Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
FACULTÉ DE MÉDECINE GIGA-Neurosciences Unité de Neuroendocrinologie du Développement (Pr J.-P. Bourguignon) Contribution à l’Etude des Effets Précoces de Perturbateurs Endocriniens sur ur l’Axe Hypothalamo-Hypophysaire Hypothalamo Hypophysaire et la Maturation aturation Sexuelle S de la Rate: Rate Aspects Mécanistiques M in Vivo et in Vitro Travail présenté en vue de l’obtention du grade de Docteur en Sciences Biomédicales et Pharmaceutiques Pharmaceutiques Grégory RASIER Licencié en Sciences Biologiques DEA en Sciences Biomédicales Année académique 2011-2012 REMERCIEMENTS Tout d’abord, je voudrais remercier mon promoteur, le Professeur JeanPierre Bourguignon, pour m’avoir sollicité et accueilli au sein de son Unité de Neuro-Endocrinologie du Développement. Le projet de recherche et votre enthousiasme m’ont rapidement convaincu. Votre esprit critique et vos idées mûrement réfléchies m’ont accompagné tout au long de ce travail. Par votre souci pédagogique, mais également votre rigueur scientifique, nos discussions m’ont toujours enrichi et souvent permis de clarifier les choses. Par ailleurs, vous m’avez permis d’assister à de nombreuses réunions scientifiques internationales de haut niveau durant lesquelles j’ai pu rencontrer et discuter avec les «Papes de la discipline», et ainsi m’épanouir davantage scientifiquement et acquérir une expérience (à tous niveaux!) significative. Votre confiance et votre infinie patience m’ont permis, en toutes circonstances, de travailler dans un climat de sérénité. Pour tout cela, soyez assuré, Monsieur Bourguignon, de ma profonde reconnaissance. Ma gratitude va également au Professeur Vincent Seutin qui m’a ouvert les portes de son Unité de Physiologie et Pharmacologie des Canaux Potassiques dans le Système Nerveux Central. Pour votre disponibilité, mais également votre conciliante compréhension en tant que Président du comité de thèse, soyez, Monsieur Seutin, sincèrement remercié. A diverses occasions, j’ai également bénéficié des hautes compétences et des suggestions pertinentes des Professeurs Jacques Balthazart, Jean-Pierre Thomé, Jean-Michel Foidart et Guy Plomteux. Je tiens à leur exprimer ma reconnaissance. Ce travail n’existerait pas sans l’aide, ni l’appui de Madame Arlette Gérard, dévouée «sans compter» et référence de premier ordre. Comment te remercier pour tout le travail accompli ainsi que pour ton accueil, ton soutien, ton oreille attentive et ta disponibilité tout au long de cette aventure? Tout simplement, MERCI! Arlette, ta modestie est à la hauteur de tes compétences techniques et de ton érudition impressionnante… Mes remerciements vont au Docteur Anne-Simone Parent dont la discrétion va de pair avec ses compétences. Merci pour ton aide et ton soutien sans réserve, que ce soit au laboratoire ou lors de congrès au cours desquels tu m’as épaulé à maintes reprises! Merci aussi au Docteur Marie-Christine Lebrethon dont les encouragements, mais également les conseils, m’ont toujours aidé à garder le moral. Madame Josiane Laurent dont l’immense gentillesse et l’attention généreuse a permis la connexion «laboratoire - bureau de Monsieur Bourguignon» en toutes circonstances et avec une bonne humeur permanente. Qu’il me soit également permis de remercier le Professeur Vincent Geenen qui m’a accueilli au sein de son Unité de Neuro-Immuno-Endocrinologie et Embryologie afin d’y réaliser mon mémoire de licences, et un peu plus… Il m’a donné le goût pour la recherche et l’envie d’y persévérer… Au Docteur Isabelle Hansenne avec qui j’ai partagé notre espace de travail durant une grande partie de cette aventure. Toujours présente, prête à soumettre un conseil avisé et pertinent, mais aussi à proposer son aide précieuse et sans faille. A Gaby (nos routes professionnelles se croisent régulièrement), Micke, Henri, Chantal, Marie-Thérèse, Christel, Miguel, Andrée, Céline, Olivier, Catherine, Marie, Fabienne, … Tous ceux avec qui j’ai partagé mes repas de midi, discussions «politico-philosopho-sportives» ou autres activités. Soyez tous sincèrement remerciés pour vos richesses, tant d’esprit que de coeur, que vous m’avez apportées... A ceux que j’ai rencontrés au sein de l’Unité de Recherche Thématique GIGA-Neurosciences. Tout particulièrement à Renaud, Pierre, Morgan et Jérôme. Au cours de ces années, il m’a également été donné l’occasion de rencontrer d’autres personnes remarquables. Je les remercie pour ces nombreux moments partagés ainsi que leur soutien et leur amitié. Merci à vous tous! Mention spéciale pour Schmoutz et Mike. Il faudrait tous les mots, et bien plus, pour remercier les membres de ma famille: mon épouse Anne-Pascale, pour son immense conciliance (je suis bien conscient que ce terme n’existe pas mais, à mes yeux, il est le plus important et j’en mesure tous les jours sa portée) dont elle a fait preuve durant mes nombreuses crises d’angoisse consécutives aux craintes de ne pouvoir clôturer positivement cette thèse. Pour tous ces moments que tu as endurés silencieusement, je te dédie ce travail… Mes parents, mes trois frères, mes beaux-parents, mes beaux-frères et belles-soeurs. De mille façons, ils ont permis de repousser mes limites toujours un peu plus loin et de m’élever un peu plus haut… Leur générosité, leur enthousiasme à toute épreuve ainsi que leur confiance sans limite m’ont rassuré dans les moments difficiles. Un mot: MERCI… Ma pensée va également à toutes les personnes que j’aurais oubliées de citer ici! Qu’elles me pardonnent… Ce travail a été réalisé grâce au soutien de l’Union Européenne (projet EDEN), de la Fondation Léon Frédéricq, du Groupe d’Etude Belge des Pédiatres Endocrinologues ainsi qu’à l’appui du Fond National de la Recherche Scientifique. TABLE DES MATIERES I. Introduction 1 A. Axe hypothalamo-hypophyso-gonadique B. Sécrétion de la gonadolibérine (GnRH) C. Maturation sexuelle femelle: comparaison entre l’humain et le rat D. Effets des oestrogènes sur les neurones à GnRH 1. Nature et origine des oestrogènes et leurs récepteurs 2. Action de l’oestradiol sur le système à GnRH et le contrôle neuroendocrinien de l’axe hypothalamo-hypophyso-gonadique 3. Effets rapides / non génomiques du 17β-oestradiol (E2) sur les neurones à GnRH E. Facteurs du mécanisme neuroendocrinien de la puberté 1. Facteurs centraux 2. Facteurs périphériques 1 5 10 14 15 19 20 20 28 II. Mise en situation du problème 31 A. Différenciation sexuelle, programmation foetale et perturbation endocrinienne B. Historique de la découverte des perturbateurs endocriniens (PEs) et questions actuelles C. Exemple du dichlorodiphényltrichloroéthane (DDT) 1. Structure et propriétés 2. Effets chez l’Homme 3. Effets d’insecticides chez les rongeurs D. Relations entre exposition pré/post-natale aux PEs et timing pubertaire chez l’Homme E. Implication des facteurs environnementaux, autres que les PEs, dans la puberté précoce 31 17 32 36 36 38 38 39 44 III. Objectifs du travail IV. Méthodologie 46 49 A. Incubation d’explants hypothalamiques B. Dosage de la GnRH C. Dosage de l’hormone lutéinisante D. Dosage des isomères du DDT et ses métabolites E. Détermination des phases du cycle oestral F. Justification du choix de l’o,p’-DDT G. Statistiques 49 53 54 54 55 55 56 V. Maturation avancée de la sécrétion de GnRH et précocité sexuelle après exposition de rats femelles immatures à l’E2 ou au DDT (cfr.: annexes IV & VI) 58 A. Objectifs de l’étude B. Résultats C. Discussion 58 59 65 VI. Mécanismes d’interaction des PEs sur la sécrétion de GnRH induite par le glutamate (cfr.: annexes IV & VI) 70 A. Objectifs de l’étude B. Résultats C. Discussion 70 70 76 VII. Discussion générale et perspectives 80 Table des matières Bibliographie Annexes 95 Publication I: Estradiol stimulation of pulsatile gonadotropin-releasing hormone secretion in vitro: Correlation with perinatal exposure to sex steroids and induction of sexual precocity in vivo. Matagne V., Rasier G., Lebrethon M.-C., Gérard A. and Bourguignon J.-P. Endocrinology 145 (6): 2775-2783 (2004) Publication II: Early onset of puberty: Tracking genetic and environmental factors. Parent A.-S., Rasier G., Gérard A., Heger S., Roth C., Mastronardi C., Jung H., Ojeda S. and Bourguignon J.-P. Hormone Research 64 (2): 41-47 (2005) Publication III: Female sexual maturation and reproduction after prepubertal exposure to estrogens and endocrine disrupting chemicals: A review of rodent and human data. Rasier G., Toppari J., Parent A.-S. and Bourguignon J.-P. Molecular and Cellular Endocrinology 254-255: 187-201 (2006) Publication IV: Early maturation of gonadotropin-releasing hormone secretion and sexual precocity after exposure of infant female rats to estradiol or dichlorodiphenyltrichloroethane. Rasier G., Parent A.-S., Gérard A., Lebrethon M.-C. and Bourguignon J.-P. Biology of Reproduction 77 (4): 734-742 (2007) Publication V: Oxytocin facilitates female sexual maturation through a glia-to-neuron signaling pathway. Parent A.-S., Rasier G., Matagne V., Lomniczi A., Lebrethon M.-C., Gérard A., Ojeda S. and Bourguignon J.-P. Endocrinology 149 (3): 1358-1365 (2008) Publication VI: Mechanisms of interaction of endocrine disrupting chemicals with glutamate-evoked secretion of gonadotropin-releasing hormone. Rasier G., Parent A.-S., Gérard A., Denooz R., Lebrethon M.-C., Charlier C. and Bourguignon J.-P. Toxicological Sciences 102 (1): 33-41 (2008) Publication VII: Neuroendocrine disruption of pubertal timing and interactions between homeostasis of reproduction and energy balance. Bourguignon J.-P., Rasier G., Lebrethon M.-C., Gérard A., Naveau E. and Parent A.-S. Molecular and Cellular Endocrinology 324 (1-2): 110-120 (2010) Table des matières I. Introduction I. INTRODUCTION Résumé: Dans ce premier chapitre, nous décrirons d’abord l’axe hypothalamo-hypophyso-gonadique ainsi que le mécanisme d’initiation de la puberté (centrale et périphérique) et le rôle des stéroïdes. La genèse de la sécrétion de la gonadolibérine (GnRH), à l’origine du déclenchement pubertaire, sera également revue et nous comparerons ensuite la maturation sexuelle chez la femme et le rat femelle. Après avoir décrit la nature des oestrogènes, en particulier l’oestradiol, et leurs récepteurs, nous distinguerons leurs effets lents/rapides (génomiques / non génomiques) sur le neurone à GnRH. Enfin, nous terminerons cette introduction générale par une description des principaux facteurs centraux et périphériques qui influencent le mécanisme neuroendocrinien de la puberté. A. Axe hypothalamo-hypophyso-gonadique Le système nerveux central (SNC) et les tissus endocriniens sont anatomiquement et fonctionnellement reliés par l’axe hypothalamo-hypophysaire. La tige pituitaire connecte l’hypothalamus à l’hypophyse, cette dernière étant constituée de deux parties distinctes: l’antéhypophyse (adénohypophyse), sous le contrôle des hormones hypothalamiques; la posthypophyse (neurohypophyse), constituée de terminaisons axonales des cellules neurosécrétrices de l’hypothalamus. Différents axes hypothalamo-hypophysaires se distinguent sur le plan fonctionnel parmi lesquels l’axe hypothalamo-hypophyso-gonadique. Dans ce travail, nous nous sommes exclusivement focalisés sur ce dernier, en privilégiant l’individu/animal féminin/femelle. La puberté, initiée au niveau du SNC, est la période de vie durant laquelle une (ré)activation de l’axe hypothalamo-hypophyso-gonadique conduit à une série de changements physiques aboutissant à la maturation et au maintien d’un système de reproduction fonctionnel. Classiquement, les manifestations d’activité des stéroïdes sexuels et la fertilité résultent d’une activation en cascade de cet axe (Fig. 1). L’évènement central de l’établissement de la puberté est l’augmentation de la fréquence et de l’amplitude de la sécrétion de gonadolibérine (GnRH) hypothalamique, contrôlée par des mécanismes redondants, inhibiteurs et stimulateurs, qui, respectivement, disparaissent ou apparaissent (Bourguignon, 2004). Il est généralement admis que des variations pubertaires temporelles, endéans une période physiologique de cinq ans, sont majoritairement déterminées par des facteurs génétiques alors que les facteurs environnementaux jouent plutôt un rôle mineur (Parent et al., 2003). L’influence de ces derniers sur la période pubertaire a suscité un réel intérêt suite au constat d’une avance séculaire (entre les moitiés des 19ème et 20ème siècles) de 1 Introduction l’âge à la ménarche, à la fois aux Etats-Unis et en Europe de l’Ouest, et également dans des pays en voie de développement (Parent et al., 2003). Une des premières expériences démontrant le rôle des stéroïdes dans l’apparition de la puberté a consisté en l’observation des effets promoteurs d’extraits de follicules ovariens sur le développement sexuel du rat femelle (Allen et Doisy, 1924). Un an plus tard, l’équipe de Gustavson induisait une puberté chez des rates immatures après avoir injecté des extraits de placenta (Frank et al., 1925). En 1929, chez deux rates immatures disposées en circulation croisée, Kallas observait que l’ovariectomie de l’une provoquait une puberté précoce chez l’autre. Ces expériences suggéraient que des facteurs sécrétés après ovariectomie, identifiés plus tard comme les gonadotrophines, l’hormone folliculo-stimulante («follicle-stimulating hormone», FSH) et l’hormone lutéinisante («luteinizing hormone», LH), responsables de l’apparition de la puberté, pouvaient provenir d’un système différent des gonades. Cette hypothèse fut confirmée par les expériences menées en 1952 par Harris et Jacobson, qui montrèrent que la greffe d’hypophyses issues de rates immatures restaurait la fonction de reproduction chez des femelles adultes hypophysectomisées. La restauration du cycle oestral chez les femelles hôtes ayant reçu une hypophyse immature indiquait également que la maturation de la fonction de reproduction n’était pas directement liée à l’hypophyse ellemême. 2 Introduction INFLUX CEREBRAUX INHIBITION AA inhibiteur: GABA STIMULATION AA excitateur: glutamate Neurones sécrétant kisspeptine Facteurs de croissance Neurones à GnRH Cellules astro-gliales FREQUENCE ET AMPLITUDE DE LA SECRETION DE GnRH SYNTHESE ET SECRETION DES GONADOTROPHINES HYPOPHYSAIRES FSH/LH GONADES Maturation des cellules germinales Synthèse et sécrétion des stéroïdes sexuels RETRO-CONTRÔLES PERIPHERIQUES SIGNAUX ENVIRONNEMENTAUX GENERATEUR HYPOTHALAMIQUE DE SECRETION PULSATILE DE GnRH AUTRES SYSTEMES CELLULAIRES PERIPHERIQUES Caractères sex. sec., croissance, … Leptine, IGF-1, … Figure 1: Représentation schématique des interactions hypothalamo-hypophyso-gonadiques au cours du développement. AA: acide aminé; caractères sex. sec.: caractères sexuels secondaires; FSH: «follicle stimulating hormone», hormone folliculo-stimulante; GABA: «γ-amino-butyric acid», acide γ-amino-butyrique; GnRH: «gonadotrophin-releasing hormone», gonadolibérine; IGF-I: «insulin-like growth factor I», facteur de croissance I similaire à l’insuline; LH: «luteinizing hormone», hormone lutéinisante. Le concept suggérant que l’hypothalamus est la structure responsable de l’apparition de la puberté, par la levée d’une inhibition, a été suggéré il y a une soixantaine d’années (Harris et Jacobson, 1952; Donovan et van der Werff ten Bosch, 1956) en montrant que la destruction de certaines régions de l’hypothalamus par électrolyse induisait une puberté précoce chez le rat femelle. En 1962, McCann et ses collègues rapportaient l’existence d’un facteur hypothalamique stimulant la libération de LH. Des études ultérieures permirent de mettre en évidence et de caractériser la GnRH («gonadotrophin-releasing hormone»), hormone peptidique stimulant la libération des gonadotrophines (Amoss et al., 1971; Matsuo et al., 1971; Schally et al., 1971). Comme mentionné ci-avant, la sécrétion des gonadotrophines hypophysaires dépend du signal stimulant de la GnRH et est modulée par le rétrocontrôle des stéroïdes et peptides gonadiques. Au niveau des cellules gonadotropes de l’hypophyse, la GnRH interagit avec des récepteurs membranaires couplés aux protéines G et détermine la synthèse et la sécrétion de FSH et LH, laquelle est initiée par une mobilisation 3 Introduction calcique, successivement intracellulaire et extracellulaire, avec la mise en jeu des systèmes calcium-calmoduline et inositol-triphosphate comme seconds messagers (Reichlin, 1998). Le mécanisme d’établissement de la puberté femelle a été revu par Ojeda et Terasawa en 2002. Chez l’animal comme chez l’Homme, deux mécanismes différents peuvent exister: dans la puberté centrale (physiologique), les oestrogènes sont produits grâce à la stimulation ovarienne par le système hypothalamo-hypophysaire (Fig. 2) tandis que dans la puberté périphérique (pathologique), les oestrogènes endogènes, sont produits indépendamment de la sécrétion des gonadotrophines (Fig. 2) ou proviennent de sources extérieures. L’étude des tissus sensibles aux stéroïdes sexuels tels l’utérus, le vagin et les seins ou des paramètres variant à la suite d’effets oestrogéniques comme l’âge à l’ouverture vaginale (OV) chez le rongeur ou en fonction du ratio d’effets oestrogéniques/androgéniques telle la distance anogénitale (murins et humains), peut fournir un éclaircissement dans la compréhension des mécanismes des pubertés centrale et périphérique. Cependant, les signes de développement pubertaire (à l’exception de la croissance testiculaire) ne permettent pas d’établir si la maturation est conduite centralement en impliquant le système hypothalamo-hypophysaire ou s’il s’agit d’une interaction périphérique directe au niveau des tissus cibles par les stéroïdes sexuels, ou les deux mécanismes à la fois. 4 Introduction Figure 2: Illustration de la fonction de l’axe hypothalamo-hypophyso-gonadique. A: stimulation en cascade caractérisant l’apparition de la puberté centrale ou physiologique; B: puberté périphérique due à des oestrogènes secrétés par l’ovaire de manière autonome ou d’origine extra-gonadique. Dans ce cas, le système hypothalamohypophysaire est inhibé en raison du rétrocontrôle inhibiteur. B. Sécrétion de la GnRH La GnRH a successivement été isolée à partir d’hypothalamus de porc (Matsuo et al., 1971), de rat (Schally et al., 1971) et de mouton (Amoss et al., 1971). En 1984, Seeburg et Adelman décrivaient la séquence nucléotidique du gène codant pour la GnRH, identifiée à partir de l’acide désoxyribonucléique (ADN) complémentaire d’origine humaine. Deux ans plus tard, la séquence nucléotidique du gène GnRH de rat était caractérisée (Adelman et al., 1986). Ces premiers résultats, confirmés plus tard par Fernald et White (1999), indiquent que le gène GnRH présente une structure similaire quelles que soient l’espèce et l’isoforme considérées. Il comporte quatre exons: l’exon 1 code pour une région non traduite ou région 5’UTR («untranslated region»); l’exon 2 code pour un peptide signal, la GnRH, un site de clivage protéolytique ainsi que la partie amino-terminale du «GnRH associated peptide» (GAP); la partie centrale du GAP est codée par l’exon 3 tandis que l’exon 4 code pour sa partie carboxy-terminale ainsi qu’une région non traduite (3’UTR). En outre, le gène exprime des éléments de réponse pour l’acide rétinoïque, les oestrogènes et les hormones thyroïdiennes. La protéine résultant de la traduction du gène codant pour la GnRH est appelée 5 Introduction pré-pro-GnRH et aboutit à la formation de la GnRH mature après clivage du peptide signal et ensuite du GAP (Wetsel et Srinivasan, 2002). Il s’agit d’un décapeptide de structure pyroGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-amide, dont les extrémités carboxy- et aminoterminales sont respectivement modifiées en pyro-glutamate et glycine-amide (Matsuo et al., 1971). On recense actuellement 15 isoformes différentes de GnRH, pouvant être regroupées selon leur composition et leur localisation au niveau du cerveau (Parhar, 2002; Wetsel et Srinivasan, 2002). Il a ainsi été découvert que, chez les rongeurs, les neurones à GnRH (plus précisément GnRH-I) pouvaient également exprimer la GnRH-III ou GnRH de lamproie (Hiney et al., 2002) tandis que la GnRH-II (ou GnRH de poulet) est principalement exprimée dans les structures extra-hypothalamiques comme le mésencéphale (Gestrin et al., 1999). Comme l’a décrit l’équipe de Kordon, la GnRH peut également subir des modifications posttraductionnelles telles que l’hydroxylation d’un de ses résidus (Gautron et al., 1992), ceci étant le cas pour la proline en 9ème position. Son rôle n’est pas encore totalement élucidé mais cette modification pourrait avoir une fonction au cours du développement, puisque la libération de GnRH est maximale chez l’animal immature et diminue progressivement au cours du développement (Rochdi et al., 2000). Après sa libération au niveau de l’éminence médiane, la GnRH est dégradée par deux enzymes différentes: la prolyl-endopeptidase (PEP) et une métallo-endopeptidase (EP 24.15). La PEP clive la GnRH du côté amino-terminal au niveau de son résidu glycine, ce qui engendre la production de la GnRH1-9. Cette dernière peut ensuite être clivée au niveau de sa liaison Tyr5-Gly6 par l’EP 24.15 (Lew et al., 1994). La métallo-endopeptidase EP 24.15 a été localisée au niveau de l’éminence médiane chez le rat (Wu et al., 1997) et son inhibition provoque une augmentation de la sécrétion des gonadotrophines in vivo, lui suggérant un rôle physiologique (Lasdun et Orlowski, 1990; Wu et al., 1997). Des études menées au sein de notre laboratoire montrent également que les transcrits de la PEP sont présents au niveau de l’hypothalamus et qu’ils sont traduits en une enzyme fonctionnelle capable de dégrader la GnRH lors d’expériences in vitro (Yamanaka et al., 1999). Avec l’EP 24.15, la PEP est impliquée dans la régulation de la sécrétion pulsatile de GnRH via les effets inhibiteurs des produits de dégradation qu’elle génère, en particulier la GnRH1-5. En effet, l’inhibition de la PEP par la bacitracine ou un antagoniste non compétitif (Fmoc-Pro-PyrrCN) accélère la fréquence de sécrétion pulsatile de GnRH observée à partir d’explants hypothalamiques de rat (Yamanaka et al., 1999). L’importance physiologique des endopeptidases dans la régulation de la sécrétion de GnRH semble cependant varier selon les espèces puisque l’inhibition de la 6 Introduction PEP ou de l’EP 24.15 chez la brebis ne modifie pas la sécrétion des gonadotrophines (Lew et al., 1997). A la suite de la caractérisation de la GnRH (Amoss et al., 1971; Matsuo et al., 1971; Schally et al., 1971) et de la localisation, par immunohistochimie, des neurones qui la produisent chez les rongeurs (Barry et al., 1973) et les primates (Barry et Carette, 1975), il a été démontré que ce peptide est libéré à partir de l’hypothalamus de manière pulsatile dans la circulation portale (Knobil et al., 1980). La sécrétion de GnRH présente donc des pics de sécrétion d’une certaine amplitude et d’une fréquence donnée, détectables à intervalles réguliers (Knobil, 1974). Cette pulsatilité est essentielle à la synthèse et à la sécrétion des gonadotrophines hypophysaires, et donc à la maturation et au maintien des fonctions de reproduction. Le concept ainsi proposé par Knobil, et aujourd’hui généralement admis, est que la sécrétion de GnRH est sous le contrôle d’un générateur de pulsatilité. Il pourrait même en exister différents, qui comprendraient les neurones à GnRH eux-mêmes (composante intrinsèque) et l’appareil neurono-glial environnant (composante extrinsèque). Cette idée que les neurones à GnRH puissent former le générateur de pulsatilité provient d’études réalisées sur des neurones à GnRH immortalisés qui ont montré qu’ils sécrètent la GnRH de manière pulsatile et impliquant une augmentation des taux calciques intracellulaires (Krsmanovic et al., 1992; Nunez et al., 2000). Il a également été montré que des cultures primaires de neurones à GnRH issus de placodes olfactives pouvaient sécréter la GnRH de façon pulsatile (Terasawa et al., 1999; Duittoz et Batailler, 2000; Funabashi et al., 2000). Chez le rat, l’existence d’un générateur de pulsatilité extrinsèque est également soutenue par les observations suivantes: la suppression des connexions entre l’hypothalamus antérieur, où sont localisés les corps cellulaires des neurones à GnRH, et l’hypothalamus postérieur au niveau duquel se situent leurs terminaisons (qui contiennent la GnRH mature pouvant être libérée au niveau de l’éminence médiane), n’affecte pas nécessairement ou pas immédiatement la sécrétion pulsatile des gonadotrophines (Blake et al., 1973) tandis qu’une déafférentation altère le niveau de celle-ci (Silverman et al., 1994). En outre, la sécrétion pulsatile de GnRH peut être observée in vitro à partir d’explants hypothalamiques de rats dépourvus d’aire préoptique, c’est-à-dire privés de la très grande majorité des péricaryons des neurones à GnRH comme il fut montré par le modèle utilisé dans notre laboratoire (Purnelle et al., 1997), renforçant encore davantage l’hypothèse de l’existence d’un générateur de pulsatilité extrinsèque. Des investigations sur des rats transgéniques dont les neurones à GnRH expriment la «green fluorescent protein» permettront peut-être l’identification des composantes et/ou des générateurs de pulsatilité impliqués in vivo (Kato et al., 2003). 