphorylation sites → phosphothreonine: Conservation of phosphothreonine - B. subtilis 70 60 50 40 % pT non-pT 30 20 10 0 Bacteria Eukaryotes Archaea Bacterial S/T/Y phosphoproteins with P-sites conserved from Archaea to H. sapiens • cysteinyl t-RNA synthetase • phosphoglucomutase • nucleoside diphosphate kinase • pyruvate kinase • enolase • predicted GTP-binding protein • D-3 phosphoglycerate dehydrogenase • phosphoglucosamine mutase • elongation factor Ef-Tu → mutases are good internal standards for “quality control”! Is S/T/Y phosphorylation a dynamic process? Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC): Bacillus subtilis (Arg-, Lys-) ”normal AA” ”heavy AA” (+8Da) Lys-13C615N2 Lys12C 14N 6 2 Treated cells Peptide ratio 1:1 - No change. Control cells (succinate or low P) Combine and lyse GeLC-MS Proteolysis (trypsin) m/z Peptide ratio >1 - Downregulation. Strong cation exchange chromatography(SCX) control Titanium oxide chromatography treated nanoLC-MS/MS (Quantitation and identification by MS) log(2) Dynamics of protein expression in B. subtilis : Growth on succinate 10 9 8 7 6 5 4 3 2 1 0 -1 0 -2 -3 -4 -5 -6 -7 -8 -9 -10 argininosuccinate synthase methionyl-tRNA synthetase transcriptional regulator CodY DNA polymerase III succinyl-CoA synthetase 100 200 300 transcriptional regulator GutR similar to phosphoglucomutase 400 500 600 glucose kinase PTS glucose-specific enzyme II beta-glucosidase similar to phosphomannomutase 6-phospho-beta-glucosidase 700 Dynamics of protein phosphorylation in B. subtilis : Growth on succinate 4 3 log(2) 2 protein 1 phospho 0 -1 -2 ybbT rsbW yerA ispU yvcT rocA fbaA rocD protein phospho ptsH ptsH (S12) (S46) 0.321 0.538 3.489 2.466 -0.19 0.072 0.469 0.246 0.225 0.225 0.6 0.407 2.593 1.059 0.804 -0.15 -0.43 -0.59 -0.32 -1.22 Growth on low succinate: Hpr protein Ser46: pSIMGVMSLGIAK GAEITISASGADENDALNALEETMK Ser12: VTADpSGIHARPATVLVQTASK GAEITISASGADENDALNALEETMK NH2 COOH S12 H15 S46 log(2) Dynamics of protein expression in B. subtilis : Growth under low PO4310 9 8 7 6 5 4 3 2 1 0 -1 -2 0 -3 -4 -5 -6 -7 -8 -9 -10 PTS sucrose-specific enzyme II alkaline phosphatase A inositol-monophosphate dehydrogenase carbon starvation-induced protein ATP synthase GroEL 100 200 300 400 500 600 PTS enzyme I DNA polymerase III cysteine synthase 700 800 900 Dynamics of protein phosphorylation in B. subtilis : Growth under low PO43- 4.00 2.00 log(2) 0.00 Protein -2.00 Phospho -4.00 -6.00 -8.00 ybbT ypfD sodA Protein ptsH ptsH yfkK ypsB yvaB (S46) (S12) tpi yvcT fbaA pta rocA -3.06 -3.97 0.53 0.40 0.40 0.29 1.31 -0.49 -4.15 -5.33 -6.43 -4.27 -4.99 Phospho -3.05 -3.22 0.47 0.36 1.76 2.19 2.65 2.76 0.88 -2.67 -1.91 -3.37 -1.60 Growth on low PO43-: Hpr protein Ser46: pSIMGVMSLGIAK YDADVNLEYNGK Ser12: VTADpSGIHARPATVLVQTASK YDADVNLEYNGK NH2 COOH S12 H15 S46 Conclusions • SCX + TiO2 + FT MS - a powerful and generic strategy for phosphopeptide enrichment and detection • bacteria posess an elaborate Ser/Thr/Tyr phosphoproteome • majority of enzymes in the main pathways of carbohydrate metabolism are phosphorylated • enzymes of the PTS system are phosphorylated on Ser/Thr/Tyr → possible cross-talk • Ser/Thr/Tyr phosphorylation is dynamic process → likely regulatory role • phosphoroteins and phosphorylation sites show increased evolutionary conservation • at least 9 P-sites conserved from Archaea to man: ancient regulatory role? Acknowledgements Max-Planck-Institute for Biochemistry Matthias Mann Florian Gnad Jesper V. Olsen Chanchal Kumar Technical University of Denmark Ivan Mijakovic Boumediene Soufi Dina Petranovic Thermo Scientific Stevan Horning Oliver Lange