7 Introduction En réponse à la GnRH libérée dans la circulation porte, l’hypophyse sécrète, à son tour, la FSH et la LH. Il a été montré, in vitro chez le rat et in vivo chez le mouton, que la sécrétion de ces gonadotrophines suivait parallèlement la sécrétion de GnRH, c’est-à-dire qu’elle était également pulsatile (Clarke et Cummins, 1982; Levine et Ramirez, 1982; Clarke et al., 1984). Ainsi, elle permet d’étudier indirectement la sécrétion pulsatile de GnRH in vivo. Suite à leur libération dans la circulation périphérique, les gonadotrophines agissent au niveau des gonades (ovaires ou testicules) afin de promouvoir la folliculogenèse ou la spermatogenèse ainsi que la production des stéroïdes gonadiques, à savoir respectivement l’oestradiol et la progestérone par les ovaires ou la testostérone par les testicules. Les oestrogènes et la testostérone peuvent agir de façon inhibitrice au niveau de l’hypothalamus et de l’hypophyse afin de réduire la sécrétion de GnRH et des gonadotrophines. Cet enchaînement d’évènements en boucle porte le nom de rétrocontrôle négatif (Ramirez et McCann, 1963; Kulin et al., 1969) et a lieu dans les deux espèces. A l’inverse, il existe aussi un effet stimulant des stéroïdes, appellé rétrocontrôle positif, uniquement chez la femelle. Ce dernier permet l’activation de l’axe hypothalamo-hypophyso-gonadique suite à une augmentation graduelle de la concentration en oestrogènes durant la période précédant le pic préovulatoire des gonadotrophines (Freeman, 1994). Différentes études ont montré qu’une exposition aux oestrogènes supérieure à 15 h était nécessaire pour induire un pic préovulatoire de LH, tant chez le rat (Sarkar et Fink, 1980) que chez le mouton (Moenter et al., 1990) ou le singe (Xia et al., 1992). Ce pic préovulatoire de LH implique notamment une augmentation de la sécrétion de GnRH au niveau de l’éminence médiane aussi bien chez le rat (Sarkar et al., 1976) que chez le singe (Xia et al., 1992). Toutefois, il est à noter que chez la guenon dont l’hypothalamus a été lésé, l’administration de GnRH synthétique, à une fréquence constante et invariable, permet de restaurer un cycle menstruel avec pic préovulatoire. Ces résultats indiquent que l’accroissement de la sécrétion de GnRH n’est pas nécessaire et que la genèse du pic préovulatoire de LH peut impliquer directement l’hypophyse chez les primates (Knobil et al., 1980). La modulation de l’activité du générateur de sécrétion pulsatile de GnRH par les stéroïdes a été démontrée par des expériences d'orchidectomie et d’administration de testostérone chez le rat (Steiner et al., 1982) et chez le singe (Plant, 1982). Drouva et son équipe (1984) ont montré que le 17β-oestradiol (E2) est spécifiquement impliqué dans la sécrétion de GnRH et que son effet est modulé par des récepteurs qui ne requièrent pas une translocation nucléaire du stéroïde. Une décennie plus tard, Trudeau et ses collègues (1993) ont montré que les stéroïdes sexuels augmentent la sensibilité de l’hypophyse en réponse à la 8 Introduction GnRH chez le poisson rouge. En 2002, il a été montré que l’action directe de l’E2 sur l’hypophyse antérieure de rates ovariectomisées est requise pour déclencher le rétrocontrôle négatif ou positif sur la sécrétion de LH (Yin et al.). Ainsi, les stéroïdes sexuels peuvent avoir des effets soit directement sur la sécrétion de GnRH hypothalamique (Lee et al., 2004), soit directement sur les cellules hypophysaires sécrétant les gonadotrophines (Saito et al., 2003). Cependant, l’importance de l’E2 pour l’amplification de la sensibilité hypophysaire en réponse à la GnRH durant la période préovulatoire a été remise en cause par l’augmentation du taux d’acide ribonucléique messager (ARNm) du récepteur à la GnRH lors de la période qui précède le pic préovulatoire d’oestradiol circulant. En effet, il apparaît que l’amplification de cette sensibilité hypophysaire est le résultat d’une diminution de la concentration de progestérone plutôt qu’une augmentation du taux circulant d’oestradiol. Dans les noyaux arqué et périventriculaire antéro-ventral, les stéroïdes sexuels (E2 et testostérone) modulent de façon opposée l’expression de la kisspeptine, un peptide de 54 acides aminés qui interagit avec le récepteur «G protein-coupled receptor» (GPR54): les deux stéroïdes réduisent le taux de transcrits de kiss-1 (gène de la kisspeptine) dans le noyau arqué et augmentent son expression dans le noyau périventriculaire antéro-ventral. Les neurones à kisspeptine localisés dans le noyau arqué participent ainsi à la régulation du contrôle négatif de la sécrétion des gonadotrophines hypophysaires tandis que ceux présents au sein du noyau périventriculaire antéro-ventral contribuent à l’induction du pic préovulatoire de la LH chez la femelle, déclenchant l’ovulation, ou jouent un rôle essentiel dans le comportement sexuel chez le mâle (Couzinet et Schaison, 1993; Smith et al., 2007). Très récemment, il a été observé chez des femmes saines post-ménopausées que les sécrétions de FSH et LH, en réponse à la GnRH, diminuaient après une administration d’oestrogènes, avec une plus grande sensibilité de la FSH que la LH (Shaw et al., 2010). Ceci suggère donc que l’hypophyse est directement rétrocontrôlée négativement par les oestrogènes en réponse à la GnRH chez les femmes et que cette inhibition contribuerait à la régulation différentielle des sécrétions de FSH et LH (Couzinet et Schaison, 1993; McNeilly et al., 2003). La nature des facteurs qui participent à la synchronisation des pics sécrétoires de GnRH n’a pas encore été complètement élucidée, mais la plupart des études rapportent une implication importante des flux calciques (Moore et al., 2002; Richter et al., 2002). Par ailleurs, il existe des différences entre la fréquence de sécrétion pulsatile de GnRH obtenue à partir de neurones isolés (Terasawa et al., 1999; Duittoz et Batailler, 2000; Funabashi et al., 2000) ou d’explants hypothalamiques (Bourguignon et Franchimont, 1984; Bourguignon et al., 1989a et 1989b; Bourguignon et al., 1990) in vitro et la fréquence observée in vivo (Sisk 9 Introduction et al., 2001; Harris et Levine, 2003). Les types de cellule impliqués dans le phénomène de synchronisation semblent aussi dépendre de l’espèce étudiée puisque, dans des cultures de placodes olfactives issues de singes, il a été montré que des cellules non neuronales participaient à ce processus (Richter et al., 2002) tandis que chez la souris, les cellules impliquées sont de type neuronal (Moore et al., 2002), ces résultats plaidant en faveur d’un rôle modulateur de l’appareil neurono-glial afférent aux neurones à GnRH. En effet, il devient de plus en plus évident que l’activité sécrétoire des neurones à GnRH est régulée non seulement par des influx trans-synaptiques, mais également via la sécrétion de molécules trophiques («basic fibroblast growth factor», facteur de croissance des fibroblastes bFGF et «transforming growth factor α», facteur de croissance de transformation α TGFα principalement) d’origine neuronale et/ou astrogliale (Voigt et al., 1996; Dziedzic et al., 2003). Par ailleurs, Prevot et son équipe ont suggéré que les tanycytes, des cellules ependymo-gliales présentes dans l’éminence médiane, régulent la sécrétion de GnRH durant le cycle oestral au travers de changements de plasticité qui permettent ou empêchent l’accès direct des terminaisons nerveuses des neurones à GnRH vers la circulation porte (2003). Bien qu’il soit établi que les neurones à GnRH et les astrocytes maintiennent un contact étroit, une interaction davantage renforcée entre les axones des neurones à GnRH et les astrocytes a lieu durant le développement sexuel femelle (Parent et al., 2007). La sécrétion de GnRH est caractérisée par une augmentation de sa fréquence au cours du développement chez le rat. Elle se stabilise chez le mâle adulte tandis que chez la femelle, son amplitude in vivo et celle des à-coups sécrétoires in vitro sont augmentées au moment du pic préovulatoire de GnRH (Levine et Ramirez, 1982; Parent et al., 2000). Chez la brebis, on constate une augmentation de la fréquence et une diminution de l’amplitude de sécrétion de GnRH in vivo au moment du pic préovulatoire de LH (Evans et al., 1995). Ces divergences résultent des variations entre les espèces, mais aussi des conditions expérimentales in vivo et in vitro. C. Maturation sexuelle femelle: comparaison entre l’humain et le rat Comme chez l’humain, la sécrétion de LH est également pulsatile chez le rat (Ojeda et Urbanski, 1994). La fréquence et l’amplitude des à-coups sécrétoires augmentent à l’approche de la puberté. Chez la femelle, apparaissent des mini-pics l’après-midi, qui ont été interprétés comme des ébauches de pic préovulatoire (Urbanski et Ojeda, 1986). Chez l’humain comme chez le rongeur, les ovaires sont loin d’être quiescents avant la puberté. Le principal stéroïde 10 Introduction sécrété par les gonades féminines prépubertaires est l’oestradiol, bien qu’elles produisent aussi de l’oestrone, de l’androstènedione et de la testostérone (Rosenfield, 1996). Les ovaires humains foetaux produisent déjà des quantités substantielles d’oestradiol (Kaplan et Grumbach, 1990). Les concentrations plasmatiques d’oestrogènes diminuent ensuite dès la première semaine de vie post-natale jusqu’à la puberté, puis augmentent à cet évènement pour atteindre un plateau en fin de puberté, à l’apparition des règles (ménarche) où elles seront modulées selon les phases du cycle menstruel. L’oestradiol est responsable du développement des caractères sexuels secondaires féminins (en ce compris le développement des seins, la maturation du tractus génital, la distribution du pannicule adipeux et la croissance) ainsi que de la minéralisation osseuse. La production d’inhibine, par contre, est négligeable durant la vie foetale et le développement prépubertaire, mais lorsque les concentrations de FSH augmentent au moment de la puberté, les taux circulants d’inhibine A et B augmentent significativement (Kaplan et Grumbach, 1990). Ainsi, bien que des différences significatives existent (Tableau 1), les mécanismes régulant la maturation ovarienne, l’activité sécrétoire et le contrôle par les gonadotrophines sont relativement comparables chez le rat et l’Homme. 11 Introduction Tableau 1: Différences de maturation sexuelle femelle chez l’Homme et le rat. Espèces Paramètres Humain Rat A mi-gestation, puis diminue Sécrétion pulsatile à cause du rétrocontrôle / de GnRH négatif exercé durant la gestation par les oestrogènes Développement du SNC à la naissance Très mature: Peu mature: les neurones à GnRH migrent les neurones à GnRH migrent dans l’hypothalamus dans l’hypothalamus avant la fin du premier quart au cours du dernier quart de gestation de gestation (Schwantzel-Fukuda et al., (Daikoku et Koide, 1998) 1996; Verney et al., 1996) Juste après la naissance, puis longue quiescence juvénile et réactivation pubertaire Augmentation progressive de la fréquence dès la naissance, avec une accélération au moment de la puberté Premier signe de développement pubertaire Début des seins (stade B2): assez distant de la naissance (10 ans soit 1/8 de la vie) OV: assez proche de la naissance (1 mois soit 1/48 de la vie) Variations du timing pubertaire chez des individus partageant des conditions de vie similaires Très importantes: 5 ans soit 1/16 de la vie) (Tanner, 1962) Peu marquées: 4 jours soit 1/180 de la vie (Ojeda et Urbanski, 1994) Sécrétion pulsatile de la GnRH post-natale Puisque le système reproducteur des rongeurs femelles (principalement le rat et la souris) partage un certain nombre de caractéristiques avec l’Homme, ces animaux ont été largement utilisés en recherche et sont fréquemment employés dans des études de laboratoire désignées pour élucider les mécanismes des fonctions reproductrices chez les mammifères. Chez les souris femelles, la puberté est un processus transitoire qui comprend l’OV et la première ovulation: la première est le signe initial du pic oestrogénique qui accompagne l’établissement de la puberté et la seconde, suivie par une cyclicité oestrale, est le signal d’une conduite centrale de l’activité ovarienne (Ramirez et Sawyer, 1965). Les évènements correspondant chez l’humain sont, respectivement, le début du développement des seins (stade B2) et la ménarche. Chez le rat, l’âge moyen à l’OV varie suivant les souches et les conditions d’élevage, mais elle a lieu habituellement à ± 35 jours et l’intervalle moyen entre l’OV et le premier oestrus dure 4,2 ± 1,1 jours. Chez les rates de laboratoire, la maturation sexuelle débute très tôt, comparée à celle de la femme, et les variations individuelles des 12 Introduction évènements pubertaires sont moins perceptibles que chez l’espèce humaine (Fig. 3). L’apparition du premier épisode ovulatoire est une réponse ovarienne au pic sécrétoire massif des gonadotrophines. Chez les rongeurs, la programmation du mécanisme central d’ovulation prend place entre la dernière semaine de vie prénatale et la première semaine de vie postnatale (Naftolin, 1994) et une exposition précoce aux stéroïdes sexuels cause des perturbations dans ce processus (Matagne et al., 2004). Figure 3: Représentation schématique des principaux évènements pubertaires chez la rate femelle et chez la femme. La comparaison est basée sur une échelle d’espérance de vie similaire. N: naissance; OV: ouverture vaginale; SNC: système nerveux central. Au cours du développement, une accélération de la fréquence et une augmentation de l’amplitude de la sécrétion pulsatile de GnRH ont lieu. Ce changement développemental a été mis en évidence par des études in vivo chez le singe (Watanabe et Terasawa, 1989) ainsi que chez le rat (Sisk et al., 2001; Harris et Levine, 2003) et a pu être observé in vitro par l’incubation d’explants hypothalamiques (Bourguignon et Franchimont, 1984). Il s’agit d’un évènement majeur permettant l’apparition de la puberté. L’importance physiologique de la sécrétion pulsatile de GnRH a été établie chez le singe où une lésion de l’hypothalamus abolit 13 Introduction le générateur de pulsatilité et inhibe ainsi la sécrétion pulsatile des gonadotrophines. Cependant, celle-ci peut être rétablie par des injections répétées de GnRH synthétique, ce qui n’est pas observé si elle est administrée de manière continue (Belchetz et al., 1978; Knobil et al., 1980). En outre, l’administration de GnRH synthétique à faible fréquence entraîne un mode sécrétoire de type prépubère, où la sécrétion de FSH prédomine sur celle de LH (Knobil, 1980) alors que l’administration du peptide hypothalamique à une fréquence similaire à celle de l’âge adulte, à des singes immatures, induit une puberté précoce (Wildt et al., 1980). De manière générale, les résultats issus des nombreuses études qui ont tenté d’identifier les facteurs impliqués dans la maturation pubertaire (Ojeda et Urbanski, 1994; Ojeda et Terasawa, 2002) indiquent qu’une modification de l’équilibre entre les effets stimulants et inhibiteurs des deux neurotransmetteurs majeurs, à savoir respectivement le glutamate et l’acide γ-aminobutyrique (GABA), au niveau du neurone à GnRH et/ou de ses systèmes afférents, sont responsables de l’accélération de la fréquence de sécrétion pulsatile de GnRH (Bourguignon et al., 1987; Ojeda et Urbanski, 1994; Bourguignon et al., 1997; Ojeda et Terasawa, 2002). D. Effets des oestrogènes sur les neurones à GnRH La freination de l’axe hypothalamo-hypophyso-gonadique est réalisée par les hormones périphériques (notamment gonadiques) qui exercent un rétrocontrôle inhibiteur sur l'hypothalamus et parfois sur l'hypophyse. Ce rétrocontrôle est déclenché lorsque la concentration en hormones périphériques dans le sang dépasse une valeur critique (spécifique à chaque type d'hormones). Cette concentration atteinte, les hormones périphériques sont détectées par les neurones hypothalamiques qui possèdent des récepteurs spécifiques aux hormones périphériques. Ces derniers provoquent l’inhibition des neurones qui les portent et ainsi un rétrocontrôle peut s'exercer: l’inhibition de l'activité des neurones sécréteurs est alors répercutée en aval de tout le système neuroendocrinien, ce qui résulte en une réduction de la concentration sanguine des hormones périphériques jusqu’à un niveau hormonal de base. Ainsi, il s’opère un véritable retour à l’état initial et l’ensemble du système est prêt à fonctionner à nouveau. Dans les années ‘70, deux théories furent proposées pour expliquer le déclenchement pubertaire. La première, l’hypothèse du «gonadostat», est basée sur des changements de sensibilité hypothalamo-hypophysaire aux stéroïdes sexuels au cours du développement (Ramirez et McCann, 1963; Kulin et al., 1969). Selon ces auteurs, l’apparition de la puberté 14 Introduction est sous le contrôle des gonades et implique une diminution de la sensibilité hypothalamique au rétrocontrôle négatif par les stéroïdes sexuels. Ainsi, les taux d’oestrogènes requis pour annihiler les changements morphologiques des cellules gonadotropes, induits par castration, étaient plus faibles chez le rat immature que chez l’adulte. La deuxième hypothèse qui peut coexister avec la première, repose sur l’existence d’un mécanisme indépendant des gonades. Elle fut émise sur base des changements développementaux de la sécrétion des gonadotrophines, qui augmente à l’âge où la puberté devrait survenir chez le patient ou le singe agonadique (Conte et al., 1980; Plant, 1986). A l’époque où ces deux théories ont été établies, une augmentation de la sécrétion pulsatile de LH, associée au sommeil et spécifique de la puberté humaine, fut mise en évidence (Boyar et al., 1972). Durant ces vingt dernières années, les avancées majeures ont porté davantage sur les facteurs hypothalamiques et périphériques impliqués dans la régulation de la sécrétion de GnRH (Plant et al., 1989; Mitsushima et al., 1994; Ahima et al., 1997; Chehab et al., 1997; Cheung et al., 1997; Ma et al., 1999; Ojeda et al., 1999). 1. Nature et origine des oestrogènes et leurs récepteurs D’une importance primordiale dans le déroulement du cycle reproducteur des mammifères femelles, les oestrogènes apparaissent de plus en plus comme des facteurs pleiotropiques agissant dans de nombreux systèmes, et particulièrement au niveau du SNC. Ils jouent ainsi un rôle crucial dans des phénomènes aussi divers que la neuroprotection ou la mémorisation (McEwen, 2002; Balthazart et Ball, 2006). Ils sont principalement produits par les ovaires et, outre 1’oestradiol, ils comprennent également l’oestrone, un produit dérivé du premier. Par l’intermédiaire des cellules de la granulosa et des cellules thécales, les ovaires produisent aussi la progestérone et ses dérivés (17α- et 20α-hydroxyprogestérone) ainsi que des androgènes et leurs métabolites 5α-réduits, à savoir la testostérone et la 5αdihydrotestostérone (Mellon et al., 2001; Ojeda, 2004). La synthèse de tous ces stéroïdes débute toujours par la transformation du cholestérol en prégnenolone qui peut ensuite être transformée en progestérone. Au cours de la dernière décennie, il a été montré que le cerveau peut également produire localement des neurostéroïdes. Contrairement à l’ovaire, les enzymes nécessaires à leur production sont localisées dans différentes zones du cerveau et/ou dans divers types cellulaires (Mellon et al., 2001). Dans le cas d’une action au niveau du SNC, plus spécifiquement au niveau de l’hypothalamus, l’oestradiol peut être soit d’origine périphérique, soit provenir d’une synthèse de novo à partir de testostérone. La localisation de 15 Introduction l’aromatase et de ses transcrits au niveau de l’hypothalamus (Wagner et Morrell, 1997; Roselli et al., 1998; Naftolin et al., 2001) confirme l’hypothèse selon laquelle l’oestradiol est synthétisé in situ. Ce mécanisme est d’ailleurs impliqué dans la différenciation sexuelle du cerveau chez le rat où une augmentation de l’activité aromatasique est observée chez le mâle durant les premiers jours de vie post-natale (Tsuruo et al., 1994; Roselli et al., 1998; Amateau et al., 2004). L’aromatase est une enzyme importante qui catalyse la conversion des androgènes en oestrogènes. Elle appartient à la famille du cytochrome p450 et forme un complexe avec la nicotinamide-adénine-dinucléotide-phosphate-(forme réduite)-réductase (Hong et al., 2009). La formation d’oestradiol, qui résulte de l’aromatisation de la testostérone par la p450 aromatase, a lieu aussi bien dans des aires spécifiques du cerveau que dans les gonades (essentiellement les testicules). Durant le développement du SNC, les oestrogènes locaux régulent la différenciation sexuelle des structures neurales et modulent les fonctions neuroendocriniennes et reproductrices ainsi que le comportement sexuel (Naftolin et Brawer, 1978), l’inhibition de l’aromatase diminuant d’ailleurs le comportement sexuel mâle chez la caille (Cornil et al., 2006). Chez le poisson zèbre, l’activité élevée de l’aromatase B (AroB), produit du gène cyp19b, est exclusivement exprimée par les celules gliales radiales (et non par les neurones) principalement dans le bulbe olfactif, le télencéphale, l’aire préoptique et l’hypothalamus, l’oestradiol y régulant son expression exclusivement dans l’aire préoptique et l’hypothalamus médio-basal, régions majeures de production locale du stéroïde, tôt après la fécondation (Tong et al., 2001; Goto-Kazeto et al., 2004). Cette régulation oestradioldépendante implique une action transcriptionnelle directe des récepteurs aux oestrogènes (ERs) qui nécessite également la contribution du «estrogen responsive element» (ERE). L’expression de l’AroB dans les cellules gliales radiales, connues pour leur rôle dans la neurogenèse et considérées comme progénitrices cellulaires (contrairement aux autres vertébrés qui présentent une neurogenèse limitée à l’âge adulte), suggère que la production locale d’oestradiol dans ces cellules pourrait influencer la capacité du cerveau des poissons téléostéens à croître durant l’âge adulte (Pellegrini et al., 2005). Ainsi, l’oestradiol, en permettant l’établissement d’un environnement favorable, serait impliqué dans le maintien et/ou l’activation des cellules progénitrices chez les poissons téléostéens (Kah et al., 2009). Toutes ces observations mentionnées ci-avant confirment l’importance de l’aromatase dans le développement et le fonctionnement du SNC rapportée par Lephart en 1996. En outre, Balthazart a montré, dans l’hypothalamus de caille et du poisson zèbre, que l’activité de l’aromatase est plus importante chez le mâle que chez la femelle. Elle diminue après 16 Introduction castration et augmente à la suite d’administrations de testostérone, ce qui amène à penser que les oestrogènes produits agissent par aromatisation centrale de la testostérone (1991). Chez des cailles castrées, traitées ensuite par testostérone et des inhibiteurs de l’aromatase, une inhibition des effets de l’androgène au niveau de l’hypothalamus a été observée (Foidart et al., 1994), ce qui corrobore les résultats précédents. L’activité de l’aromatase du cerveau est contrôlée de façon génomique par des stéroïdes qui augmentent la transcription de l’enzyme, mais l’équipe de Balthazart a montré récemment que son activité peut également être modulée en quelques minutes par des phosphorylations calcium–dépendantes et déclenchées par des variations de neurotransmission glutamatergique (Balthazart et al., 2003; Balthazart et al., 2009). Ainsi, le comportement sexuel mâle serait activé de façon non génomique, partiellement par la testostérone, via sa conversion en oestradiol par l’aromatase dans l’aire préoptique. Par ailleurs, la localisation de l’aromatase dans les boutons présynaptiques suggère que la régulation des oestrogènes est, au moins en partie, trans-synaptique (Balthazart et Ball, 1998). 2. Action de l’oestradiol sur le système à GnRH et le contrôle neuroendocrinien de l’axe hypothalamo-hypophyso-gonadique Comme indiqué précédemment, les oestrogènes constituent un des facteurs principaux influençant le système à GnRH. Toutefois, les mécanismes qui sous-tendent ces effets sont complexes et non encore élucidés (Herbison, 1998; Matagne et al., 2005): les effets des oestrogènes sur les neurones à GnRH in vitro ont fait l’objet d’une revue en 2003 (Matagne et al.). Chez le rat mâle, une augmentation rapide des taux circulants de testostérone d’origine testiculaire est observée à la naissance (Weisz et Ward, 1980). Ce pic natal de testostérone, agissant au niveau de l’hypothalamus après avoir été aromatisé en oestradiol (Roselli et Resko, 2001), est essentiel pour la différenciation sexuelle de la fonction de reproduction. Il a, en effet, été montré que la suppression du pic d’androgènes, par castration (Corbier et al., 1983; Corbier, 1985) ou par inhibition de l’aromatase (Swaab et al., 1995; Gerardin et Pereira, 2002), provoquait l’apparition de comportements sexuels femelles ainsi qu’un pic préovulatoire de LH après administration d’oestrogènes (Corbier, 1985) chez des animaux génétiquement mâles. L’E2 agit principalement via deux isoformes du ER réparties dans différents tissus de l’organisme: les ERα et β (Kuiper et al., 1996; Mosselman et al., 1996). Il y a une dizaine d’années, un troisième type de récepteur (ERγ) a été isolé chez les poissons téléostéens (Hawkins et al., 2000) et n’a, jusqu’à l’heure actuelle, pas encore été mis en évidence chez les 17 Introduction mammifères. Après la liaison de l’E2 à son type de récepteur dans le cytoplasme, le complexe ligand-récepteur ainsi formé est internalisé au niveau du noyau cellulaire, où il se lie à une séquence génomique spécifique ERE, qui activera ou réprimera la transcription de gènes cibles. Ce sont ces effets génomiques qui sont responsables du rétrocontrôle hypothalamohypophysaire par les oestrogènes périphériques (Kalra, 1985; Xia et al., 1992). Les effets rapides ou non génomiques de l’oestradiol seront rapportés plus loin dans ce chapitre. Les deux isoformes ERα et β sont abondamment exprimées au niveau de l’hypothalamus (Mitra et al., 2003; Perz et al., 2003). Cependant, la plupart des premières études ont montré que les neurones à GnRH ne fixaient pas l’oestradiol (Shivers et al., 1983) et n’exprimaient pas non plus ses récepteurs (Lehman et Karsch, 1993; Herbison et al., 1995), bien que ceux issus de lignées immortalisées les expriment (Roy et al., 1999). Ces observations ont conduit à l’idée que les oestrogènes agiraient de manière indirecte sur le système à GnRH (Shen et al., 1998). Plus récemment, l’amélioration des techniques de détection a redynamisé les recherches: Butler et ses collègues (1999) ont rapporté l’expression des ERα et β sur les neurones à GnRH du rat. Ces résultats ont rapidement été confirmés par l’équipe de Skynner (1999) et suivis par d’autres études menant aux mêmes observations (Hrabovszky et al., 2000; Hrabovszky et al., 2001). Désormais, il semble même que la majorité des neurones à GnRH expriment les deux isoformes (Herbison et Pape, 2001). Chez les femelles, les taux d’oestradiol disponibles au niveau du cerveau sont maintenus à un niveau plus faible que chez les mâles durant la période périnatale (Amateau et al., 2004), probablement grâce à la présence de l’α-foetoprotéine (AFP) plasmatique (MacLusky et Naftolin, 1981; Bakker et al., 2006). Similairement aux expériences réalisées chez le mâle, l’injection de testostérone ou d’E2 à des femelles durant les premiers jours postnatals induit une masculinisation résultant en l’absence de cycle oestral chez l’adulte (Gorski, 1968; Gogan et al., 1980) ainsi qu’en la diminution de comportements sexuels spécifiquement femelles (Diaz et al., 1995). Un même effet est observé chez les souris déficientes pour le gène AFP, ce qui démontre l’importance de cette protéine foetale dans la différenciation sexuelle (Gabant et al., 2002; Bakker et Baum, 2008). Les mécanismes par lesquels l’oestradiol agit au niveau du cerveau en période périnatale semblent également varier selon les types cellulaires puisque la masculinisation de cellules gliales hypothalamiques implique une augmentation des taux de GABA (Mong et al., 2002) tandis que la différenciation sexuelle des neurones hypothalamiques de l’aire préoptique, induite par l’E2, est modulée par la prostaglandine E2 (PGE2), dont les effets masculinisants jouent un rôle important dans la 18 Introduction détermination des comportements sexuels chez l’animal adulte (Amateau et McCarthy, 2002 et 2004). 3. Effets rapides / non génomiques de l’E2 sur les neurones à GnRH Le mécanisme d’action des effets rapides de l’E2 a retenu l’attention des chercheurs, il y a une dizaine d’années (Revelli et al., 1998; Falkenstein et Wehling, 2000; McEwen, 2002), bien que de tels effets aient déjà été rapportés dans les années ‘70 (Sherwood et al., 1976; Dufy et al., 1979). L’action de l’E2 peut moduler les propriétés électrophysiologiques des neurones (Dufy et al., 1979; Nabekura et al., 1986) et activer ou inhiber les cascades de seconds messagers intracellulaires tels que l’adénosine monophosphate cyclique (Gu et Moss, 1996; Zanassi et al., 2001) ou les kinases (Lagrange et al., 1999; Doolan et al., 2000). En outre, les oestrogènes peuvent également agir sur les voies de neurotransmission les plus importantes comme celles du glutamate (Smith et al., 1987; Gu et Moss, 1996) et du GABA (Lagrange et al., 1995; Lagrange et al., 1999). Ces effets, considérés comme rapides donc non génomiques, ont lieu endéans quelques secondes à quelques minutes, mais ils peuvent également avoir des conséquences à long terme en stimulant ou réprimant la transcription de gènes cibles (Zanassi et al., 2001). L’étude des effets rapides des oestrogènes a également mis en lumière la nécessité de rechercher des récepteurs additionnels puisque le mécanisme d’action des ERα et β est, par définition, un mécanisme d’action lent et, de prime abord, ne correspond pas aux caractéristiques des effets rapides des oestrogènes. Néanmoins, des études récentes ont montré que les ERα et β pouvaient activer des évènements rapides tels que la phosphorylation des «mitogen activated protein kinases» (MAPK), les kinases activant les agents mitogènes (Wade et al., 2001), ou la production de monoxyde d’azote (NO) via l’activation de la cascade de l’inositol triphosphate (Simoncini et al., 2000). Or, l’E2 couplé à la serumalbumine bovine, est incapable de traverser la membrane plasmique. Cependant, il a été rapporté que ce complexe, dans certains cas, pouvait agir de manière rapide et de façon similaire à l’E2 (Lagrange et al., 1999; Prevot et al., 1999), indiquant que l’ER responsable des effets rapides de l’E2 est probablement localisé au niveau de la membrane cellulaire. Ces études n’excluent pas l’hypothèse des effets passant par les récepteurs classiques puisqu’il a été rapporté que l’ERα pouvait se trouver au niveau de la membrane des neurones hippocampaux (Clarke et al., 2000) ou des cellules tumorales pituitaires (Watson et al., 1999). Par ailleurs, il apparaît que certains effets rapides des oestrogènes impliquent également d’autres récepteurs membranaires couplés à des protéines G comme cela a été proposé par 19 Introduction Kelly et ses collègues en 2002. D’autres études ont abouti à la caractérisation d’un ER membranaire, à savoir le ERx, présentant une affinité plus grande pour l’α-isomère de l’oestradiol que pour la forme β. La structure de son gène n’a pas encore été caractérisée, mais il semblerait que ce récepteur puisse activer les MAPK (Toran-Allerand et al., 2002). Il y a 6 ans, les effets génomiques et non génomiques des oestrogènes sur le contrôle hypothalamique de l’axe gonadotrope ont fait l’objet d’une thèse de doctorat en sciences biomédicales au sein de notre Unité de Recherche (Matagne, 2005). Il y a été montré que l’incubation continue d’explants hypothalamiques en présence d’E2 entraîne une accélération de la fréquence de sécrétion pulsatile de GnRH chez le rat femelle immature âgé de 5 et 15 jours (Matagne et al., 2004) et que cet effet implique une participation spécifique des récepteurs au kaïnate ainsi que celle des ERα et β. Matagne et ses collègues ont également observé que l’E2 peut rapidement augmenter la réponse sécrétoire de GnRH induite par le glutamate ou le NO. Cet effet, probablement non génomique et impliquant les récepteurs au kaïnate et les deux isoformes classiques d’ERs, dépend d’une augmentation des taux de calcium intracellulaires ainsi que d’une activation de différents types de kinases (Matagne et al., 2005; Moenter et Chu, 2012). E. Facteurs du mécanisme neuroendocrinien de la puberté Toute activation sécrétoire de GnRH au cours du développement (apparition de la sécrétion de GnRH, puberté, pic préovulatoire, …) résulte potentiellement de deux mécanismes différents. Le premier est la diminution d’un tonus inhibiteur qui limite la sécrétion pulsatile de GnRH tandis que le second est l’augmentation d’un tonus stimulant qui facilite sa sécrétion (Ojeda et Terasawa, 2002). Les neurones à GnRH peuvent être régulés directement ou indirectement par les neurotransmetteurs et les neuropeptides sécrétés par les cellules avoisinantes, neuronales ou gliales. Il existe de nombreux facteurs centraux et/ou périphériques qui ont un effet stimulant et/ou inhibiteur sur le système à GnRH. Dans ce travail, nous ne les décrirons pas de façon exhaustive, mais nous nous limiterons seulement aux plus importants et à ceux démontrés comme impliqués dans nos conditions expérimentales. 1. Facteurs centraux - La stimulation du récepteur au N-méthyl-D-aspartate (NMDA) par le glutamate induit une puberté précoce chez le rat (Urbanski et Ojeda, 1987; Smyth et Wilkinson, 1994) et le singe 20 Introduction (Plant et al., 1989) alors que l’administration d’antagonistes tels que le MK-801 ou l’acide 2amino-5-phosphonovalérique retarde l’apparition de la puberté chez le rat (MacDonald et Wilkinson, 1990; Urbanski et Ojeda, 1990; Meijs-Roelofs et al., 1991). La réponse sécrétoire de LH en réponse à l’administration de NMDA est faible à 10 et 15 jours, atteint un niveau maximal à 25 jours et diminue finalement à 40 jours chez le rat (Cicero et al., 1988). La sécrétion in vitro de GnRH, évoquée par le glutamate, le NMDA ou le kaïnate, suit le même profil avec une sensibilité maximale à 25 jours (Bourguignon et al., 1992). L’existence de cette diminution de sensibilité de la sécrétion de GnRH au glutamate est surprenante: elle pourrait faire suite à la diminution du tonus inhibiteur par le GABA qui survient avant la puberté. Dès lors, durant cette dernière, le tonus glutamatergique facilitateur resterait actif tout en diminuant, puisque le puissant tonus inhibiteur du GABA ne lui est plus opposé. En plus de son action au moment de la maturation sexuelle, le glutamate intervient également dans le déroulement du pic préovulatoire de LH, puisque ce dernier est bloqué par des antagonistes du récepteur au NMDA (Lopez et al., 1990; MacDonald et Wilkinson, 1990; Urbanski et Ojeda, 1990) et à l’α-amino-3-hydroxy-5-méthylisoazol-4-propionate (AMPA)/kaïnate (Lopez et al., 1990; Ping et al., 1997). Des études utilisant le marqueur c-fos comme témoin de l’activation des neurones à GnRH indiquent qu’une grande proportion (>50 %) des neurones à GnRH, activés au moment du pic préovulatoire, expriment des récepteurs kaïniques (Eyigor et Jennes, 2000), ce qui confirme leur implication dans ce phénomène. Des travaux similaires étudiant l’expression du récepteur au NMDA ont montré qu’il n’y avait pas d’augmentation du nombre de neurones à GnRH exprimant ce récepteur et le marqueur c-fos au moment du pic préovulatoire (Ottem et al., 2002). - L’acide aminé GABA est un facteur-clé impliqué dans les changements développementaux de la sécrétion de GnRH au niveau du SNC. Certaines études ont mis en évidence un rôle inhibiteur du GABA alors que d’autres ont souligné son rôle stimulant. Par ailleurs, certains auteurs rapportent une augmentation de l’excitabilité des neurones à GnRH adultes par le blocage spécifique du récepteur GABAA au moyen de bicuculline (Han et al., 2004) tandis que d’autres montrent que les neurones à GnRH sont excités suite à une activation de ce même récepteur, tout au long du développement, suggérant que l’effet inhibiteur modulé par le récepteur GABAA serait exercé sur un système neuronal autre que le neurone à GnRH luimême (DeFazio et al., 2002). La composante ontogénétique est sans doute capitale car la majorité des études utilisant des neurones foetaux ou néonatals montrent un effet stimulant alors que celui-ci est clairement inhibiteur par la suite, particulièrement avant le déclenchement pubertaire (Matagne et al., 2003; Parent et al., 2005). Malgré l’effet inhibiteur 21 Introduction du GABA établi, son rôle au niveau de l’axe endocrinien GnRH/LH semble moins catégorique et inclut des effets stimulants sur la sécrétion de GnRH (Masotto et al., 1989; Martinez de la Escalera et al., 1994) et de LH (Vijayan et McCann, 1978). Certains travaux ont montré que l’effet direct du GABA sur des neurones foetaux à GnRH immortalisés de la lignée GT-1 (Hales et al., 1994; Martinez de la Escalera et al., 1994), c’est-à-dire considérés comme immatures (Wetsel, 1995), ou des neurones à GnRH issus de placode olfactive (Kusano et al., 1995), était stimulant via les récepteurs de type GABAA. Des effets stimulants directs du GABA, sur les neurones à GnRH, ont également été rapportés chez la souris (DeFazio et al., 2002). Contrairement au récepteur GABAB dont le rôle est principalement inhibiteur (Masotto et al., 1989; Martinez de la Escalera et al., 1994; Moore et al., 2002), le récepteur GABAA paraît impliqué à la fois dans des effets inhibiteurs et stimulants (Martinez de la Escalera et al., 1994). Néanmoins, la majorité des études in vivo ont rapporté un rôle inhibiteur du GABA qui pourrait être modulé de façon indirecte par des circuits neuronaux formant des synapses avec les neurones à GnRH. Ainsi, le GABA ou son agoniste, le muscimol, injecté chez des rats au niveau de l’aire préoptique ou du 3ème ventricule, cause une inhibition de la sécrétion de LH (Akema et al., 1990; Herbison et al., 1991). D’autres ont montré ce même effet aussi bien sur la sécrétion pulsatile que sur le pic préovulatoire de LH (Donoso et Banzan, 1984; Adler et Crowley, 1986; Herbison et Dyer, 1991). Plus récemment, l’équipe de Funabashi (2002) a confirmé son effet inhibiteur sur la sécrétion pulsatile de GnRH in vitro. Ces effets inhibiteurs durant le développement ont également été constatés chez la guenon immature qui présente une puberté précoce suite à l’infusion de bicuculline ou d’un oligonucléotide anti-sens pour la glutamate décarboxylase, enzyme impliquée dans la synthèse du GABA, au niveau de l’éminence médiane (Mitsushima et al., 1994; Keen et al., 1999; Terasawa et al., 1999). Notre laboratoire a également mis en évidence un effet inhibiteur du GABA chez des rats âgés de 5 ou 15 jours sur la sécrétion pulsatile de GnRH in vitro, à partir d’explants hypothalamiques, lorsque l’on utilisait de la bicuculline ou des oligonucléotides anti-sens. Cet effet disparaissait avec l’âge et l’apparition de la puberté, et requérait l’activation du récepteur GABAA puisque le blocage de ce dernier par la bicuculline ou par un oligonucléotide anti-sens induisait une augmentation de la fréquence de sécrétion pulsatile de GnRH in vitro (Bourguignon et al., 1997). Ces résultats ont été confirmés tout récemment par l’équipe de Terasawa qui a montré que la bicuculline stimule fortement la sécrétion de kisspeptine, qui augmente la sécrétion de GnRH (Terasawa et al., 2010). Les effets opposés du GABA pourraient aussi s’expliquer par les différents sous-types de récepteurs impliqués. Ainsi, l’effet direct du GABA, modulé par le récepteur de type GABAA, 22 Introduction est stimulant pour certains neurones du SNC (Smith et al., 1995). Contrairement à ces effets, ceux qui le sont par le récepteur GABAB, sur la sécrétion de GnRH, semblent inhibiteurs de façon univoque (Akema et al., 1990; Akema et Kimura, 1993; Lagrange et al., 1995). Par ailleurs, certaines études ont montré une diminution du contenu en GABA avant la puberté au niveau de l’aire préoptique chez le rat et de l’éminence médiane chez le singe, ce qui suggère que les taux élevés de GABA chez l’animal immature pourraient contribuer à limiter la sécrétion de GnRH avant le début de la puberté (Goroll et al., 1993; Mitsushima et al., 1994). - Les effets stimulants de la noradrénaline sur la sécrétion de LH ont été rapportés chez le singe (Bhattacharya et al., 1972) et chez le rat (Kalra et al., 1972). Des expériences in vivo chez le singe ont également montré un effet stimulant de la noradrénaline sur la sécrétion de GnRH (Terasawa et al., 1988) via une activation du récepteur α1-adrénergique (Kaufman et al., 1985; Gore et Terasawa, 1991; Terasawa et al., 1998). L’hypothèse selon laquelle la noradrénaline serait impliquée dans la puberté et le cycle oestral fut émise par Weiner et Ganong (1971). Elle repose sur l’observation de la diminution du contenu hypothalamique en noradrénaline et du retard de l’OV après le traitement de rats femelles par un agent bloquant la synthèse des monoamines. Bien que les neurones à GnRH expriment les récepteurs αadrénergiques (Hosny et Jennes, 1998), les études d’Ojeda et son équipe (1982) tendent plutôt à démontrer que la noradrénaline agit via la sécrétion d’autres facteurs tels que la PGE2, qui est également un facteur stimulant la libération de la GnRH (Ojeda et al., 1979; Gearing et Terasawa, 1991). Ces effets ont également été observés dans notre modèle d’explants hypothalamiques (Parent et al., 2005). Chez le primate, comme chez le rongeur, la noradrénaline serait donc impliquée dans le contrôle de la sécrétion de GnRH au cours du développement, mais elle ne semble pas jouer un rôle majeur dans l’initiation de la puberté. - La neurokinine B (NKB): ce peptide appartenant à la famille des tachykinines est, à l’instar d’autres cotransmetteurs, exprimé par certains neurones à kisspeptine (Rometo et Rance, 2008). De très récentes études chez l’Homme ont montré que la NKB et son récepteur NK3R, couplé aux protéines G et induisant l’activation de la phospholipase C, pouvaient être impliqués dans le déclenchement de la puberté. En effet, des mutations au niveau des gènes TAC3 et TACR3, codant respectivement pour la NKB et le NK3R, provoquent un hypogonadisme hypogonadotrope idiopathique normosmique (Topaloglu et al., 2001). La NKB pourrait donc jouer un rôle majeur de concert avec la kisspeptine et d’autres neurotransmetteurs, dont le mécanisme d’action n’a pas encore été élucidé, dans l’activation du générateur de pulsatilité de la GnRH permettant la sécrétion du peptide hypothalamique au niveau de l’éminence médiane (Topaloglu, 2010). 23 Introduction - La kisspeptine, originellement identifiée comme suppresseur des métastases, joue un rôle crucial dans la gouvernance de l’établissement de la puberté et la fonction reproductrice chez l’adulte (Seminara et al., 2003; Seminara et Kaiser, 2005; de Roux, 2006; Kauffman et al., 2007). Des mutations inactivant le GPR54 induisent un hypogonadisme hypogonadotrope chez l’humain. Les souris «null», atteintes de cette même pathologie, ne présentent pas de maturation des organes reproducteurs, menant à une infertilité. Ce nouveau rôle du système kisspeptine/GPR54 a mené à des études, chez le singe Rhésus, qui ont permis d’identifier les ARNm du récepteur et de son ligand dans l’hypothalamus médio-basal, colocalisés avec les neurones à GnRH, démontrant ainsi une activité dépendante de la sécrétion des gonadotrophines FSH et LH par la kisspeptine (Plant, 2006). Ces études ont également montré un taux croissant des transcrits de GPR54 et kiss-1 au moment de la puberté. L’ensemble de ces données indique ainsi un rôle direct de la kisspeptine dans la stimulation des neurones à GnRH durant la puberté (Kuohung et Kaiser, 2006). L’activation de GPR54, par administration de kisspeptine, est suffisante pour activer précocement l’axe gonadotrope chez les rongeurs et singes immatures. La kisspeptine hypothalamique fonctionnerait donc comme un intégrateur essentiel pour les influx périphériques, incluant les stéroïdes gonadiques et les signaux nutritionnels, en contrôlant la sécrétion de GnRH et des gonadotrophines (TenaSempere, 2006). Par ailleurs, une administration centrale ou intraveineuse (périphérique) aigüe de kisspeptine à des hommes sains augmente de façon marquante le niveau de LH plasmatique et significativement celui de la FSH plasmatique et de la testostérone. Ainsi, la signalisation kisspeptine/GPR54 a été suggérée pour contrôler la cyclicité ovarienne à travers la régulation de deux modes de sécrétion de la GnRH: d’une part, une population de neurones à kisspeptine, localisée dans le noyau arqué, pourrait être impliquée dans la génération de «pulses» de GnRH et la modulation de l’action du rétrocontrôle négatif des oestrogènes sur la sécrétion de GnRH; d’autre part, une autre population de neurones à kisspeptine, localisée dans le noyau périventriculaire antéro-ventral, déclencherait la sécrétion de GnRH (Maeda et al., 2005). Le mécanisme précis par lequel la kisspeptine régule ces deux modes de sécrétion de GnRH reste encore à déterminer. - L’ocytocine fait partie des neuromodulateurs impliqués dans la maturation de l’axe hypothalamo-hypophyso-gonadique. L’ARNm codant pour l’ocytocine est détecté dans l’hypothalamus de rat à partir du 16ème ou 17ème jour de vie foetale (Almazan et al., 1989; Laurent et al., 1989) alors que sa forme mature n’apparaît que 4 à 5 jours plus tard, au moment de la naissance. Le taux d’ARNm codant pour l’ocytocine continue ensuite à augmenter pendant les premières semaines de vie post-natale. Les récepteurs de l’ocytocine 24 Introduction apparaissent au niveau du cerveau au cours de la fin de vie foetale et du début de la vie postnatale (Barberis et Tribollet, 1996), et le système ne connaît son organisation définitive que quelques semaines après le sevrage, un certain nombre de récepteurs apparaissant au moment de la puberté. Le système ocytocinergique se met donc en place assez tardivement au cours de la vie foetale et continue d’évoluer au cours du développement. Un effet stimulant de l’ocytocine sur la libération de GnRH a été rapporté chez le rat mâle adulte ainsi que chez la femelle lors de l’après-midi du proestrus (Rettori et al., 1997; Selvage et Johnston, 2001). Notre laboratoire a également montré que la sécrétion pulsatile de GnRH in vitro était stimulée en présence d’ocytocine et de PGE2 chez des rats nouveaux-nés (Parent et al., 2005). En outre, l’inhibition de l’ocytocine, par un antagoniste de son récepteur, diminue significativement l’amplitude du pic préovulatoire de LH chez la femme (Evans et al., 2003), ceci plaidant pour un rôle physiologique de l’ocytocine endogène. Ces observations ont été confirmées par notre équipe qui a montré que l’administration d’un antagoniste de l’ocytocine chez des rats femelles prépubères augmentait l’intervalle de pulsatilité (IP) de GnRH in vitro, suggérant que l’ocytocine endogène restait effective dans le contrôle facilitateur de la fréquence pulsatile de GnRH in vitro. En outre, l’ocytocine causait une réduction de l’IP de GnRH in vitro de façon dose-dépendante, prévenue en présence d’un inhibiteur de la synthèse de la PGE2 tandis que l’utilisation d’un antagoniste de l’ocytocine augmentait l’IP de GnRH. Par ailleurs, la sécrétion de GnRH in vitro, évoquée par le glutamate, n’était pas influencée par l’ocytocine, suggérant l’implication d’un autre site de stimulation au sein de l’hypothalamus. L’ocytocine pourrait ainsi faire partie d’un système de sauvegarde pour maintenir la sécrétion de GnRH dans certaines conditions défavorables (Parent et al., 2008). Cependant, il faut noter que les souris «knock-out» pour le gène de l’ocytocine présentent une fertilité normale (Kimura et al., 1999), ce qui souligne probablement le rôle redondant de l’ocytocine au sein du système de régulation de la sécrétion de GnRH. - Les neurones sécrétant le neuropeptide Y (NPY) sont largement distribués dans l’hypothalamus (MacDonald et al., 1988) et sont principalement impliqués dans les mécanismes régulant la balance énergétique et l’appétit (Kalra et al., 1999). Il a été démontré que le NPY avait un effet stimulant sur la sécrétion de LH au moment du pic préovulatoire (Brann et al., 1991; Kalra et al., 1992). Cependant, l’effet de ce neuropeptide sur la sécrétion de GnRH et son implication dans l’installation de la puberté restent discutés. En effet, on lui attribue des effets stimulants ou inhibiteurs sur la sécrétion de GnRH selon l’espèce étudiée, l’environnement stéroïdien, la voie ou la durée d’administration (Kalra et Crowley, 1984; Khorram et al., 1987; Kalra et al., 1992; Minami et Sarkar, 1992; Besecke et Levine, 1994; 25 Introduction Pau et al., 1995; Pierroz et al., 1995). Pour l’équipe de Plant, qui a étudié son rôle chez le singe, ce peptide est responsable d’un effet inhibiteur majeur chez l’animal prépubère et cette inhibition diminue avec l’apparition de la puberté (Majdoubi et al., 2000). Pour d’autres, il est aussi impliqué dans le déclenchement de la puberté (Sutton et al., 1988; Minami et al., 1990) alors que certains observent un effet inhibiteur du NPY sur la maturation sexuelle dans des conditions d’insuffisance nutritionnelle (Gruaz et al., 1993; Pierroz et al., 1995). Les travaux menés au sein du laboratoire ont montré que le NPY stimule la fréquence de la sécrétion pulsatile de GnRH in vitro via des médiateurs différents de ceux mis en jeu par la leptine (Lebrethon et al., 2000). Toutes ces données indiquent donc que le NPY peut jouer un rôle dans l’apparition de la puberté, mais qu’il doit être intégré avec l’ensemble des neuromédiateurs impliqués à la fois dans la régulation de l’appétit et la balance énergétique d’une part, et la reproduction d’autre part. Une altération de la balance énergétique peut entraîner des perturbations de la fonction de reproduction (Badger et al., 1985; Cagampang et al., 1990) ainsi qu’un retard de puberté (Kennedy et Mitra, 1963; Foster et Olster, 1985) par inhibition de la sécrétion de LH. - Au cours de ces dernières décennies, il a été démontré que les cellules gliales pouvaient intervenir dans la fonction neuronale via la production de signaux tels que l’augmentation des taux de calcium intracellulaire suite à une stimulation au glutamate (Cornell-Bell et al., 1990), la sécrétion directe de glutamate (Parpura et al., 1994) ou celle de substances gliales spécifiques telles que les facteurs de croissance qui peuvent réguler la sécrétion de GnRH et qui agissent via des récepteurs de type tyrosine kinase (bFGF et TGFα) ou sérine-thréonine kinase (TGFβ et PGE2): - le bFGF stimule la prolifération de neurones à GnRH immortalisés (Voigt et al., 1996) et maintient leur survie (Tsai et al., 1995). A l’inverse, il peut stimuler indirectement les cellules gliales (Gallo et al., 2000). - le TGFα agit de façon indirecte sur la sécrétion de GnRH (Ojeda et al., 1990) via la libération de PGE2 (Ma et al., 1997). Il joue également un rôle dans le déclenchement de la puberté puisque la surexpression de son gène au niveau de l’hypothalamus murin provoque l’initiation précoce du cycle oestral (Ma et al., 1994; Rage et al., 1997). Par ailleurs, le TGFα pourrait aussi être impliqué dans l’émergence de la puberté chez l’Homme puisque les hamartomes (malformations hypothalamiques responsables de l’apparition de puberté précoce) expriment fortement le TGFα, par l’intermédiaire des cellules gliales (Jung et al., 1999). 26 Introduction - le TGFβ, produit par les cellules astrocytaires, stimule la sécrétion de GnRH in vitro (Gonzalez-Manchon et al., 1991; Melcangi et al., 1995; Calogero et al., 1998). Ses récepteurs, situés sur le péricaryon (Ojeda et al., 1990), sont exprimés par des neurones à GnRH immortalisés (Buchanan et al., 2000) ainsi que par des neurones à GnRH de rat (Prevot et al., 2000; Bouret et al., 2004). Les effets in vivo du TGFβ sur les neurones à GnRH se limitent uniquement à une action stimulante sur les transcrits de GnRH et non sur la sécrétion de cette dernière (Bouret et al., 2004). - L’inhibition de la PEP et de l’EP 24.15 augmentent la sécrétion des gonadotrophines chez le rat (Lasdun et Orlowski, 1990; Wu et al., 1997). Des études in vitro menées au sein du laboratoire ont montré que ces deux endopeptidases inhibent la sécrétion de GnRH via la GnRH1-5 qui bloque l’activation des récepteurs au NMDA (Bourguignon et al., 1994). Contrairement à l’EP 24.15, dont l’expression ne varie pas au cours du développement (Pierotti et al., 1991), une variation de l’activité de la PEP au cours du développement est observée, avec un maximun d’activité durant les deux premières semaines de vie post-natale (Kato et al., 1980; Yamanaka et al., 1999). La réduction de la production de la GnRH1-5 pourrait donc permettre une augmentation de l’activation des récepteurs au NMDA et, à ce titre, participer à l’accélération développementale de la fréquence de sécrétion pulsatile de GnRH observée in vitro au moment de la puberté (Yamanaka et al., 1999). - Dès les années ‘70, il est apparu que la PGE2 était libérée par l’éminence médiane sous l’effet de la noradrénaline et de la dopamine, et stimulait la libération de GnRH (Ojeda et al., 1979). L’injection systémique ou intracérébrale d’un inhibiteur de la synthèse de ces prostaglandines induit une diminution de la sécrétion de LH et suggère ainsi un rôle physiologique de ces hormones (Ojeda et al., 1999). Plus récemment, il a été observé que la PGE2, sécrétée par les cellules gliales, module l’effet facilitateur du TGFα et des neurégulines sur la sécrétion de GnRH. En outre, les systèmes glutamatergiques et la PGE2 sont interdépendants puisque le glutamate stimule la libération de PGE2 qui, à son tour, induit une libération de glutamate astrocytaire (Bezzi et al., 1998). La PGE2, synthétisée au niveau central et dans l’utérus, a été décrite comme un stimulateur potentiel de la sécrétion de GnRH (MacDonald et Wilkinson, 1990). De nombreuses études lui suggèrent un rôle dans l’éminence médiane où elle est sécrétée par les astrocytes en réponse au TGFα (MeijsRoelofs et al., 1991). Par ailleurs, la PGE2 semble agir davantage sur les terminaisons nerveuses des neurones à GnRH que sur le générateur de pulsatilité lui-même, ce qui pourrait expliquer l’absence d’augmentation de la fréquence pulsatile de GnRH en présence de PGE2 27 Introduction dans notre modèle d’incubation hypothalamique. Enfin, les effets combinés de la PGE2 et de l’ocytocine suggèrent que la modulation de la fréquence pulsatile de GnRH requiert différents facteurs (Parent et al., 2005). - Le NO est un neurotransmetteur gazeux dont le rôle, dans le contrôle de la formation de la paroi vasculaire, a été découvert à la fin des années ‘70 (Gruetter et al., 1979). Il est produit à partir de l’arginine grâce à la NO synthase (NOS) qui existe sous différentes formes et peut être détectée au niveau neuronal et endothélial (Forstermann et al., 1991). Des expériences in vitro ont montré que le NO était capable de stimuler la sécrétion de GnRH à partir d’explants d’éminence médiane (Rettori et al., 1993). Ce médiateur a aussi été impliqué dans la survenue du pic préovulatoire de GnRH chez le rat (Prevot et al., 1999). La proximité anatomique de cellules immunopositives pour la NOS neuronale et les neurones à GnRH plaident en faveur d’une implication du NO dans la régulation de l’activité des corps cellulaires du neurone à GnRH (Herbison et al., 1996). Par ailleurs, il a été démontré que la sécrétion pulsatile du NO varie au cours du cycle oestral avec, le jour du proestrus, une augmentation de l’amplitude qui s’accompagne d’une augmentation de la libération de GnRH (Knauf et al., 2001; Clasadonte et al., 2008). 2. Facteurs périphériques - La leptine: découverte il y a une quinzaine d’années, il s’agit d’une protéine de 167 acides aminés sécrétée essentiellement par le tissu adipeux (Zhang et al., 1994). Son inactivation se traduit par une obésité, une hyperphagie et un hypogonadisme avec tous les troubles qui s’en suivent. Chez l’Homme comme chez les rongeurs, la concentration plasmatique et le taux de transcrits de leptine sont étroitement liés avec le degré de la masse adipeuse (Maffei et al., 1995; Considine et al., 1996). De par sa forte concentration au niveau du plexus choroïde (Fei et al., 1997), le récepteur à la leptine, qui présente des homologies avec les membres de la famille des récepteurs aux cytokines de classe I (Tartaglia, 1997), pourrait participer au transport de la leptine dans le SNC. Bien que des récepteurs à la leptine aient été localisés sur des neurones à GnRH immortalisés (Magni et al., 1999), des études immunocytochimiques chez le rat (Hakansson et al., 1998) et le singe (Finn et al., 1998) n’ont pas mis en évidence ce type de récepteur sur les neurones à GnRH, suggérant que des neurotransmetteurs intermédiaires interviennent dans l’action de la protéine (Bouret et al., 2004). La leptine exerce une partie de ces effets dans la régulation de l’homéostasie énergétique en agissant sur les neurones orexigéniques (Cheung et al., 1997; Mercer et al., 1997; Kask et al., 1998). En outre, il a également été montré que la leptine joue un rôle important dans la maturation et la 28 Introduction fonction de l’axe reproducteur (Magni et al., 2000). En effet, l’administration intrapéritonéale de leptine recombinante humaine à des souris homozygotes ob/ob (dont le gène codant pour la leptine a été muté) permet d’assurer la maturation de l’axe hypothalamo-hypophysogonadique (Chehab et al., 1996), s’accompagnant, quel que soit le sexe, d’une augmentation des concentrations plasmatiques de FSH et LH (Barash et al., 1996) et d’une cyclicité oestrale normale chez les femelles (Ahima et al., 1996). Par ailleurs, des injections de leptine à des souris prépubères nourries ad libitum provoquent une avancée de l’âge de la puberté (Chehab et al., 1997). Enfin, une augmentation des taux plasmatiques de la leptine a été observée avant le début de la puberté chez le singe (Suter et al., 2000). - En 1999, Kojima et son équipe ont isolé la ghréline, une hormone peptidique orexigène de 28 acides aminés sécrétée par l’estomac, qui joue un rôle important dans l’initiation et la régulation de la prise alimentaire (Horvath et al., 2001; Olszewski et al., 2003). La concentration plasmatique de ghréline chez l’Homme augmente de façon très significative avant chaque repas et diminue rapidement ensuite (Cummings et al., 2001). Chez le rongeur, l’administration chronique périphérique de ghréline provoque une augmentation du poids corporel en réduisant le métabolisme lipidique (Tschop et al., 2000). En dehors du tractus gastro-intestinal, la ghréline est exprimée au niveau d’un type de neurones adjacents au 3ème ventricule, entre les noyaux arqué, paraventriculaire, dorso-médian et ventro-médian hypothalamiques (Cowley et al., 2003). Ces neurones envoient des afférences dans des circuits hypothalamiques importants pour la régulation de la prise alimentaire. Ainsi, la ghréline agit sur des neurones déjà sensibles à la leptine (Traebert et al., 2002). Plusieurs études expérimentales ont permis de démontrer que les effets orexigènes de la ghréline augmentent l’expression hypothalamique des gènes codant pour le NPY chez le rat (Kamegai et al., 2001) et bloquent les effets anorexigènes de la leptine (Shintani et al., 2001). Il a également été suggéré que la ghréline peut jouer un rôle physiologique dans la fonction de reproduction via son action sur la sécrétion pulsatile de LH. Un certain nombre de données établissent, en effet, une action inhibitrice de l’hormone sur la sécrétion pulsatile de LH chez des rates ovariectomisées et traitées par l’E2 (Furuta et al., 2001), ou non ovariectomisées (Fernandez-Fernandez et al., 2005). En outre, l’administration périphérique et chronique de ghréline chez le singe ovariectomisé diminue la sécrétion pulsatile de LH (Vulliémoz et al., 2004). Nous avons également démontré, au sein de notre laboratoire, qu’une administration intrapéritonéale de ghréline chez des rats âgés de 15 et 50 jours augmente significativement l’IP de GnRH, à partir des explants hypothalamiques incubés in vitro. Lorsque les explants hypothalamiques sont directement incubés en présence de ghréline, une réduction de l’IP a 29 Introduction lieu à 15 jours et cet effet est complètement inhibé en présence d’un antagoniste du récepteur au NPY. Ceci suggère que les effets opposés, in vivo et in vitro, de la ghréline requièrent la présence du récepteur au NPY, et qu’elle agit avant et après la maturité sexuelle (Lebrethon et al., 2007). L’ensemble des données reprises ci-dessus indique donc un rôle de la ghréline dans la régulation de l’axe hypophyso-gonadique, et plus particulièrement en cas de balance énergétique négative. - L’«insuline growth factor 1», facteur de croissance ressemblant à l’insuline de type 1 (IGF1), impliqué dans la régulation de la sécrétion de GnRH, stimule, via des récepteurs de type tyrosine kinase, la libération de GnRH à partir d’éminences médianes issues d’explants hypothalamiques in vitro et entraîne une puberté précoce quand il est administré à des rats immatures (Hiney et al., 1991; Hiney et al., 1996). Ses effets pourraient s’exercer directement au niveau des neurones à GnRH depuis qu’il a été rapporté l’expression de trois types de récepteurs à l’insuline sur des neurones à GnRH immortalisés (Oison et al., 1995). Par contre, d’autres études ont montré que l’IGF-1 n’est pas nécessaire à la maturation sexuelle du rat femelle et qu’un excès d’IGF-1 circulant n’a pas d’effet sur l’installation de la puberté (Gruaz et al., 1997). D’autre part, des travaux réalisés au sein de notre laboratoire ont mis en évidence un effet inhibiteur de l’IGF-1 sur la sécrétion pulsatile de GnRH in vitro chez des rats âgés de 25 et 50 jours. En effet, nous avons montré que l’IGF-1 pouvait également diminuer la sécrétion de GnRH via un produit de dégradation du peptide, l’IGF-1(1-3), qui inhibe la sécrétion de GnRH induite par une stimulation des récepteurs au NMDA (Bourguignon et al., 1993). Par conséquent, les effets régulateurs de l’IGF-1 sur la sécrétion de GnRH pourraient être directs ou indirects. Les facteurs périphériques gonadiques (stéroïdes et inhibine) ne seront pas discutés dans cette partie de l’introduction. 30 Introduction II. Mise en situation du problème II. MISE EN SITUATION DU PROBLEME Résumé: Dans ce second chapitre, nous expliquerons en quoi la différenciation sexuelle et la programmation du système reproducteur sont influencées par les stéroïdes sexuels et les perturbateurs endocriniens (PEs). Au travers d’exemples dramatiques tels que les cancers et des troubles de la reproduction causés par le diéthylstilbestrol, nous démontrerons que la perturbation endocrinienne concerne l’Homme et la faune. L’analyse est complexe en raison des différents facteurs (nature, demi-vie, dose-réponse, …) qui interviennent dans le processus perturbateur. La nature et les effets généraux du dichlorodiphényltrichloroéthane (DDT), que nous avons précisément étudié, seront davantage décrits. Nous expliquerons également la raison pour laquelle les modifications de timing pubertaire dans la population générale mais aussi les pubertés précoces anormalement fréquentes chez les enfants migrants, ont soulevé la question de l’effet des PEs. En outre, nous résumerons les études mettant en relation les PEs et le timing pubertaire chez l’Homme ainsi que celles qui concernent plus particulièrement le DDT. Enfin, nous détaillerons l’étude clinique menée en Belgique chez des enfants de l’adoption internationale qui est, précisément, à l’origine de notre travail. A. Différenciation sexuelle, programmation foetale et perturbation endocrinienne Le concept classique de la différenciation sexuelle suggère que le cerveau mâle se développe sous l’influence des sécrétions testiculaires (testostérone aromatisée en oestradiol) tandis que, chez la femelle, aucune stimulation hormonale n’est requise dans ce processus (Feder et Whalen, 1965; Grady et al., 1965; Plapinger et McEwen, 1973; Lamprecht et al., 1976; Baum, 1979; Booth, 1979; Dörner, 1981; Jacobson et Gorski, 1981). De par sa localisation au sein de l’hypothalamus (Wagner et Morrell, 1997; Roselli et al., 1998; Naftolin et al., 2001), l’aromatase, nécessaire à la synthèse de l’oestradiol à partir de la testostérone, est directement impliquée dans la différenciation sexuelle du cerveau du rat mâle, chez lequel une augmentation de son activité enzymatique est observée durant les premiers jours post-natals (Tsuruo et al., 1994; Roselli et al., 1998; Amateau et al., 2004). Plusieurs études réalisées sur des souris ArKO, dont le gène codant pour l’aromatase est déficient, ont cependant permis d’émettre l’hypothèse d’un possible rôle de l’oestradiol dans le développement neuronal contrôlant le comportement sexuel chez la femelle (Bakker et al., 2002 et 2003). Par ailleurs, Bakker et ses collègues ont montré qu’une exposition prénatale aux oestrogènes masculinise et déféminise le cerveau, l’AFP protégeant le cerveau femelle des effets des stéroïdes sexuels (2006). Il a également été observé qu’une exposition du foetus 31 Mise en situation du problème ovin en présence de testostérone provoque une altération du timing pubertaire et de la cyclicité oestrale par la perturbation neuroendocrinienne du rétrocontrôle positif de l’oestradiol (Unsworth et al., 2005), ainsi qu’une diminution du nombre de neurones à GnRH présentant un marquage positif pour la protéine c-Fos en réponse à l’E2 (Wood et al., 1996). Au cours du développement des rongeurs, les stéroïdes jouent un rôle permissif dans l’initiation de la puberté puisque de très anciennes expériences montrèrent déjà que des extraits placentaires induisent un avancement de la puberté (Frank et al., 1925) et que l’administration d’E2 chez des rats femelles immatures provoque l’apparition précoce du cycle oestral (Ramirez et Sawyer, 1965). Il y a plus de 25 ans, Ojeda et son équipe ont montré que l’hypothalamus immature est nettement plus sensible à des facteurs stimulant la sécrétion de GnRH, et ce de façon oestrogéno-dépendante (Ojeda et al., 1986), démontrant ainsi que les oestrogènes jouent un rôle précoce dans l’accélération de la maturation hypothalamique conduisant à la puberté. Plusieurs arguments cliniques indiquent une entrée en puberté plus rapide chez les filles que chez les garçons, le déterminisme de cette différence étant précoce puisqu’elle persiste, chez le singe, après castration néonatale (Plant, 1994). En outre, chez les ovins, l’administration prénatale de testostérone chez la femelle entraîne un retard du déclenchement pubertaire, ce qui suggère l’importante influence de la vie intra-utérine à cet égard (Kosut et al., 1997). La majorité des études relatant les effets des perturbateurs endocriniens (PEs) ont été réalisées suite à leur exposition durant la gestation ou chez le nouveau-né, ces deux périodes étant critiques pour la détermination des effets des stéroïdes sexuels sur l’homéostasie de la reproduction (McCarthy et al., 2009). Les évènements neuroendocriniens affectés par les PEs in vivo incluent l’établissement de la puberté centrale femelle, notamment gonadotrophinesdépendante (Gore, 2008) et l’ovulation déclenchée par le pic des gonadotrophines (Svabieasfahani et al., 2006; Steinberg et al., 2008), ainsi que le comportement sexuel chez les mâles (Viglietti-Panzica et al., 2005) et les femelles (Patisaul et al., 2001; Funabashi et al., 2003; Rubin et al., 2006; Steinberg et al., 2007), ce qui démontre que ces processus seraient donc régulés par les stéroïdes sexuels et potentiellement perturbés par les PEs de façon différente chez les deux genres. B. Historique de la découverte des PEs et questions actuelles La notion de PE est apparue à la fin du 20ème siècle pour désigner toute molécule exogène capable d’interférer avec la synthèse, la sécrétion, le transport, la liaison, l’action ou l’élimination des hormones naturelles, qui contrôlent l’homéostasie, la reproduction, le 32 Mise en situation du problème développement et le comportement (Kavlock et al., 1996). Selon l’Organisation Mondiale de la Santé (O.M.S.), les PEs sont des substances chimiques, biologiques ou physiques d’origine naturelle ou artificielle étrangères à l’organisme qui peuvent interférer, à très faible dose (du même ordre de grandeur que les concentrations physiologiques des hormones), avec le fonctionnement du système endocrinien et induire (en mimant ou inhibant l’action des hormones endogènes, ou en modulant leur transport et/ou la synthèse hormonale) ainsi des effets délétères sur cet organisme ou sur ses descendants. L’un des premiers PEs identifié est le diéthylstilbestrol (DES), qui a défrayé la chronique il y a plusieurs décennies, après avoir été prescrit massivement et à hautes doses à des femmes enceintes pour traiter des fausses couches entre 1938 et 1971 aux Etats-Unis. Les traitements par cette molécule oestrogénique, non stéroïdienne et synthétique, ont provoqué des perturbations endocriniennes chez les mères, mais ont également causé, chez leurs filles, des troubles de la reproduction et, dès l’âge de 30 ou 40 ans, des cancers du vagin et du col de l’utérus (Herbst et al., 1971; Herbst et Anderson, 1990). Le DES a également été utilisé comme anabolisant en élevage, provoquant des désordres hormonaux chez des enfants ayant consommé des résidus de ce composé présents dans des denrées animales à des quantités anormalement élevées. Bien que le DES n'ait plus été prescrit depuis plus de 30 ans, ses effets continuent à être observés: en effet, les femmes qui y ont été exposées par l’intermédiaire de leur mère affichent aujourd’hui des anomalies du tractus reproducteur et un taux d'infertilité accru (Merino, 1991; Schrager et Potier, 2004), sans évoquer des effets trans-générationnels qui peuvent aussi impliquer la descendance. Le DES, de part sa nature oestrogénique, est encore régulièrement utilisé dans de nombreuses études expérimentales parce que considéré comme référence afin de comparer et étudier les effets d'autres substances potentiellement oestrogéniques. Dans de nombreux pays industrialisés, des évidences d’effets anti-androgéniques et oestrogéniques respectivement sont davantage observées: d’une part la diminution de la fertilité masculine (altérations morphologiques et baisse de la production de spermatozoïdes) et l’augmentation de la fréquence de cancers des testicules et de la prostate (Toppari et al., 1996; Skakkebaek et al., 2001), d’autre part la fréquence accrue de cancers du sein (Snedeker, 2001) et le déclenchement pubertaire féminin de plus en plus précoce (Proos et al., 1991; Bourguignon et al., 1992; Bridges et al., 1994; Herman-Giddens et al., 1997; Virdis et al., 1998; Lee et al., 2001; Aksglaede et al., 2009; Roelants et al., 2009). Des études épidémiologiques d’abord, des expériences en laboratoire ensuite, ont montré que l'exposition 33 Mise en situation du problème à des molécules hormono-mimétiques est, au moins en partie, responsable de ces phénomènes. Par ailleurs, des études rapportaient également des effets des PEs à des doses d’exposition environnementales sur la faune sauvage. Au début des années ’60 déjà, la baisse de fertilité des visons d’Amérique du Nord, constatée par les éleveurs de la région des Grands Lacs, fut attribuée aux polluants bio-accumulés par les poissons et ingérés sous forme de farines animales. En 1962, Carson mis en évidence la toxicité du dichlorodiphényltrichloroéthane (DDT), un puissant insecticide abondamment utilisé à cette époque, sur l’appareil reproducteur des oiseaux. Par la suite, d’autres études, notamment la découverte de l'altération des fonctions reproductrices des alligators sauvages de Floride, relanceront les travaux de recherche sur ce thème au début des années ‘90. Il s’ensuivra alors de nombreuses publications soulignant le danger de certaines substances chimiques sur la reproduction et le développement, aussi bien chez l’Homme que sur la faune sauvage (Carlsen et al., 1992; Colborn et Clément, 1992). A travers la méthylation de l’ADN et l’acétylation des protéines histones, l’épigénome contrôle systématiquement l’expression des gènes durant le développement, à la fois in utero et durant la vie post-natale. De par sa nature labile, l’épigénome est très sensible aux perturbations environnementales durant la vie prénatale, ce qui peut conduire à de nombreux états pathologiques tels que des dysfonctionnements métaboliques, des désordres de la balance énergétique, des fonctions thyroïdiennes et reproductrices ainsi que des risques accrus de cancers. En effet, des conséquences néfastes trans-générationnelles, suite à l’exposition à des PEs, ont été constatées aussi bien dans la faune sauvage que sur des animaux de laboratoire ainsi que chez l’Homme, ce qui suggère la façon dont la transmission de ces modifications épigénétiques peuvent être sujettes à la sélection des espèces (Crews et McLachlan, 2006): l’exposition à ces substances hormono-mimétiques peut profondément altérer la physiologie des organismes et, ultérieurement, avoir un impact nuisible significatif sur des populations entières, ce phénomène non génomique pouvant prendre des dizaines d’années avant que l’effet ne se manifeste sur les caractères phénotypiques (Gore, 2008; Patisaul et Adewale, 2009; Bernal et Jirtle, 2010; Walker et Gore, 2011). Parmi les nombreux paramètres qui peuvent influencer la réponse aux PEs, la nature de ces derniers occupe une place de choix: naturelle ou synthétique, oestrogénique ou antiandrogénique, végétale, insecticides, fongicides ou herbicides, organochlorés ou biphényls polychlorés (PCBs)/-bromés (PBBs), dioxines, dérivés phénoliques, phtalates, métaux lourds, … La demi-vie des PEs varie selon leur structure chimique et le milieu dans lequel ils se 34 Mise en situation du problème trouvent. Une tendance à l’augmentation de leur demi-vie a été observée au fil des décennies: Carlson et ses collègues (2010) viennent de démontrer, après avoir analysé des données issues d’un intervalle de 34 ans, que la plupart des contaminants des Grands Lacs américains présentent des changements significatifs d’un point de vue de leur nature et de leur propriété physico-chimiques. Pour exemple, les demi-vies des PCBs étaient de 3-6 ans jusqu’à la moitié des années ’80, et des récentes données montrent qu’elles se situent actuellement aux alentours de 15-30 ans. Des changements dans la structure de l’alimentation, de la dynamique des pêches et des climats pourraient être à l’origine de ces modifications. Par ailleurs, le type de milieu (oxydant ou réducteur, aqueux ou huileux, …) dans lequel sont véhiculés les PEs joue également un rôle important dans le maintien ou non de leur structure et propriété chimiques (Ying et al., 2003; Ying et Kookana, 2005). Plusieurs études rapportent que l’exposition, au cours du développement, à des substances oestrogéniques à de très faibles doses résulte en une courbe dose-réponse non monotone, en forme de U. Pour exemple, chez des souris mâles exposées in utero à l’E2, au DES ou au bisphénol A (BPA), le poids de la prostate augmente fortement à de très faibles doses, et de façon moins marquée en présence de doses plus élevées (Nagel et al., 1997; vom Saal et al., 1997). En revanche, d’autres études significativement plus robustes ne recouvrent pas cette tendance non monotone (Ashby et al., 1999; Cagen et al., 1999a et 1999b; Chapin et al., 1999; Kwon et al., 2000; Tyl et al., 2002). Lorsque, néanmoins, ce genre de courbe doseréponse en forme de U est obtenu, faut-il encore pouvoir déterminer si les effets observés à faibles doses ont des conséquences néfastes à long terme. En effet, Putz et ses collègues (2001a et 2001b) ont rapporté une évolution non monotone transitoire des poids de la prostate, des testicules et de l’épididyme chez des rats nouveau-nés exposés à des faibles doses d’E2, l’effet étant attribuable à l’accélération de l’établissement de la puberté. Il est donc également primordial de connaître les éventuelles prédispositions à une pathologie, ce qui est cependant très difficile lorsque l’on utilise des modèles d’animaux. Dans son environnement quotidien, l’Homme et plus généralement l’ensemble du règne animal est probablement exposé à une grande variété de PEs, d’origine et de nature différente ou non, agissant en mixtures (Kolpin et al., 2002). Bien que plusieurs études in vivo et in vitro indiquent généralement que les effets de ces mixtures soient additifs (Gray et al., 2001; Payne et al., 2001; Payne et al., 2002; Silva et al., 2002; Hotchkiss et al., 2004; Brian et al., 2005; Gray et al., 2006; Howdeshell et al., 2007; Rider et al., 2008), il semble qu’ils le sont davantage, à savoir synergiques, puisque des composés mélangés à des concentrations inactives si testés seuls deviennent actifs lorsqu’ils sont mélangés sous forme de mixtures 35 Mise en situation du problème (Kortenkamp, 2008). Dans les études où une seule classe de PEs a été testée, on observe que ces derniers agissent soit comme des agonistes des oestrogènes, soit comme des antagonistes des androgènes, le rapport oestrogène/androgène étant le déterminant de l’effet final (Rivas et al., 2002). Le type d’administration des substances, la durée et l’âge à leur exposition sont d’autres facteurs qui influencent aussi les effets des PEs. C. Exemple du DDT 1. Structure et propriétés Le DDT est un insecticide organochloré qui, à température et pression normales, se présente sous forme de solide incolore hydrophobe. Synthétisé la première fois par Othmar Zeidler en 1874, le DDT fut produit massivement au début de la seconde guerre mondiale par Paul Hermann Müller et utilisé avec beaucoup de succès dans la lutte contre les moustiques transmettant le paludisme et le typhus ainsi que d'autres insectes vecteurs de maladies ou affectant les récoltes agricoles. Il faudra attendre les publications de Carson, rapportant que le DDT était cancérigène et empêchait la reproduction des oiseaux en amincissant la coquille de leurs œufs (1962), pour que l’utilisation de ce pesticide soit interdite dans les pays industrialisés au début des années ‘70. Entre-temps, après avoir constaté le déclin des balbuzards et autres grands oiseaux aux alentours de la rivière de Carman (1967), Cooley supposa un lien avec l'utilisation du DDT et lança alors une grande campagne nationale à travers les Etats-Unis contre son utilisation. Au cours des années ‘70 et ‘80, le DDT a été remplacé par des produits moins persistants et plus chers, mais de nos jours, il reste toujours très utilisé dans les pays tropicaux et/ou en voie de développement où l’O.M.S. le recommande en l’absence d’alternative pour lutter contre la mortalité due à la malaria. La contamination par le DDT continue via la consommation de nourriture (Key et Reeves, 1994; Kelce et al., 1995; Clark et al., 1998; Partsch et Sippel, 2001; Parent et al., 2003). Outre le principal isomère p,p’-DDT (Fig. 4) qui représente approximativement 80 % de la répartition de l’insecticide dans l’environnement, il existe également l’isomère o,p’DDT (Fig. 4) où l'un des atomes de chlore est déplacé autour du cycle benzénique en position ortho. Le DDT se comporte comme un agoniste des oestrogènes et/ou un antagoniste des androgènes par l’intermédiaire du sous-produit dichlorodiphénylchloroéthylène (DDE), son principal produit de décomposition. La demi-vie du DDT, qui se fixe et s’accumule dans de nombreux sols via les eaux de ruissellement et de percolation, est évaluée entre 2 et 15 ans: il s’agit donc d’un polluant organique persistant dont les lents processus de dégradation incluent 36 Mise en situation du problème la volatilisation et la biodégradation aérobie et anaérobie. Par contre, rapidement apidement dégradé par une exposition à la lumière (dont l’effet est inhibé par les substances humiques) et une augmentation du pH (Quan et al., al., 2005), le DDT est transformé en DDE, dont l’isomère p,p’p,p’ DDE (Fig. 4) est biologiquement ment plus actif (demi-vie (demi de 5-77 ans) que son congénère o,p’o,p’ DDE (Fig. 4).. Cependant, lorsque le DDT est répandu de façon intensive et chronique sur le sol, la concentration du DDE peut persister de façon inchangée pendant plus de 20 ans (Thomas et al., 2008). Figure 4: Représentations semi-développées développées des principaux isomères du DDT et du DDE. Ce puissant pesticide tue les moustiques et autres insectes cibles en ouvrant les canaux sodiques de leurs neurones,, ce qui les détruit instantanément, conduisant à des spasmes, puis à la mort. Bien que l’o,p’-DDT DDT ne soit pas l’isomère prédominant dans les préparations de DDT D utilisées comme insecticide, nous l’avons privilégié pour nos recherches in vivo pour diverses raisons: celui-ci ci a été le plus utilisé dans les travaux antérieurs (Gellert et al., al. 1974; Gladen et al., 2000; Diel et al.,, 2002; Tomiyama et al., 2003; Denham et al.,, 2005; Ouyang et al., 2005) et nous permet ainsi des comparaisons. En outre, il est plus oestrogénique et moins toxique que le p,p’-DDT (Heinrichs et al., al. 1971; Wrenn et al., 1971; Gellert et al.,, 1972; Faber et al., 1991). Enfin, dans notre expérience rience préalable in vitro, l’o,p’-DDT DDT s’est avéré plus rapidement actif que le p,p’-DDT, dès 1-22 h d’incubation d’incubat et à des doses plus faibles. 37 Mise en situation du problème 2. Effets chez l’Homme Avant les années 2000, peu d’études prouvaient que le DDT était toxique et pouvait avoir un effet néfaste chez les humains. Des études ont conclu que les taux tissulaires de DDT et DDE étaient plus élevés chez des malades atteints de cancer que pour ceux mourant d’autres maladies (Dacre et Jennings, 1970; Wasserman et al., 1976) mais selon d’autres auteurs, aucune relation de la sorte n’a pu être établie (Maier-Bode, 1960; Robinson et al., 1965; Hoffman et al., 1967). En 1993, Wolf a montré une corrélation significative entre la concentration des métabolites du DDT dans le sang et les risques de développer le cancer du sein chez la femme. Dans une cohorte de pêcheurs du Michigan, l'exposition au DDT de mères ingérant du poisson a été mesurée et l’âge à la puberté a été déterminé chez 151 filles: l’exposition in utero à des taux élevés de DDE est associée avec un âge à la ménarche avancé (Vasiliu et al., 2004). Chez des enfants de Caroline du Nord (316 filles et 278 garçons), aucune association significative entre une exposition au DDE et l’âge à la puberté n'a été trouvée. De même, aucun effet n’a été observé chez des garçons à la suite d’une exposition in utero au DDE (Gladen et al., 2000). En 2002 et 2003, 1196 paires mères-enfants ont systématiquement été recrutées dans 25 maternités à travers la Flandre: le taux de p,p’-DDE dans le sang de cordon ombilical ou plasmatique était mesurable dans presque tous les échantillons prélevés (Koppen et al., 2009). En Chine, une corrélation significative entre l’ingestion quotidienne et la concentration de DDT et ses métabolites dans le lait maternel de deux populations de Pékin et Shenyang a été déterminée: une tendance temporelle démontre une diminution du taux sérique de DDT parallèlement à une augmentation du rapport DDE/DDT (Tao et al., 2008). Récemment, Eskenazi et ses collègues (2009) ont rédigé une synthèse de 494 études publiées de 2003 à 2008 se focalisant sur les effets du DDT chez l’Homme, et ont rapporté que les restrictions d’utilisation du pesticide au cours des dernières décennies sont observables du point de vue de la diminution d’exposition humaine au DDT. Cependant, les concentrations sanguines de DDT et DDE étaient élevées chez les individus issus de pays où le DDT reste encore largement utilisé ou a seulement récemment été interdit. En outre, ils ont également constaté que l’exposition au DDT et/ou au DDE est associée à des effets néfastes tels que le cancer du sein, un risque accru de diabète, la diminution de la qualité du sperme et l’affectation du neuro-développement chez les enfants. 3. Effets d’insecticides chez les rongeurs Peu d’études expérimentales ont investigué les effets du DDT sur le système reproducteur des rongeurs. Mussi et son équipe (2005) ont observé une augmentation des taux 38 Mise en situation du problème des ERs dans le cerveau de souris mâles adultes qui ont été exposées à l’insecticide. D’autres ont montré que lorsque des souris en gestation (11-17èmes jours) sont nourries avec de l’o,p’DDT ou du méthoxychlor (MXC), les progénitures présentent une distance ano-génitale diminuée à la naissance (Palanza et al., 2001). Le MXC a été développé pour remplacer le DDT tout en gardant un spectre d’action similaire. Comparé au DDT, il est plus facilement excrété et s’accumule moins dans les sols (Kapoor et al., 1997). Par l’intermédiaire de son produit métabolite, l’hydroxyphényltrichloroéthane, il stimule l’activité oestrogénique en se liant aux ERs intracellulaires (Bulger et al., 1978a et 1978b). A la fin des années ’80, Gray Jr et ses collègues (1988 et 1989) ont rapporté que le MXC, administré durant le sevrage, cause un avancement de l’âge à l’OV et au premier oestrus. Une décennie plus tard, il a été montré qu’une exposition durant 3 jours post-natals (JPN 21-23) au MXC cause aussi un avancement de l’âge à l’OV ainsi qu’une diminution du nombre de cycle oestral régulier (Laws et al., 2000). L’équipe de Gray avait également observé que la longueur des cycles oestraux est augmentée jusqu’à ce qu’un oestrus permanent soit observé, après une administration de MXC (Gray Jr et al., 1988; Gray Jr et al., 1989). Ingéré oralement ou injecté en sous-cutané (JPN 21-23), le MXC provoque une augmentation du poids utérin (Odum et al., 1997; Laws et al., 2000). A noter également que le MXC réduit le taux des transcrits de GnRH indépendamment des ERs, mais stimule la sécrétion de GnRH modulée par les ERs sur la lignée GT1-7 de neurones à GnRH immortalisés (Roy et al., 1999; Gore, 2002). Largement utilisé dans les pays développés, le lindane (hexachlorocyclohexane) est très persistant dans l’environnement et s’accumule tout au long de la chaîne alimentaire. Un traitement en présence de ce pesticide est suivi de périodes d’oestrus ou de dioestrus permanents. Lorsqu’il est administré aux JPN 21-110 ou 125, l’âge à l’OV est retardé (Cooper et al., 1989). Dans la même étude, il a également été observé que le lindane réduit le volume de l’hypophyse, induit un taux élevé de FSH et faible de LH, et cause une diminution du poids utérin ainsi qu’une perturbation du cycle ovarien. D. Relations entre exposition pré/post-natale aux PEs et timing pubertaire chez l’Homme Tandis que la majorité des PEs étudiés chez les filles induisent une programmation normale ou précoce (Tableau 2), les dioxines et les phytoestrogènes causent un retard du développement des seins (Den Hond et al., 2002; Leijs et al., 2008; Wolff et al., 2008). Cependant, les auteurs de ces études ne constatèrent pas que l’âge à la ménarche était affecté 39 Mise en situation du problème par ces deux types de substances (Den Hond et al., 2002; Leijs et al., 2008), constat qui est confirmé dans d’autres études (Strom et al., 2001; Warner et al., 2004). En revanche, la distinction entre une programmation normale de la thélarche et une ménarche précoce a été rapportée suite à une exposition aux PBBs, soulignant l’importance d’étudier des signes impliquant probablement plusieurs mécanismes à différentes périodes du processus pubertaire (Blanck et al., 2000). A l’exception d’une étude (Denham et al., 2005) mentionnant une ménarche précoce après exposition aux PCBs, ces derniers ont été majoritairement associés à une période normale de développement des seins et d’apparition des règles (Gladen et al., 2000; Den Hond et al., 2002; Vasiliu et al., 2004; Yang et al., 2005; Wolff et al., 2008). Une thélarche (Krstevska-Konstantinova et al., 2001) et une ménarche (Vasiliu et al., 2004; Ouyang et al., 2005) précoces ont été rapportées à la suite d’une exposition au DDT et/ou au DDE tandis que d’autres auteurs ont rapporté une période pubertaire normale (Gladen et al., 2000; Denham et al., 2005; Wolff et al., 2008). Chez les guenons, Golub et ses collègues (2003) ont observé une croissance retardée des tétons et une courte phase folliculaire après l’exposition au MXC. Prises ensembles, toutes les études précitées ne permettent pas de démontrer significativement des effets différents selon la période d’exposition pré- ou postnatale aux PEs. Quelques études (Tableau 3) suggèrent qu’il n’y a pas d’effet du DDT ou du DDE, ni des dioxines (Gladen et al., 2000; Den Hond et al., 2002) chez les garçons. Quant à l’exposition aux PCBs, elle est associée à une programmation normale (Gladen et al., 2000; Mol et al., 2002) ou retardée (Den Hond et al., 2002; Guo et al., 2004) du développement pubertaire mâle. Il est à noter qu’aucune situation de puberté avancée n’est rapportée chez les garçons, à l’inverse des filles. Des données plus abondantes ont été obtenues chez les filles (Tableau 2) que chez les garçons (Tableau 3), ce qui pourrait impliquer des erreurs méthodologiques puisqu’un signe précis de maturation est fourni par l’âge à la ménarche chez les filles qui expérimentent plus sérieusement l’établissement de la puberté avec le développement des seins, à l’opposé d’une augmentation moins perceptible du volume testiculaire chez les garçons (Parent et al., 2003). 40 Mise en situation du problème Tableau 2: Variations de la période pubertaire chez la jeune fille en fonction d’une exposition pré- et/ou post-natale aux PEs. Période pubertaire Exposition DDE (+ DDT) Précoce Prénatale Post-natale Ménarche (Vasiliu et al., 2004) Ménarche (Ouyang et al., 2005) B2 (KrstevskaKonstantinova et al., 2001) Normale Prénatale Post-natale Ménarche (Denham et al., 2005) et B2 (Wolff et al., 2008) Ménarche et B3 (Gladen et al., 2000) Retardée Prénatale Singe (Golub et al., 2003) MXC PBBs Post-natale Ménarche (Blanck et al., 2000) PCBs Ménarche (Denham et al., 2005) Dioxines Phtalates B2 (Blanck et al., 2000) Ménarche Ménarche et B2 (Vasiliu (Den Hond et al., 2004; et al., 2002); Yang B2 (Wolff et al., 2005) et al., 2008) Ménarche et B3 (Gladen et al., 2000) Ménarche (Leijs Ménarche et al., 2008; (Den Hond Warner et al., 2002) et al., 2004) B2 (Leijs et al., 2008) B2 (Den Hond et al., 2002) B2 (Colon et al., 2000) B2 (Wolff et al., 2008) DDE: dichlorodiphénylchloroéthylène; DDT: dichlorodiphényltrichloroéthane; MXC: méthoxychlor; PBBs: biphényls polybromés; PCBs: biphényls polychlorés; B2-B3: stades 2 et 3 de Tanner du développement des seins. Phytoestrogènes Ménarche (Strom et al., 2001) 41 Mise en situation du problème Tableau 3: Variations de la période pubertaire chez le jeune garçon en fonction d’une exposition pré- et/ou post-natale aux PEs. Période pubertaire Exposition DDE (+ DDT) Précoce Prénatale Post-natale Normale Prénatale Post-natale Retardée Prénatale Post-natale G3-G5 et VPT (Gladen et al., 2000) G3-G5 et VPT Longueur (Gladen et al., 2000) P et G du pénis (Den Hond G et VT PCBs (Guo et al., 2002) (Mol et al., 2004) et al., 2002) P et G (Den Hond Dioxines et al., 2002) DDE: dichlorodiphénylchloroéthylène; DDT: dichlorodiphényltrichloroéthane; PCBs: biphényls polychlorés; G: stade de Tanner du développement génital; P: stade de Tanner du développement de pilosité pubienne; VPT: vélocité du pic de taille; VT: volume testiculaire. Dans le cadre d’une étude clinique menée par le Docteur Marina KrstevskaKonstantinova (2001) au sein de notre unité de recherche, l’hypothèse selon laquelle la migration d’un pays étranger sous-développé vers la Belgique (pays occidental industrialisé) pourrait résulter en un changement d’exposition aux PEs, et par conséquent causer une précocité sexuelle, fut émise. Le sérum de 145 enfants migrants (135 filles et 10 garçons), pris en charge pour une puberté précoce et traités par des agonistes de la GnRH en Belgique, fut collecté pour la détection de huit pesticides organochlorés. Les analyses réalisées par le Professeur Corinne Charlier révélèrent la présence de p,p’-DDE, un métabolite et marqueur d’exposition au p,p’-DDT (insecticide encore largement utilisé dans les pays en voie de développement), à une concentration sérique 10 fois plus élevée que le seuil de détection chez 18 % (26 enfants: 15 adoptés et 11 non adoptés) des patients migrants, tandis que le taux de ce résidu était en dessous de cette limite chez 13 des 15 patients natifs Belges (KrstevskaKonstantinova et al., 2001). Par ailleurs, d’une part, le taux de p,p’-DDE chez ces enfants migrants était d’autant plus élevé qu’ils avaient séjourné longtemps dans leur pays d’origine et, d’autre part, ce taux diminuait de façon d’autant plus significative que le temps écoulé depuis leur arrivée en Belgique était important (Parent et al., 2003). Ces observations nous amenèrent à notre modèle expérimental d’incubation statique d’explants hypothalamiques de jeunes rats femelles pour étudier l’influence des PEs dans l’apparition de la puberté centrale et sur le système de reproduction: les travaux réalisés par le Docteur Valérie Matagne ont montré que l’E2 entraîne une accélération de la fréquence de sécrétion pulsatile de GnRH uniquement chez les rates immatures de 5 et 15 jours (2004), via un mécanisme inhérent à la différenciation sexuelle périnatale du cerveau. Il était ainsi prouvé que l’E2 stimule 42 Mise en situation du problème rapidement une augmentation de la fréquence pulsatile de GnRH chez le rat femelle immature, ure, contribuant ainsi à l’apparition d’une précocité sexuelle. Comme illustré dans la Fig. 5, 5, l’hypothèse selon laquelle la maturation hypothalamique pourrait être stimulée tandis que les gonadotrophines hypophysaires seraient inhibées via un effet de rétrocontrôle contrôle négatif durant l’exposition à un signal environnemental oestrogénique, a été émise. Ces évènements préviendraient toute manifestation de maturation centrale et seule la puberté périphérique pér pourrait être alors observée. La migration causerait un retrait des PEs et l’inhibition hypophysaire conséquente disparaîtrait, permettant la maturation hypothalamique pour entraîner la cascade hypophyso-ovarienne hypophyso ovarienne et induire la puberté centrale. Figure 5: Représentation schématique du mécanisme potentiel de précocité sexuelle après une exposition transitoire à l’insecticide oestrogénique DDT chez des jeunes filles migrantes issues de l’adoption internationale. Durant l'exposition au DDT, la maturation neuroendocrinienne neuroendocrinienne est déclenchée mais non traduite par une stimulation ovarienne, ne, à cause du rétrocontrôle rétrocontrôle négatif (inhibiteur) actionné par les gonadotrophines hypophysaires. Après migration dans un environnement enviro exempt de DDT, le rétrocontrôle contrôle inhibiteur disparaît rapidement et la maturation centrale est exprimée, menant à la puberté centrale. 43 Mise en situation du problème E. Implication des facteurs environnementaux, autres que les PEs, dans la puberté précoce Rappelons d’abord que les critères internationaux retenus pour définir une puberté précoce chez les jeunes filles sont l’apparition des seins (thélarche) avant l’âge de 8 ans et/ou des règles (ménarche) avant celui de 10 ans. Il y a une trentaine d’années, Frisch et McArthur ont suggéré qu’une masse graisseuse critique doit être atteinte pour permettre l’apparition des premières règles (1974). Par la suite, chez des adolescentes anorexiques (Pugliese et al., 1983) ainsi que chez des gymnastes soumises à un entraînement intensif avec des contraintes diététiques (Theintz, 1994), la fonction hypothalamo-hypophyso-ovarienne était inhibée, renforçant l’hypothèse selon laquelle le régime alimentaire influence le timing pubertaire. En ce qui concerne une éventuelle influence saisonnière, quelques études ont démontré que la ménarche débute plus fréquemment en hiver qu’en été chez les filles normales (Bojlen et Bentzon, 1974; Albright et al., 1990; Cohen, 1993), suggérant un effet inhibiteur de l’exposition à la lumière. Pourtant, d’autres auteurs ont indiqué que, dans les zones arctiques, les mois sombres d’hiver sont associés à une fonction hypophyso-gonadique réduite et un faible taux de conception (Rojansky et al., 1992). En outre, il est également probable que la privation psycho-sociale puisse aussi jouer un rôle dans ces conditions particulières (Dominé et al., 2006). Plusieurs études ont mis en lumière une incidence élevée de pubertés précoces parmi des enfants migrants, dont ceux issus d’une adoption internationale, dans différents pays d’Europe occidentale, parmi lesquels la Suède, le Danemark, les Pays-Bas, l’Italie, la France et la Belgique (Proos et al., 1991). Le risque que ces enfants développent une puberté précoce a été estimé 15 à 20 fois supérieur par rapport à leurs congénères autochtones au Danemark (Teilmann et al., 2006; Aksglaede et al., 2009) et même jusqu’à 80 fois en Belgique (Roelants et al., 2009). Il y a une dizaine d’années déjà, deux études américaines de grande ampleur ont également fourni la preuve d’un établissement précoce de la puberté (Herman-Giddens et al., 1997; Lee et al., 2001). Des signes précurseurs tels que l’âge à la thélarche sont davantage affectés que celui à la ménarche. Les évènements pubertaires initiaux ont tendance à apparaître plus précocement tandis que les signes finaux semblent être observés à des âges plus élevés (Papadimitriou et al., 2008; Roelants et al., 2009). Puisque ces changements pubertaires sont concomitants avec l’épidémie d’obésité observée aux Etats-Unis, l’hypothèse d’une implication pathophysiologique de la masse graisseuse, probablement via l’action de la leptine, due à des évolutions sanitaire et nutritionnelle/alimentaire amplifiées par le processus 44 Mise en situation du problème d’industrialisation, a été émise (Herman-Giddens et al., 1997; Lee et al., 2001; Himes, 2006). Cependant, les récents changements pubertaires observés au Danemark ne sont pas liés à des variations du tissu adipeux (Aksglaede et al., 2009), laissant penser que d’autres facteurs tels les PEs pourraient être impliqués (Teilmann et al., 2002). L’étude clinique menée par Krstevska-Konstantinova (2001), décrite ci-avant, démontre que le DDT, par le biais de son métabolite DDE qui présente une très longue demi-vie, peut être un candidat à l’origine de ce phénomène, mais de nombreux autres PEs peuvent également être impliqués et induire une précocité pubertaire périphérique. 45 Mise en situation du problème III. Objectifs du travail III. OBJECTIFS DU TRAVAIL Comme décrit précédemment dans l’introduction de ce travail, l’hypothalamus est la région du cerveau qui, après intégration des messages centraux et périphériques, active le réseau des neurones à GnRH, dont la sécrétion stimulera le système hypophyso-gonadique. Cette stimulation mènera au déclenchement de la puberté et à l’installation des fonctions de reproduction. Ce travail se focalise essentiellement sur les effets oestrogéniques des PEs, particulièrement ceux du DDT, sur la sécrétion de GnRH, et plus généralement sur l’axe hypothalamo-hypophysaire et ses conséquences sur la maturation sexuelle chez le rat femelle immature. Rappelons brièvement le contexte et la justification de notre travail: des recherches cliniques portant sur la puberté précoce chez les enfants, essentiellement des filles, de l’adoption internationale en Belgique avaient mis en évidence, dans le sérum de ces migrantes, un résidu de l’insecticide DDT, à savoir le DDE (Krstevska-Konstantinova et al., 2001; Parent et al., 2003) dont les propriétés anti-androgéniques sont établies, reflétant ainsi indirectement une exposition antérieure au DDT, lui-même oestrogénique. L’élucidation des effets oestrogéniques versus anti-androgéniques résiderait donc dans la balance additionnelle des deux composés, mais également dans les concentrations respectives de l’un et l’autre en fonction du temps après l’exposition (Rasier et al., 2008). Par ailleurs, des travaux réalisés au sein du laboratoire avaient démontré les effets stimulants de l’E2 sur la sécrétion pulsatile de GnRH chez le rat femelle immature et précisé certains mécanismes de récepteurs impliqués dans ces effets (Matagne et al., 2004). L’ensemble de ces données nous a naturellement conduit à rechercher si, et par quel(s) mécanisme(s), le DDT pouvait influencer la sécrétion de GnRH ainsi que la maturation de la fonction hypophyso-ovarienne chez le rat femelle. Les chapitres I et II de ce mémoire résument l’analyse de la littérature et l’hypothèse de travail sur lesquelles nos recherches se sont construites, et qui ont fait l’objet de deux publications de revue (Rasier et al., 2006; Bourguignon et al., 2010). Nous avons d’abord comparé les processus de maturation hypothalamo-hypophyso-gonadique chez l’humain et les rongeurs, qui sont notre modèle expérimental. Nous avons ensuite distingué les mécanismes de puberté centrale (à savoir dépendante physiologiquement d’une activation de la sécrétion de GnRH et des gonadotrophines) et périphérique (non physiologique et indépendante de cette activation hypothalamo-hypophysaire). En effet, les PEs pourraient agir selon ces deux modalités, stimulant à la fois les maturations périphérique et hypothalamique. Enfin, nous 46 Objectifs du travail avons revu les effets des principaux types de PEs sur l’axe hypothalamo-hypophysogonadique, la maturation sexuelle et le tractus reproducteur. Dans la mesure où les observations cliniques de puberté précoce ont été effectuées chez des sujets exposés précédemment au PE qu’est le DDT et ensuite soustraits à cette exposition du fait de leur migration, nous avons postulé que l’insecticide pouvait, par un effet oestrogénique, stimuler la maturation hypothalamique sans que cet effet ne se traduise au niveau hypophysaire tant que l’individu restait exposé au PE. Il existe une grande sensibilité hypophysaire au rétrocontrôle inhibiteur chez l’individu immature et cela pourrait ainsi expliquer que l’âge pubertaire ne soit pas avancé, voire même qu’il soit retardé chez les sujets qui restent exposés à ce PE. Remarquons toutefois qu’une telle hypothèse n’a pas été vérifiée jusqu’ici car nous ne disposons pas de données sur la période pubertaire en rapport avec l’exposition aux PEs dans les pays d’origine des enfants migrants. Suite à la migration dans un environnement moins ou non exposant à ce PE, le rétrocontrôle inhibiteur peut diminuer, laissant alors la maturation avancée des centres neuroendocriniens s’exprimer par une puberté centrale. L’objectif de notre travail est donc de modéliser, chez le rat femelle, les effets précoces d’une exposition transitoire au DDT afin de vérifier l’hypothèse que nous venons d’énoncer. Dans la première partie (chapitre V) qui rapporte nos travaux personnels, nous avons étudié, en comparaison avec l’E2, les effets d’une administration de différentes doses de DDT, transitoire ou prolongée par voie sous-cutanée, chez le rat femelle immature. Dans ces conditions, l’effet sur la maturation sexuelle in vivo, la sécrétion de LH en réponse à l’injection de GnRH ainsi que les concentrations sériques des différents isomères et dérivés du DDT ont été mesurés. L’effet sur la sécrétion hypothalamo-hypophysaire a également été étudié ex vivo dans les mêmes conditions. Dans la deuxième partie (chapitre VI) dans laquelle la suite de nos résultats est rapportée, nous nous sommes attachés à préciser in vitro le(s) mécanisme(s) impliqué(s) dans les effets neuroendocriniens obtenus précédemment in vivo. Nous avons notamment étudié la façon dont le DDT et ses dérivés peuvent mimer les effets rapides de l’E2 sur la réponse sécrétoire de GnRH. Nous y avons également investigué in vitro les types de récepteurs et le(s) mécanisme(s) d’action impliqué(s) dans les effets des PEs sur la sécrétion de GnRH tant dans sa forme spontanément pulsatile que sur la réponse déclenchée par le glutamate. La discussion générale (chapitre VII) intègre nos différentes observations quant à l’influence des PEs sur la sécrétion de GnRH (fréquence et amplitude). Parmi les aspects qui donnent matière à discussion, nous envisagerons si les neurones à GnRH sont la cible directe 47 Objectifs du travail des PEs ou si d’autres neurones, voire les cellules gliales, sont impliqués. La période critique et les autres paramètres d’exposition seront également discutés. Nous tentons de conclure quant à l’hypothèse de travail formulée initialement et nous dégagerons la contribution de nos travaux pour la progression de la compréhension des mécanismes d’action des PEs dans le déclenchement de la sécrétion de GnRH. Pour terminer, nous évoquerons quelques pistes qui restent ouvertes pour des recherches ultérieures. 48 Objectifs du travail IV. Méthodologie IV. METHODOLOGIE A. Incubation d’explants hypothalamiques Après décapitation, les hypothalami rétrochiasmatiques de rats femelles âgés de 1 à 50 jours ont rapidement été prélevés. Pour ce faire, deux incisions sagittales ont d’abord été effectuées au niveau des sillons hypothalamiques latéraux. Ensuite, une première incision transversale antérieure a été réalisée en arrière de la limite caudale du chiasma optique, et une seconde au niveau de la limite antérieure des corps mamillaires. Finalement, une section frontale oblique, d’avant en arrière et de haut en bas, a été effectuée à 2-3 mm de profondeur, au niveau de la commissure antérieure. Ces explants ne contiennent, en principe, que des fibres nerveuses de neurones à GnRH et leurs terminaisons, ces dernières étant localisées dans l’éminence médiane, ainsi que des cellules gliales. L’aire préoptique n’étant pas prélevée, les péricaryons de neurones à GnRH ne sont, en principe, pas présents dans ces explants (Fig. 6). En effet, une étude menée au sein de notre laboratoire a montré, par immuno-histochimie, que l’explant rétrochiasmatique ne contenait aucun corps cellulaire identifiable de neurone à GnRH. En outre, une transcription inverse suivie d’une réaction de polymérisation en chaîne semi-quantitative a démontré que le rapport des ARNm codant pour la GnRH, présents dans l’explant rétrochiasmatique et l’explant total comprenant l’aire préoptique, était de 1:600 (Purnelle et al., 1997). Un argument supplémentaire repose sur l’étude des récepteurs NMDA: les neurones à GnRH issus des lignées immortalisées GT1-1 et GT1-7 expriment le récepteur NMDA (Urbanski et al., 1994; Mahesh et al., 1999), ce qui donne à penser que celui-ci est encodé dans les péricaryons de ces neurones. Or, des oligonucléotides anti-sens ciblant les ARNm de la sous-unité 2A des récepteurs NMDA (NR-2A) n’affectaient la sécrétion de GnRH, en réponse au NMDA, que s’ils étaient incubés avec l’explant total uniquement, suggérant que ces récepteurs étaient encodés dans les péricaryons présents dans l’aire préoptique mais absents dans l’explant rétrochiasmatique (Bourguignon et al., 1997). On peut, dès lors, penser que l’explant étudié ne contient que très peu, voire aucun péricaryon de neurone à GnRH. Par ailleurs, des études plus récentes ont montré que les stéroïdes sexuels modulent, de façon directe et localisation-dépendante, l’expression de kiss-1 dans le cerveau antérieur (Gottsch et al., 2006): ils inhibent son expression dans le noyau arqué, suggérant que les neurones à kisspeptine servent d’éléments intermédiaires pour réguler le rétrocontrôle négatif de la sécrétion de GnRH; en revanche, dans le noyau antéro-ventral, les stéroïdes sexuels stimulent l’expression de kiss-1, ce qui laisse à penser que ces neurones pourraient 49 Méthodologie jouer un rôle dans le rétrocontrôle positif (pic préovulatoire de LH chez la femelle et comportement sexuel chez le mâle) dans cette région du cerveau (Smith et al., 2006; Roa et Tena-Sempere, 2007) non prélevée dans les expériences que nous avons réalisées. On mentionnera que nous avons étudié les effets du DDT in vitro mais également ex vivo et que dans ce deuxième cas de figure, toutes les structures intra- et extra-hypothalamiques potentiellement impliquées ont été exposées au DDT. Le mécanisme d’action qui induit la sécrétion de GnRH observée dans notre modèle d’incubation d’explants hypothalamiques rétrochiasmatiques sera discuté dans le chapitre VII de ce travail. NHA ERC CA NVM NA CM APOM OVLT EM CO NSC Figure 6: Représentation schématique d’une coupe sagittale du cerveau de rat, incluse la région hypothalamique prélevée (encadré vert). APOM: aire préoptique médiane; CA: commissure antérieure; CM: corps mamillaire; CO: chiasma optique; EM: éminence médiane; ERC: explant rétrochiasmatique; NA: noyau arqué; NHA: noyau hypothalamique antérieur; NSC: noyau suprachiasmatique; NVM: noyau ventro-médian; OVLT: organum vasculosum laminae terminalis. Une fois prélevés, les explants ont été incubés individuellement à l’aide d’un système statique dans une atmosphère de 95 % en O2 et 5 % en CO2 durant une période de 4 à 6 h. Quinze explants au maximum, dans chaque expérience, étaient incubés dans 500 µl de milieu «minimum essential medium» enrichi en glucose, en magnésium et en glycine pour atteindre des concentrations respectives de 2,5.10-2 M, 10-3 M et 10-8 M. Des travaux antérieurs réalisés au sein du laboratoire ont montré que ces concentrations constituaient les conditions optimales pour observer une sécrétion pulsatile de GnRH in vitro. A des concentrations plus 50 Méthodologie élevées, le magnésium agit comme antagoniste non compétitif des récepteurs NMDA et inhibe la sécrétion de GnRH, aussi bien que l’absence de glycine. En effet, cette dernière est requise comme agoniste d’un site non allostérique de celui du glutamate sur ces mêmes récepteurs. Comme déjà mentionné dans l’introduction de ce travail, un rétrocontrôle inhibiteur de la sécrétion de GnRH a été observé dans notre modèle expérimental. Il est modulé par la GnRH1-5, produit de dégradation de la GnRH par la prolyl-endopeptidase hypothalamique (Yamanaka et al., 1999). C’est la raison pour laquelle le milieu a également été enrichi en bacitracine (2.10-5 M), un inhibiteur de l’enzyme précitée. Le milieu a ensuite été prélevé et renouvelé toutes les 7,5 min, et les échantillons ont été congelés à -20°C jusqu’à ce que la concentration de GnRH soit mesurée dans chaque fraction à l’aide d’un dosage radioimmunologique ultra-sensible (Fig. 7). 95 % d’O2 + 5 % de CO2 MEM + glucose (25 mM) + Mg2+ (1 mM) + glycine (10 nM) + bacitracine (20 mM) Explant hypothalamique H2O à 37°C Milieu renouvelé toutes les 7,5 min Stockage à -20°C jusqu’à dosage radio-immunologique des échantillons Figure 7: Représentation schématique de l’incubation des explants hypothalamiques et du prélèvement du milieu contenant la GnRH. Ce modèle d’incubation d’explants hypothalamiques permet d’étudier deux paramètres de la sécrétion de GnRH in vitro. Le premier est la sécrétion pulsatile spontanée qui permet de quantifier le niveau basal de sécrétion de GnRH (bien qu’il soit régulièrement inférieur au seuil de détection, à savoir 5 pg/fraction de 7,5 min) ainsi que la fréquence et l’amplitude des à-coups sécrétoires de GnRH (Bourguignon et Franchimont, 1984). Ces différentes composantes sécrétoires peuvent être étudiées en conditions contrôles et en présence d’agents divers (oestrogéniques, antagonistes ou inhibiteurs dans le cadre de ce travail) maintenus dans le milieu d’incubation pendant la durée totale de l’expérience (Fig. 8). Dans des études réalisées antérieurement au sein du laboratoire, il s’est avéré que la fréquence était le plus 51 Méthodologie souvent affectée par l’âge de l’animal, entre la naissance et 25 jours (Matagne et al., 2004). Ainsi, ce paramètre est le plus important dans nos travaux et se décline en terme d’IP. En revanche, le niveau de sécrétion basale et l’amplitude des à-coups sécrétoires varient rarement, à l’exception des explants étudiés à différentes phases du cycle oestral: l’amplitude est augmentée l’après-midi du proestrus (Parent et al., 2000). Le second paramètre, la réponse sécrétoire induite, est mesurable grâce à la capacité qu’a l’éminence médiane de répondre à des sécrétagogues (Fig. 8), à savoir le glutamate pour ce travail (Bourguignon et al., 1995; Purnelle et al., 1997). Cet acide aminé, utilisé à une concentration de 10-2 M, a été ajouté au milieu d’incubation pendant 7,5 min toutes les 37,5 min. Nos travaux antérieurs ont montré que la concentration de glutamate requise était très élevée, comme dans les autres études menées avec des explants où les concentrations nécessaires sont supérieures à celles utilisées en culture monocellulaire de neurones à GnRH (Mahachoklertwattana et al., 1994; Spergel et al., 1995). Nos conditions posent donc la question des effets potentiellement toxiques de cet acide aminé excitateur: la concentration utilisée est considérée comme non toxique puisqu’une réponse sécrétoire de GnRH similaire peut être obtenue et maintenue inchangée durant une période de 4 à 6 h d’incubation (Bourguignon et al., 1989b; Matagne et al., 2005). Afin d’éviter le biais de la libération initiale de substances diverses dans le milieu, y compris la GnRH, secondairement à la dissection de l’explant et le biais du rétrocontrôle inhibiteur qui peut en résulter, les explants sont incubés en MEM seul pendant 30 min avant la première stimulation par le glutamate. Figure 8: Représentation de profils de sécrétion pulsatile spontanée (gauche) et de réponse sécrétoire de GnRH induite par du glutamate (droite) à partir d’incubation d’explants hypothalamiques de rats âgés de 15 jours. 52 Méthodologie B. Dosage de la GnRH Le dosage radio-immunologique est une méthode précise d’analyse compétitive basée sur la réaction de deux antigènes (Ag) identiques, l’un étant marqué par un radio-isotope, avec leur anti-sérum (Berson et Yalow, 1968). Précisément, le dosage de la GnRH (Dluzen et Ramirez, 1981) repose sur la compétition entre la GnRH marquée (GnRH* ou traceur) à l’125I par la méthode de Greenwood et la GnRH non marquée (GnRH° ou hormone froide) pour l’anticorps (Ac) hautement spécifique CR11-B81 (dilution finale 1:80000) généreusement fourni par le Dr V.D. Ramirez (Urbana, IL, U.S.A.). La réaction peut être représentée comme suit: GnRH* + GnRH° + Ac GnRH*Ac + GnRH°Ac Lorsque la GnRH* et l’Ac sont ajoutés en quantité connue et constante, la GnRH° détermine la quantité de GnRH*Ac. Une courbe standard représentant la relation entre le pourcentage de GnRH*Ac en fonction de la concentration en GnRH° ajoutée dans le milieu est établie. Pour ce dosage, la gamme de concentrations s’étend de 0,5 à 125 pg par 100 µl de milieu. La séparation de la GnRH* et du complexe GnRH*Ac est réalisée par immunoprécipitation. Le principe consiste à précipiter le complexe Ag-Ac par l’ajout, au milieu, d’Ac anti-γ-globulines dirigés contre les γ-globulines de l’animal utilisé pour produire l’Ac primaire. L’Ac polyclonal, pour sa part, a été produit chez le lapin et sa précipitation a été obtenue par un Ac anti-γ-globuline de lapin préparé chez le mouton (Ac secondaire). Brièvement, le dosage de la GnRH se déroule en cinq étapes: - pré-incubation pendant 16-18 h à 4°C de 100 µl de milieu en présence de l’Ac primaire; - incubation pendant 16-18 h à 4°C en présence de la GnRH* et du sérum (dilution 1:100) de lapin normal; - précipitation du complexe Ag-Ac par immuno-précipitation (polyéthylène glycol 6000 + Ac secondaire, dilution 1:200) pendant 20 min à température ambiante; - centrifugation (3300 tours/min) des échantillons pendant 20 min à 4°C; - décantation des échantillons et comptage du précipité au moyen d’un compteur γ. Deux mesures ont été réalisées à partir de chaque échantillon. Les coefficients de variation intra- et inter-«assay» sont respectivement de 14 % et 18 % (Bourguignon et al., 1989a; Bourguignon et al., 1989b). Le seuil de détection est de 5 pg/fraction de 500 µl prélevée toutes les 7,5 min. 53 Méthodologie C. Dosage de la LH Les concentrations sériques de LH ont été mesurées en conditions basales et après stimulation à la GnRH. L’intervalle de 30 min a été choisi sur base d’études rapportées par Ramaley (1982) et Tena-Sempere et al. (2004), qui indiquaient un pic de sécrétion de LH après cet intervalle. Après une période de 2 h d’incubation à température ordinaire pour permettre la coagulation, le sang collecté est centrifugé durant 5 min à 2000 g. Le sérum est alors récupéré et la concentration de LH mesurée en double dans un volume de 100 µl selon une méthode utilisant un double Ac et des réactifs généreusement fournis par l’Institut National de la Santé (N.I.H., U.S.A). La LH1-8 de rat a été marquée à l’125I par la méthode de la chloramine-T. Les coefficients de variation intra- et inter-«assay» étaient respectivement de 7 % et 9 %, et le seuil de détection de 5 ng/ml de sérum. D. Dosage des isomères du DDT et ses métabolites Cette partie expérimentale du travail a été réalisée en collaboration avec le Laboratoire de Toxicologie Clinique et Environnementale du Professeur Corinne Charlier au Centre Hospitalier Universitaire de Liège. L’identification et la quantification des isomères o,p’-DDT et p,p’-DDT ainsi que de leurs molécules dérivées (o,p’-DDE et p,p’-DDE) sériques ont été réalisées au moyen d’un chromatographe en phase gazeuse couplé à un spectromètre de masse. La préparation des échantillons a nécessité une extraction liquide-liquide suivie d’une extraction en phase solide. L’éluat était évaporé jusqu’à sec, reconstitué avec de l’hexane et injecté dans le chromatographe. Les échantillons standards de référence des quatre isomères ont été fournis par la firme Dr Ehrenstorfer (Augsburg, Allemagne) et l’aldrine a été utilisée comme standard interne. La limite de quantification valait 10 fois la déviation standard des résultats de l’échantillon blanc, à savoir 0,5 ppb pour tous les isomères. Les coefficients de variation étaient respectivement de 7,1 %, 7,7 %, 6,1 % et 8,2 % pour l’o,p’-DDT, le p,p’DDT, l’o,p’-DDE et le p,p’-DDE. La limite de détection était de 1 ng/ml de sérum (Charlier et Plomteux, 2002). Etant donné la distribution logarithme-normale des valeurs mesurées, les changements de concentrations sériques d’o,p’-DDT ont été comparés après une transformation logarithmique, puis la moyenne géométrique a été calculée et les données ont été présentées selon une échelle logarithmique. 54 Méthodologie E. Détermination des phases du cycle oestral Les animaux étaient examinés quotidiennement pour constater la perforation de la membrane vaginale et déterminer ainsi l’âge à l’OV. Une fois cet évènement observé, des frottis vaginaux étaient réalisés l’après-midi de chaque jour jusqu’au JPN 60. En collaboration avec le Département d’Anatomie et de Pathologie du Professeur Jacques Boniver au Centre Hospitalier Universitaire de Liège, les coupes sur lesquelles avaient été étalés ces frottis vaginaux, étaient colorées au moyen de la méthode Papanicolaou afin de déterminer la périodicité du cycle oestral. L’âge au premier oestrus était déterminé lorsque les frottis vaginaux présentaient des cellules cornées suivant une phase pro-oestrale, cette dernière étant caractérisée à la fois par la présence de cellules stratifiées et cornées (Ojeda et Urbanski, 1994). F. Justification du choix de l’o,p’-DDT Lorsque les explants hypothalamiques étaient incubés in vitro en conditions contrôles, l’IP de GnRH ne variait pas avec le temps (Fig. 9). Durant une incubation continue de 4 h en présence d’E2 à 10-7 M, l’IP de GnRH était significativement réduit après 1–2 h et davantage après 3–4 h. Cet effet dépendait directement de la concentration d’E2 et de son temps d’incubation: à la concentration de 10-8 M d’E2, l’IP restait inchangé après 1–2 h et diminuait significativement après 3–4 h; à 10-9 M, l’E2 entraînait une réduction significative après 5–6 h seulement. Les deux isomères actifs du DDT induisaient également une réduction de l’IP de GnRH, directement dépendante de la concentration et du temps d’incubation, qui était significative après 3–4 h à 10-5 M. A une concentration de 10-4 M, les deux isomères montraient un effet davantage précoce et qui était également plus important après 3–4 h. Testé à 10-6 M, le p,p’-DDT n’avait pas d’effet durant une incubation de 6 h tandis que l’o,p’-DDT causait un effet déjà significatif, mais seulement après 5–6 h. Ce résultat significatif obtenu avec l’isomère o,p’-DDT a justifié son utilisation dans toutes les expériences réalisées en présence de l’insecticide. Aucun effet n’était observé avec le p,p’-DDE à des concentrations similaires (Fig. 9). Les données disponibles dans la littérature avaient souvent été obtenues avec l’o,p’-DDT et nous donnaient un argument supplémentaire pour l’utilisation de cet isomère afin de pouvoir intégrer nos observations avec celles effectuées antérieurement. 55 Méthodologie 70 1-2 h d’incubation 3-4 h d’incubation IP de GnRH (min) 65 5-6 h d’incubation 60 a b 55 a b 50 a b a b a a b a a a b a b 45 40 10-9 CONTRÔLE 10-8 10-7 E2 10-6 10-5 10-4 o,p’-DDT a b 10-6 10-5 10-4 p,p’-DDT 10-6 10-5 10-4 M p,p’-DDE Figure 9: Effets de l’E2 (n=8-13), des isomères du DDT (n=4-6) et du p,p’-DDE (n=5-9) in vitro sur la fréquence de sécrétion pulsatile de GnRH (n=19 pour les contrôles) à partir d’explants hypothalamiques obtenus chez des rats femelles âgés de 15 jours. Les données sont calculées en fonction du temps (2 ou 3 périodes de 2 h consécutives) d’incubation in vitro. a: p<0,05 versus contrôle; b: p<0,05 versus données obtenues durant les 2 premières heures d’incubation. G. Statistiques La survenue d’à-coups sécrétoires significatifs de GnRH a été mesurée au moyen du logiciel PULSAR (Merriam et Wachter, 1982; Bourguignon et al., 1987). L’IP de GnRH a été calculé comme étant le temps entre deux à-coups sécrétoires successifs de GnRH durant une période d’incubation de 2 h. Selon que les distributions étaient normales ou pas, les périodes d’incubation ont été respectivement comparées selon le test apparié t de Student ou le test apparié de Wilcoxon. Une différence d’effet était considérée comme significative lorsque p<0,05. Dans les cas où tous les explants d’une même condition présentaient une valeur similaire, la déviation standard était nulle et n’était donc pas représentée. La réponse sécrétoire (pg/fraction de 7,5 min) a été calculée comme la différence entre la quantité de GnRH sécrétée au moment de l’à-coup et celle obtenue immédiatement auparavant. Si cette valeur se trouvait sous la limite de détection, elle était assimilée à celle-ci pour le calcul. Les données ont été rassemblées et analysées selon le test «one-way» ANOVA si la distribution était normale, suivi d’un post-test à comparaison multiple de Newman-Keuls. Si les données n’étaient pas distribuées de façon normale, le test de Kruskal-Wallis était utilisé, suivi d’un post-test à multiples comparaisons de Dunn (effet significatif lorsque p<0,05 pour les deux distributions). Afin de comparer les résultats obtenus dans toutes les 56 Méthodologie expériences, les valeurs absolues ont été transformées en pourcentages de la réponse sécrétoire de GnRH observée dans le contrôle et considérée comme 100 %. Un niveau de signification identique a été obtenu avec les deux formes de données, à savoir les valeurs absolues et les pourcentages. 57 Méthodologie V. Maturation avancée de la sécrétion de GnRH et précocité sexuelle après exposition de rats femelles immatures à l’E2 ou au DDT V. MATURATION AVANCEE DE LA SECRETION DE GnRH ET PRECOCITE SEXUELLE APRES EXPOSITION DE RATS FEMELLES IMMATURES A L’E2 OU AU DDT A. Objectifs de l’étude Dans notre première étude expérimentale, nous avons étudié les effets d’une administration sous-cutanée, néonatale (JPN 6-10 et 6-15) ou prolongée (JPN 6-40), chez des rats femelles, de deux doses (10 et 100 mg/kg.jour) d’o,p’-DDT. Les paramètres suivis étaient la fonction hypothalamo-hypophysaire évaluée au travers de la sécrétion de GnRH étudiée ex vivo et des taux sériques de LH, en conditions basales et 30 min après une injection souscutanée de 1 µg/kg de GnRH (JPN 15). En outre, nous avons évalué la maturation sexuelle (jours de l’OV et du premier oestrus ainsi que déroulement du cycle oestral jusqu’au JPN 60). A titre de comparaison, nous avons étudié les effets de l’E2 (0,01, 0,1 et 1 mg/kg.jour), utilisé comme substance de référence (Fig. 11). Le but du travail était de mimer, respectivement, les situations dans lesquelles se trouvent les enfants adoptés qui migrent dans notre pays après la période néonatale, et qui sont donc soustraits à une exposition permanente au DDT, et celle des enfants qui ne migrent pas et restent ainsi exposés au DDT jusqu’à leur période pubertaire. Nous avons voulu déterminer si les doses d’o,p’-DDT administrées in vivo en injection sous-cutanée aux JPN 6-10 étaient du même ordre que les données de la littérature et comment elles se situaient par rapport aux concentrations utilisées in vitro. Dès lors, après une période d’administration sous-cutanée (JPN 6-10) d’o,p’-DDT, les concentrations sériques des isomères du DDT et de ses métabolites ont été mesurées aux JPN 15 et 22 ainsi qu’aux jours de l’OV et du premier oestrus (Fig. 11). 58 Puberté après exposition précoce au DDT E2 0,01, 0,1 ou 1 mg/kg.jour; o,p’-DDT 10 ou 100 mg/kg.jour E2 0,01 mg/kg.jour; o,p’-DDT 10 mg/kg.jour E2 0,01 mg/kg.jour; o,p’-DDT 10 mg/kg.jour Sécrétion pulsatile de GnRH in vitro et ex vivo -Taux sérique basal de LH et en réponse (après délai de 30 min) à 1 µ g/kg de GnRH -Taux sérique des isomères du DDT et du DDE IP de GnRH (min) 90 Examens quotidiens pour l’OV et frottis vaginaux journaliers (pour le 1er oestrus et le cycle oestral) jusqu’au JPN 60 70 1er oestrus OV 50 Contrôle 30 Naissance 5 10 15 20 25 30 40 50 Age (jours) Figure 11: Schéma expérimental d’étude in vivo des effets d’un traitement à l’E2 ou à l’o,p’-DDT par des injections sous-cutanées quotidiennes pendant 5, 10 ou 35 jours chez des rats femelles à partir de l’âge de 6 jours. La procédure est présentée selon la réduction développementale de l’IP de GnRH observée in vitro en fonction de l’âge (n=6). Les âges moyens à l’OV et au premier oestrus sont également représentés. B. Résultats Pour les détails des données, le lecteur pourra se référer aux articles originaux en annexes IV & VI de ce travail. Comme montré à la Fig. 12A, après 5 jours (JPN 6-10) de traitement avec 0,01, 0,1 et 1 mg/kg d’E2, l’âge à l’OV était significativement avancé. Cet évènement avait lieu également plus précocement après traitement avec 10 et 100 mg/kg d’o,p’-DDT. Le premier oestrus apparaissait significativement plus tôt après 0,01 et 0,1 mg/kg d’E2 ainsi qu’après 10 mg/kg d’o,p’-DDT. Après 1 mg/kg d’E2 ou 100 mg/kg d’o,p’-DDT, l’âge au premier oestrus ne changeait pas. Lorsque l’intervalle de temps entre l’OV et le premier oestrus était mesuré, une augmentation dose-dépendante significative était observée avec 0,1 et 1 mg/kg d’E2 ou 100 mg/kg d’o,p’-DDT (Fig. 12B). Par ailleurs, une période prolongée d’administration souscutanée quotidienne de 0,01 mg/kg d’E2 entre les JPN 6 et 40 induisait l’OV à un âge significativement avancé tandis que l’âge au premier oestrus d’un cycle normal était 59 Puberté après exposition précoce au DDT significativement retardé. En effet, cet évènement était observé après un oestrus permanent maintenu jusqu’à quelques jours après la fin du traitement (Fig. 12A). Quelle que soit la condition, aucune différence dans la longueur du cycle oestral n’était observée jusqu’au JPN 60 (Tableau 4). 0,01 Véhiculant E2 0,1 1 mg/kg.jour o,p’-DDT 10 Période de traitement Période de traitement JPN 6-10 A JPN 6-40 JPN 6-10 * 50 B Age (jours) à la puberté * * * 30 20 10 40 1er oestrus OV * OV 1er oestrus * 30 20 10 OV Intervalle (jours) entre l’OV et le 1er oestrus 15 40 100 mg/kg.jour * JPN 6-40 30 10 20 5 10 0 0 15 * * 10 5 0 1er oestrus Figure 12: Effets de l’E2 ou de l’o,p’-DDT (n=10) administrés par injections sous-cutanées chez des rats femelles aux JPN 6-10 ou 6-40 sur l’âge à l’OV et au premier oestrus (A), ainsi que sur l’intervalle de temps entre l’OV et le premier oestrus (B). *: p<0,05 versus véhiculant (huile de sésame). Tableau 4: Moyenne ± déviation standard (n=10) de la longueur du cycle oestral (intervalle de temps entre deux oestrus consécutifs) observée jusqu’au JPN 60. Période d’exposition JPN 6-10 JPN 6-40 Traitement Dose (mg/kg.jour) Longueur du cycle oestral (jours) Véhiculant - 4,7 ± 1,4 E2 0,01 0,1 1 5,2 ± 1,6 5,5 ± 1,8 4,6 ± 1,5 o,p’-DDT 10 100 5,3 ± 2,0 5,5 ± 1,4 Véhiculant E2 0,01 4,8 ± 1,2 4,9 ± 1,8 60 Puberté après exposition précoce au DDT La Fig. 13 montre qu’après des injections sous-cutanées quotidiennes durant 5 jours (JPN 6-10) avec 0,01, 0,1 et 1 mg/kg d’E2, l’IP de GnRH étudié ex vivo au JPN 15 était significativement réduit selon un effet dose-réponse. Un tel effet était également observé après un traitement avec 10 et 100 mg/kg d’o,p’-DDT, mais était significatif seulement avec 100 mg/kg. Lorsque 0,01 mg/kg d’E2 ou 10 mg/kg d’o,p’-DDT étaient administrés pendant une plus longue période, à savoir 10 jours (JPN 6–15), l’IP de GnRH mesuré ex vivo était aussi significativement réduit au JPN 15. La plus faible dose d’o,p’-DDT qui n’avait pas d’effet significatif après 5 jours d’exposition devenait donc significativement efficace après 10 jours. 0,01 Véhiculant E2 0,1 1 mg/kg.jour o,p’-DDT Période de traitement JPN 6-10 IP de GnRH (min) au JPN 15 * * 10 100 mg/kg.jour JPN 6-15 * 65 60 55 50 45 40 Figure 13: Effets de l’E2 ou de l’o,p’-DDT injecté en sous-cutané chez des rats femelles durant les JPN 6-10 (n=10) ou JPN 6-15 (n=5) sur l’IP de GnRH mesuré ex vivo à 15 jours. *: p<0,05 versus véhiculant (huile de sésame). Le taux sérique de LH au JPN 15 était significativement diminué après 0,01, 0,1 et 1 mg/kg d’E2 entre les JPN 6 et 10 ainsi qu’après 10 et 100 mg/kg d’o,p’-DDT (Fig. 14). Cependant, le niveau sérique de LH diminuait aussi avec l’âge (aux JPN 15 et 22, à l’OV et au premier oestrus) après une administration sous-cutanée d’huile de sésame (Fig. 15). Dès lors, la diminution des taux de base observée pouvait traduire une composante de rétrocontrôle inhibiteur aussi bien que développementale. Lorsque la réponse de la LH à la GnRH était étudiée après avoir injecté le véhiculant, une réduction progressive de la réponse de LH était observée au cours de la maturation sexuelle, à l’inverse de ce qui est observé chez l’humain en période prépubertaire. Après administration de 10 mg/kg d’o,p’-DDT entre les JPN 6 et 10, la réponse de LH à la GnRH n’était pas affectée au JPN 15 et montrait une réduction, non significative, au JPN 22. En revanche, elle diminuait significativement plus 61 Puberté après exposition précoce au DDT rapidement que chez les témoins les jours suivants, à savoir à l’âge de l’OV et du premier oestrus (Fig. 15). 0,01 Véhiculant E2 0,1 1 mg/kg.jour o,p’-DDT 10 Période de traitement JPN 6-10 LH sérique (ng/ml) au JPN 15 * 100 mg/kg.jour JPN 6-15 * * 75 50 25 0 Figure 14: Effets de l’E2 ou de l’o,p’-DDT injecté en sous-cutané chez des rats femelles durant les JPN 6-10 (n=10) ou JPN 6-15 (n=5) sur les concentrations sériques de LH mesurées ex vivo à 15 jours. *: p<0,05 versus véhiculant (huile de sésame). après huile de sésame, 500 après o,p’-DDT (10 mg/kg.jour), Taux sérique de LH (ng/ml) 30 min après stimulation à la GnRH 450 JPN 6-10 au jour de l’OV 400 au jour du 1er oestrus 350 300 250 200 150 100 * * 50 0 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Age (jours post-nataux) Figure 15: Effets de l’huile de sésame ou de l’o,p’-DDT injecté en sous-cutané chez des rats femelles durant les JPN 6-10 (n=7) sur les concentrations sériques de LH mesurées ex vivo 30 min après une injection souscutanée de GnRH à 4 âges différents (JPN 15 et 22, à l’OV et au premier oestrus). *: p<0,05 versus véhiculant (huile de sésame). 62 Puberté après exposition précoce au DDT Durant une administration sous-cutanée quotidienne de 10 mg/kg d’o,p’-DDT prolongée (période JPN 6–40), les animaux ont développé un statut sanitaire altéré avec une activité ainsi qu’une alimentation réduites. Au JPN 40, leur poids était significativement réduit (Tableau 5). Dans de telles conditions, il n’était pas possible de distinguer les effets directs du PE sur la maturation sexuelle et la reproduction des effets indirects dus à un trouble du statut nutritionnel connu pour affecter la maturation sexuelle (Lebrethon et al., 2007). Tableau 5: Moyenne ± déviation standard (n=10) du poids corporel (g) mesuré au JPN 40 après une exposition prolongée (JPN 6-40). *: p<0,05 versus véhiculant (huile de sésame). Véhiculant E2 0,01 mg/kg.jour o,p’-DDT 10 mg/kg.jour 149,0 ± 9,9 130,0 ± 11,5* 111,3 ± 8,3* Comme déjà mentionné précédemment, afin d’évaluer si les doses d’o,p’-DDT administrées in vivo aux JPN 6-10 étaient du même ordre que les concentrations utilisées in vitro, les concentrations sériques des isomères du DDT et de ses métabolites ont été mesurées après administration in vivo d’o,p’-DDT: les rats femelles ont reçu une injection sous-cutanée quotidienne de 10 mg/kg d’o,p’DDT lors des JPN 6-10. La première mesure du taux sérique de l’isomère était prise 5 jours après la fin du traitement. Sept jours plus tard, le niveau chutait drastiquement. L’OV et le premier oestrus avait lieu tôt, respectivement aux JPN 23 et 27, confirmant nos données présentées ci-avant. Le taux sérique d’o,p’-DDT était également très bas à l’OV et davantage encore au premier oestrus (Fig. 16). L’isomère p,p’-DDT ainsi que les dérivés o,p’-DDE et p,p’-DDE n’étaient pas détectables dans le sérum des rats traités au moment de l’étude et aucun des composés étudiés n’était détectable dans le sérum des rats contrôles. 63 Puberté après exposition précoce au DDT Taux d’o,p’-DDT sérique (ng/ml) 3000 o,p’-DDT 10 mg/kg 1000 10-6 M OV 300 100 1er oestrus 30 10 3 ≤1 5 10 15 20 25 30 Age (jours) Figure 16: Moyenne géométrique ± déviation standard (n=6) des taux sériques d’o,p’-DDT à 4 âges différents après l’administration sous-cutanée d’o,p’-DDT pendant 5 jours (JPN 6-10): aux JPN 15 et 22, aux âges à l’OV et au premier oestrus. La concentration sérique moyenne d’o,p’-DDT au JPN 15 correspond à 10-6 M. Contrairement aux données recueillies chez le rat, à savoir la présence unique de l’isomère o,p’-DDT dans le sérum, chez l’humain, Parent et al. (2003) n’ont détecté aucun isomère du DDT dans le sérum des patients ayant été exposés précédemment à l’insecticide. A l’inverse, le taux sérique de p,p’-DDE, un dérivé possible du DDT, était mesurable. 64 Puberté après exposition précoce au DDT Etrangers adoptés 300,0 o,p’-DDT 10 mg/kg.jour JPN 6-10 Etrangers non adoptés Belges natifs, origine organique Belges natifs, r = -0,41 origine idiopathique p = 0,02 30,0 Taux sérique d’o,p‘-DDT (ng/ml) Taux sérique de p,p‘-DDE (ng/ml) 100,0 10,0 3,0 1,0 0,3 ≤0,1 2 4 6 8 10 12 Temps depuis l’immigration (années) 2,5 5 7,5 10 12,5 15 17,5 Temps après l’exposition au DDT (jours) Figure 17: Comparaison des taux sériques de p,p’-DDE (gauche) et d’o,p’-DDT (droite) au cours du temps, à la suite d’une exposition au DDT chez l’humain (gauche) et à l’o,p’-DDT chez le rat (droite). Les patients avec précocité pubertaire sont soit natifs Belges avec une puberté précoce centrale, d’origine organique ou idiopathique, soit des patients migrants étrangers, adoptés ou non. Les données des patients étrangers sont représentées en fonction du temps écoulé depuis l’immigration. C. Discussion La présente étude a été réalisée afin de vérifier expérimentalement l’influence d’une exposition précoce et transitoire au DDT, un insecticide banni dans les pays industrialisés depuis une trentaine d’années mais encore largement répandu dans les pays en voie de développement. Notre hypothèse de travail est que cette exposition précoce et transitoire au DDT peut influencer la maturation hypothalamo-hypophysaire chez le rat femelle et, qu’en outre, un mécanisme central orchestre cette précocité sexuelle, telle qu’observée chez des jeunes filles migrantes adoptées dans nos pays occidentaux. L’incubation des explants hypothalamiques en présence d’E2 ou des isomères du DDT cause une augmentation concentration- et temps-dépendante de la fréquence de sécrétion pulsatile de GnRH. Pour obtenir des effets similaires, le rapport effectif mesuré dans nos conditions expérimentales entre l’E2 et le DDT est de 1/1000, ce qui est cohérent avec celui rapporté par Diel et al. en 2002. Comme également constaté dans d’autres conditions par Bulger et al. (1978), le p,p’-DDE n’a pas non plus d’effet, suggérant que cet isomère n’est pas doué de propriétés oestrogéniques. Bien que des concentrations supra-physiologiques d’E2 65 Puberté après exposition précoce au DDT soient requises pour déceler un effet dans les premières heures d’incubation, de plus faibles concentrations sont toutefois effectives après plusieurs heures d’incubation. Un tel délai peut s’expliquer par une lente diffusion des réactifs au sein de l’explant. Cette hypothèse rejoint un constat fait pour d’autres substances puisque l’utilisation de plus grandes concentrations en acides aminés excitateurs sont nécessaires dans les modèles d’explants, comparés aux systèmes de cultures neuronales (Matagne et al., 2003). Une autre explication résiderait dans le fait que les effets de l’E2 résulteraient de mécanismes génomiques et, par conséquent, que son délai d’action soit plus lent. Ainsi, les effets de l’E2 sur la sécrétion de GnRH pourraient impliquer, à la fois, une composante rapide et probablement non génomique, telle qu’illustrée par Matagne et al. en 2005 dans notre modèle d’étude, et une composante lente et génomique. Dans ce dernier cas, les cellules-cibles seraient autres que des neurones à GnRH puisque les corps cellulaires de ces neurones sont absents des explants rétrochiasmatiques que nous avons prélevés (Purnelle et al., 1998). En outre, Herbison (1998) et, plus récemment, Herbison et Pape (2001), ont également rapporté que l’E2 exerce in vivo des effets complexes sur la fonction des neurones à GnRH, suggérant des effets à long-terme ou génomiques via des liaisons au ERα et/ou β. Après l’administration d’E2 à des rat femelles immatures, une inhibition de la sécrétion de LH est observée (Caligaris et al., 1972; Andrews et Ojeda, 1977). Cet évènement susceptible de résulter d’une action directe sur l’hypophyse ne permet pas de conclure quant à des effets indirects éventuels au niveau hypothalamique. En outre, une réduction développementale des concentrations de LH sérique a lieu entre le JPN 15 et le jour de l’OV, à la fois en sécrétion basale et en réponse à la GnRH (Ojeda et al., 1977; Ramaley, 1982), de telle sorte que les taux de LH réduits peuvent résulter soit d’un effet de rétrocontrôle négatif, soit d’une maturation accélérée, ou les deux à la fois. Par conséquent, la maturation hypothalamo-hypophysaire a été étudiée à la fois en mesurant le taux de sécrétion de GnRH durant l’incubation des explants hypothalamiques et la réponse de LH à la GnRH après l’administration du stéroïde ou de l’insecticide in vivo. L’exposition de rats femelles infantiles à l’E2 ou à l’o,p’-DDT pendant 5 ou 10 jours a été suivie par une augmentation dosedépendante de la fréquence de sécrétion pulsatile de la GnRH et une diminution du taux sérique de LH au JPN 15, suggérant une stimulation de la maturation hypothalamique et une inhibition du rétrocontrôle négatif ou une maturation précoce de la sécrétion hypophysaire. Un effet sur le rétrocontrôle négatif au niveau hypothalamique et/ou hypophysaire est supporté par le fait que l’élévation, après castration, des taux sériques de LH, est réduite après un traitement à l’o,p’-DDT chez des rats matures ou néonatals (Gellert et al., 1972; Gellert et 66 Puberté après exposition précoce au DDT al., 1974). Cependant, Faber et al. (1991) n’ont observé aucun changement dans la sécrétion basale ou en réponse à la GnRH (50 ng/kg) de LH, plusieurs semaines après un traitement à l’o,p’-DDT (0,5 mg/jour; 40 mg/kg.jour lorsque la dose est calculée en fonction des mesures des poids des ratons utilisés dans nos expériences) entre les JPN 1 et 10. Ces résultats divergents des nôtres pourraient s’expliquer par le fait que Faber et son équipe ont exposé les ratons à l’insecticide dès la naissance, les ont castrés au JPN 21 et/ou que la stimulation à la GnRH (dont la dose est 20 fois inférieure) a eu lieu plus tard (JPN 42). Aux JPN 15 et 22, la réponse inchangée de la LH en réponse à la GnRH suggère soit l’absence d’effets, soit que la résultante des effets combinés, inhibiteurs et stimulateurs, est nulle à ces âges. L’OV pourrait résulter soit d’un effet périphérique de l’E2 ou de l’o,p’-DDT, soit d’une activité hypophyso-ovarienne, ou les deux à la fois. Une composante centrale ayant lieu le jour de l’OV est suggérée par la brusque réduction de la réponse de LH à la GnRH. Quant au premier oestrus précoce, il confirme probablement l’activité de l’axe hypothalamohypophyso-ovarien. Un tel mécanisme pathophysiologique serait cohérent avec une implication du DDT dans la précocité sexuelle apparaissant chez des enfants issus de l’adoption internationale après leur migration (Krstevska-Konstantinova et al., 2001; Parent et al., 2003; Rasier et al., 2006). Dans une récente étude danoise traitant du cas de tels enfants, il a été montré que des changements développementaux des taux d’hormones hypophysoovariennes sont observables avant l’établissement de la puberté et supportent un mécanisme hypothalamo-hypophysaire de la puberté précoce (Teilmann et al., 2006). Depuis que Krstevska-Konstantinova et ses collaborateurs ont rapporté en 2001 qu’il existe une relation entre la précocité sexuelle et la détection du p,p’-DDE dans le sérum des filles migrantes, il a été démontré qu’une ménarche précoce a lieu après une exposition prénatale (Vasiliu et al., 2004) ou post-natale (Ouyang et al., 2005) au DDE. Cependant, d’autres auteurs n’ont observé aucun changement à l’âge de la ménarche après une exposition prénatale ou postnatale au DDE (Gladen et al., 2000; Denham et al., 2005) et le traitement post-natal de guenons avec du MXC résulte en un développement des mamelons et une ménarche retardée (Golub et al., 2003). Chez les rongeurs, de telles observations ont également été réalisées puisque des pesticides tels que le MXC et le lindane provoquent, respectivement, une précocité et un retard de l’âge à l’OV. Cependant, ces insecticides causent des perturbations de la cyclicité oestrale (Cooper et al., 1989; Gray Jr et al., 1989; Laws et al., 2000). En outre, un taux réduit de LH sérique a été rapporté après une administration de lindane (Cooper et al., 1989). 67 Puberté après exposition précoce au DDT Bien que nous n’ayons pas étudié en détail le cycle oestral et la reproduction, relevons que l’intervalle entre l’OV et le premier oestrus est d’autant plus long que les animaux ont été exposés à des doses plus élevées d’o,p’-DDT. Un élément critique à ce sujet est la vulnérabilité, chez le rongeur, du mécanisme hypothalamique qui préside au contrôle de l’ovulation. Celui-ci est perturbé par toute exposition périnatale à des stéroïdes sexuels ou agents apparentés, et nous aurait empêchés d’observer les effets éventuels sur l’apparition du cycle oestral. C’est pourquoi nous avons démarré le traitement par l’o,p’-DDT au JPN 6. Nous pensons que cet âge est une limite et que l’observation, a priori paradoxale, que 10 mg/kg d’o,p’-DDT causent un premier oestrus précoce qui n’est plus observé après 100 mg/kg, résulte d’une possible interférence de la dose plus élevée avec le mécanisme de la différenciation sexuelle de l’hypothalamus. Citons les données chez l’humain qui rapportent une chute de 32 % de la probabilité de grossesse chez des femmes dont la mère présentait, 28 à 31 ans auparavant, des taux sériques de p,p’-DDT aux alentours de 10 µg/L au moment de l’accouchement (Cohn et al., 2003). Un léger effet anorexigène de l’E2 est également observé, ce qui est cohérent avec les études rapportées précédemment par Ramirez et Sawyer (1965), et Ramirez (1981). Quant à l’o,p’-DDT, il cause une forte diminution du poids corporel, suggérant un possible effet toxique de l’insecticide (Tomiyama et al., 2003). Testant des doses d’o,p’-DDT 10 fois plus élevées et administrées oralement pendant 7 jours, Mussi et al. (2005) ont trouvé une concentration plasmique de 7,20 µg/L, qui est environ 20 fois plus élevée que le niveau que nous avons observé 5 jours après la fin du traitement dans nos conditions expérimentales. Aucun dérivé du DDT, en particulier l’o,p’DDE, n’a pu être détecté dans nos conditions après le traitement à l’o,p’-DDT, suggérant que, chez le rat, peu de transformations du DDT en DDE ont lieu dans ces conditions d’exposition. Cependant, Tomiyama et al. (2003) ont trouvé du DDE plasmique à des concentrations 10 fois plus basses que celles du DDT, à peine 2 jours après le début de l’exposition au DDT. Ces résultats contradictoires pourraient s’expliquer par des différences dans le taux de dégradation selon la nature de l’isomère du DDT, la dose et l’âge à l’administration puisque l’équipe japonaise a injecté du p,p’-DDT entre les JPN 36 et 42 tandis que nous avons administré 10 fois moins d’o,p’-DDT aux JPN 6-10. En conclusion de cette première partie expérimentale, des preuves que le DDT pourrait influencer la maturation hypothalamo-hypophysaire des femelles infantiles sont fournies par une accélération développementale précoce de la sécrétion de GnRH in vitro et ex vivo et une réduction précoce de la réponse de LH à la GnRH in vivo. Il est également démontré que ces substances déclenchent une puberté précoce in vivo lorsque les individus immatures sont 68 Puberté après exposition précoce au DDT exposés transitoirement au DDT. Dans les mêmes conditions de quantités administrées, les effets à long terme n’ont pu être étudiés en raison d’effets toxiques. 69 Puberté après exposition précoce au DDT VI. Mécanismes d’interaction des PEs sur la sécrétion de GnRH induite par le glutamate VI. MECANISMES D’INTERACTION DES PEs SUR LA SECRETION DE GnRH INDUITE PAR LE GLUTAMATE A. Objectifs de l’étude Dans cette seconde étude expérimentale, nous nous sommes attachés à préciser le(s) mécanisme(s) in vitro impliqué(s) dans les effets neuroendocriniens obtenus précédemment in vivo. Nous avons particulièrement étudié la façon avec laquelle le DDT et ses dérivés peuvent mimer les effets rapides de l’E2 sur la réponse sécrétoire de GnRH induite par le glutamate, un sécrétagogue préalablement testé dans notre laboratoire (Bourguignon et al., 1989a). Nous avons ensuite déterminé les types de récepteurs impliqués dans les effets des PEs sur la sécrétion de GnRH tant dans sa forme spontanément pulsatile que sur la réponse induite par le glutamate. Les effets du MXC, un insecticide développé et commercialisé afin de remplacer le DDT banni depuis le début des années ’70 dans les pays occidentaux, et le BPA, largement utilisé dans la fabrication de nombreux produits tels que les boîtes de conserve, les canettes de soda, les tétines de biberons ou encore les résines dentaires, ont également été comparés avec ceux du DDT. B. Résultats Pour les détails des données, le lecteur pourra se référer aux articles originaux en annexes IV & VI de ce travail. Des stimulations répétées en présence de glutamate seul, pendant 7,5 min toutes les 37,5 min, déclenchent une sécrétion de GnRH reproductible et maintenue pendant 4 h. Une co-incubation avec des concentrations croissantes d’E2 induit une augmentation concentration-dépendante de la réponse sécrétoire de GnRH. Ces effets sont significatifs à partir de 10-8 M d’E2 et augmentent davantage en présence, respectivement, de 10-7 M et 10-6 M du stéroïde. Une augmentation du même type a lieu en présence de 10-5 M et 10-4 M d’o,p’DDT. Une stimulation finale, avec uniquement du glutamate, induit une réponse similaire à celle obtenue initialement (Fig. 18). 70 PEs et réponse sécrétoire de GnRH Réponse sécrétoire de GnRH induite par le glutamate (pg/fraction de 7,5 min) 35 Glu 10-2 M A 25 15 ≤5 10-6M E2 10-10 à 10-6 M 35 -7 Glu 10-2 M 10-10M 10-8M 10 M B 10-9M 25 15 ≤5 o,p’-DDT 10-8 à 10-4 M 35 Glu 10-2 M 10-8M 10-7M 10-6M 10-4M C 10-5M 25 15 ≤5 60 120 180 240 300 Temps (min) Figure 18: Profils représentatifs de la sécrétion de GnRH induite par le glutamate à partir d’explants hypothalamiques obtenus chez des rats femelles âgés de 15 jours et incubés dans du «minimum essentiel medium» pendant 4 h. Le glutamate est ajouté (toutes les 37,5 min, pendant 7,5 min) seul (A) et avec des concentrations croissantes d’E2 (B) ou d’o,p’-DDT (C), elles-mêmes incubées pendant 7,5 min avant la stimulation au glutamate et durant celle-ci. Le seuil de détection est de 5 pg/7,5 min. L’isomère p,p’-DDT est aussi effectif qu’o,p’-DDT: à 10-5 M et 10-4M, il augmente significativement la sécrétion de GnRH. Par contre, le p,p’-DDE, un dérivé stable du DDT, et le MXC, un insecticide dérivé du DDT, n’ont aucun effet. Quant au BPA, son effet n’est significatif qu’à 10-4M, et lorsque le 4-nonylphénol est utilisé à la même concentration, il ne montre aucun effet (Fig. 19). 71 PEs et réponse sécrétoire de GnRH Réponse sécrétoire de GnRH induite par le glutamate (en % par rapport au contrôle) 260 A E2 220 * * 180 * 140 100 60 260 220 180 140 B o,p’-DDT p,p’-DDT p,p’-DDE MXC * * * * 100 60 260 220 * BPA 4-NP C 180 140 100 60 10-10 10-9 10-7 10-8 10-6 10-5 10-4 Concentration (M) Figure 19: Effets de concentrations croissantes d’E2 (n=4) (A) et de différents PEs (4-NP: 4-nonylphénol; n=4-7) (B & C) sur la réponse sécrétoire de GnRH induite par le glutamate, à partir d’explants hypothalamiques de rats femelles âgés de 15 jours. La réponse sécrétoire de GnRH (moyenne ± déviation standard) est calculée comme étant la différence entre les taux de GnRH dans la fraction, immédiatement collectée avant et durant l’exposition au glutamate (pg/fraction de 7,5 min). Ces différences sont ensuite converties en pourcentages du contrôle (glutamate seul). *: p<0,05 versus contrôle. La réduction significative de l’IP de GnRH obtenue en présence d’E2 à 10-7 M ou d’o,p’-DDT à 10-4 M après 3–4 h d’incubation in vitro est complètement levée lorsque les sous-types AMPA/kaïnate du récepteur au glutamate sont saturés par le 6,7- dinitroquinoxaline-2,3-dione (DNQX). Les effets du stéroïde et de l’insecticide sont également totalement inhibés en présence de l’antagoniste des ERs, l’ICI 182.780. Par ailleurs, lorsque l’α-naphtoflavone est utilisé pour antagoniser le récepteur aryl hydrocarbone (AhR) aux dioxines, la diminution significative de l’IP de GnRH, causée par l’o,p’-DDT, n’est pas constatée alors que les effets de l’E2 sont atténués, mais restent cependant significatifs (Fig. 20). 72 PEs et réponse sécrétoire de GnRH Figure 20: Effets du DNQX (n=3-4) (B), de l’ICI 182.780 (n=3-4) (C) et de l’α-naphtoflavone (n=3-4) (D) sur l’IP de GnRH durant l’incubation d’explants hypothalamiques chez des rats femelles âgés de 15 jours en présence de 10-7 M d’E2 (n=9) ou 10-4 M d’o,p’-DDT (n=9) (A) in vitro. Un profil représentatif de la sécrétion pulsatile de GnRH est montré dans chaque condition et la moyenne (± déviation standard) de l’IP de GnRH observé durant les 3-4 h d’incubation sont donnés. *: p<0,05 traitement versus contrôle (n=9). La sécrétion de GnRH induite par le glutamate est fortement réduite par le DNQX. Cette réduction fait suite à la suppression de la contribution du sous-type kaïnate, puisque que l’antagoniste de la sous-unité AMPA, le SYM 2206, n’affecte pas significativement la réponse sécrétoire de GnRH. En présence de DNQX, l’E2 et l’o,p’-DDT augmentent significativement la sécrétion de GnRH induite par le glutamate, bien que l’amplification de la réponse sécrétoire par l’E2 soit moindre que dans les conditions contrôles. En présence du SYM 2206, l’amplification de l’effet, par l’E2 et l’o,p’-DDT, est significative mais cependant moins marquée que dans les conditions contrôles, indiquant une contribution du sous-type AMPA. Lorsque l’ICI 182.780 est utilisé, l’amplification, par l’E2 et l’o,p’-DDT, de la sécrétion de GnRH induite par le glutamate est complètement inhibée. En outre, l’αnaphtoflavone, utilisé dans les mêmes conditions, inhibe la réponse sécrétoire de GnRH causée seulement par l’o,p’-DDT, alors que l’effet amplificateur de l’E2 reste inchangé (Fig. 21). 73 PEs et réponse sécrétoire de GnRH Réponse sécrétoire de GnRH induite par le glutamate (% du contrôle) 170 a 150 A a b, c b 130 b, c b, d 110 90 70 50 30 170 o,p’-DDT E2 10-4M (Contrôle)10-7M a 150 DNQX DNQX DNQX 10-6M + E2 + o,p’-DDT (contrôle) SYM 10-6M (contrôle) SYM SYM + E2 + o,p’-DDT b B a 130 c 110 d d 90 70 50 30 o,p’-DDT E2 (Contrôle) 10-7M 10-4M ICI 10-7M (contrôle) ICI ICI + E2 + o,p’-DDT α -naphto α -naphtoα -naphto 10-7M + E2 + o,p’-DDT (contrôle) Figure 21: Effets d’antagonistes (n=5) des sous-types AMPA/kaïnate (DNQX) et AMPA (SYM 2206) du récepteur au glutamate (A), des ERs (ICI 182.780) et du AhR (α-naphthoflavone) (B) sur l’amplification de la sécrétion de GnRH, induite par le glutamate et causée par l’E2 ou l’o,p’-DDT. La réponse sécrétoire de GnRH (moyenne ± déviation standard) est calculée comme étant la différence entre les taux de GnRH dans la fraction immédiatement collectée avant et durant l’exposition au glutamate (pg/fraction de 7,5 min). Ces différences sont ensuite converties en pourcentages du contrôle (glutamate seul ou glutamate avec l’antagoniste). Des explants hypothalamiques de rats femelles âgés de 15 jours ont été utilisés. p<0,05 versus glutamate seul (a); versus glutamate + antagoniste (b); versus glutamate + E2 (c); versus glutamate + o,p’-DDT (d). La staurosporine et le chlorure de chélérythrine, respectivement des inhibiteurs des protéines kinases A (PKA) et C (PKC), ainsi que le PD98059, inhibiteur des kinases «mutagen activating proteins» (MAPK), inhibent complètement l’amplification, par l’E2 et l’o,p’-DDT, de la sécrétion de GnRH induite par le glutamate (Tableau 6). 74 PEs et réponse sécrétoire de GnRH Tableau 6: Effets d’inhibiteurs des kinases (n=5) sur la réponse sécrétoire de GnRH induite par le glutamate (% du contrôle). *: p<0,05 versus glutamate. Inhibiteur Staurosporine Kinase inhibée Protéines kinases A&C Glutamate 100,0 E2 10-7 M 150,4 ± 7,6* o,p’-DDT 10-4 M 142,0 ± 4,7* 90,6 ± 6,4 95,5 ± 7,6 96,8 ± 4,4 93,7 ± 6,5 Chlorure de chélérythrine Protéine kinase C 93,8 ± 6,4 90,6 ± 6,4 PD 98059 Kinases MAP (ERK1/2) 101,6 ± 7,9 100,0 ± 9,1 96,8 ± 4,4 Lorsque l’E2 à 10-8 M est appliqué de façon intermittente durant des périodes de 15 min, répétées toutes les 37,5 min, l’amplification de la sécrétion de GnRH induite par le glutamate ne varie pas au cours d’une incubation de 4 h. Après arrêt de l’exposition à l’E2, une réponse similaire à celle obtenue initialement est observée. Lorsque l’E2 est appliqué de façon continue, l’amplification de la réponse sécrétoire de GnRH est identique à celle observée lorsque l’E2 est utilisé par intermittence. Cependant, après 3,5 h d’incubation, une augmentation supplémentaire de la sécrétion de GnRH induite par le glutamate est causée par l’E2, cette dernière étant significative et persistant même après avoir stoppé l’incubation en présence d’E2. Un tel effet est également observé avec 10-5 M d’o,p’-DDT, mais l’augmentation de la réponse sécrétoire est moindre et ne persiste pas après un arrêt de la stimulation par l’insecticide (Fig. 22). 75 PEs et réponse sécrétoire de GnRH contrôle E2 10-8M: pdt 15 min, toutes les 37,5 min E2 10-8M: incubation continue o,p’-DDT 10-5M: incubation continue Réponse sécrétoire de GnRH induite par le glutamate (% du contrôle) 160 b b 140 a a a a a 120 a a a a a a a a a a a a 100 80 60 37,5 75 112,5 150 187,5 225 262,5 300 Temps (min) Figure 22: Réponses sécrétoires de GnRH (n=4) induites par le glutamate (appliqué pendant 7,5 min, toutes les 37,5 min) durant une incubation de 5 h. Les explants hypothalamiques de rats femelles âgés de 15 jours ont été incubés de façon intermittente (pendant 15 min, toutes les 37,5 min) ou de façon continue en présence d’E2 ou d’o,p’-DDT. La stimulation par le stéroïde ou l’insecticide a débuté 60 min après le début de l’expérience et a été stoppée après 262,5 min. a: p<0,05 versus réponse sécrétoire initiale; b: p<0,05 versus réponse sécrétoire amplifiée par l’E2 ou l’o,p’-DDT. C. Discussion Dans cette seconde étude expérimentale, nous fournissons la preuve que plusieurs PEs peuvent directement stimuler la sécrétion de GnRH induite par le glutamate. De tels effets ont lieu rapidement, à savoir endéans 15 min, et augmentent davantage après plusieurs heures d’exposition. Nous nous sommes particulièrement focalisés sur l’o,p’-DDT, dont nous montrons, dans la première partie expérimentale de ce travail (chapitre V), qu’une exposition précoce à cet isomère résulte en une accélération de la sécrétion pulsatile de GnRH et une précocité sexuelle (Rasier et al., 2007). Nous démontrons également que le mécanisme d’action de l’o,p’-DDT implique plusieurs récepteurs (AMPA, ERs et AhR) et kinases intracellulaires (A, C et MAPK). Afin de comparer l’amplification, par l’E2 ou l’o,p’-DDT, de la sécrétion de GnRH induite par le glutamate, les données ont été calculées en pourcentages de la réponse 76 PEs et réponse sécrétoire de GnRH sécrétoire obtenue en présence de l’antagoniste seul. Les concentrations de PEs utilisées in vitro dans cette étude sont cohérentes avec les taux sériques mesurés après une administration in vivo. Comparée avec d’autres modèles in vitro impliquant des neurones à GnRH, l’incubation statique d’explants hypothalamiques maintient les neurones à GnRH dans leur environnement neurono-glial original, ce qui peut contribuer à conserver la capacité de sécrétion pulsatile de GnRH si elle n’est pas l’expression d’une propriété intrinsèque des neurones à GnRH (Matagne et al., 2004; Rasier et al., 2007). C’est sans doute le cas dans nos conditions où les péricaryons des neurones à GnRH ne sont pas inclus dans l’explant (Purnelle et al., 1997). Il faut tout de même souligner que les concentrations requises pour des réactifs comme le glutamate sont plus élevées que celles utilisées dans les cultures cellulaires (Donoso et al., 1990; Ojeda et Urbanski, 1994; Kuehl-Kovarik et al., 2002; Matagne et al., 2005; Rubin et al., 2006). Cette différence est toujours inexpliquée (diffusion des réactifs, dégradation, …) et soulève même le point d’éventuelles erreurs de mesure des données in vivo ainsi que de possibles effets excitotoxiques modulés via le sous-type NMDA du récepteur au glutamate. Cependant, la capacité des explants à répondre à des stimulations répétées de glutamate est maintenue pendant plusieurs heures, ce qui suggère que l’intégrité fonctionnelle de l’appareil neurono-glial persiste et permet de maintenir le processus sécrétoire. Les concentrations d’E2 et d’o,p’-DDT, utilisées in vitro pour les études mécanistiques, sont cohérentes avec celles utilisées par d’autres (Urbanski et al., 1996; Clark et al., 1998; Diel et al., 2002). Elles ont été choisies sur base de mesures préliminaires de l’amplification de la sécrétion de GnRH induite par le glutamate en fonction des concentrations du stéroïde et de l’insecticide. La concentration effective maximale des diférents PEs testés n’a pas été déterminée, mais un effet concentration-dépendant peut être observé. Comme observé avec l’E2, les deux isomères du DDT augmentent rapidement la sécrétion de GnRH induite par le glutamate, cet effet étant directement dépendant de la concentration. Le rapport E2/PE des concentrations effectives observé avec les isomères du DDT et le BPA est cohérent avec d’autres études in vitro (Clark et al., 1998; Desaulniers et al., 2005; Rasier et al., 2006). Quant aux autres PEs testés, ils ne montrent aucun effet aux concentrations étudiées. Le manque d’effet du DDE s’explique par sa nature essentiellement anti-androgénique, le DDE étant beaucoup moins oestrogénique que le DDT. Une récente étude rapporte que l’effet oestrogénique du MXC serait modulé par ses métabolites mono-OH MXC et bis-OH MXC après la métabolisation du cytochrome P450 (Miller et al., 2006). Ceci pourrait expliquer son absence d’effet dans nos conditions expérimentales. 77 PEs et réponse sécrétoire de GnRH Des études antérieures réalisées au sein de notre laboratoire ont montré que les effets de l’E2 sur la sécrétion pulsatile de GnRH apparaissent en quelques heures (Matagne et al., 2004) et que la sécrétion de GnRH induite par le glutamate a lieu en quelques minutes (Matagne et al., 2005). Même si le BPA s’est avéré capable de stimuler la sécrétion de GnRH, nous nous sommes focalisés sur le DDT, du fait de sa possible implication dans la précocité sexuelle des enfants migrants (Krstevska-Konstantinova et al., 2001; Parent et al., 2003) et la preuve expérimentale des effets hypothalamo-hypophysaires chez le rat (Heinrichs et al., 1971; Gellert et al., 1972; Rasier et al., 2007). Les deux principaux mécanismes impliqués dans la perturbation endocrinienne sont des effets agonistes au niveau des ERs ou oestrogéniques, comme montré pour le DDT, et des effets antagonistes au niveau des récepteurs androgéniques ou anti-androgéniques, comme montré pour le DDE (Kelce et al., 1995; Clark et al., 1998). Dans nos conditions expérimentales, il a été montré qu’à la fois les oestrogènes et les androgènes sont capables d’amplifier la sécrétion de GnRH, les effets des androgènes étant aromatase-dépendants et modulés ultimement via les oestrogènes (Matagne et al., 2004). Remarque: les effets reportés dans ce travail tombent uniquement dans la catégorie oestrogénique. Des rats femelles âgés de 15 jours ont été choisis puisqu’il a été montré au sein du laboratoire que la sécrétion de GnRH in vitro est affectée de façon maximale par l’E2 à cet âge (Matagne et al., 2004 et 2005). L’accélération de la sécrétion pulsatile de GnRH, causée par l’E2, est inhibée par l’ICI 182.780 ainsi que par le DNQX, confirmant nos précédentes observations (Matagne et al., 2004). L’implication des sous-types AMPA/kaïnate du récepteur au glutamate dans la stimulation de l’E2, sur la fréquence pulsatile de GnRH, est supportée par la co-localisation hypothalamique de ces récepteurs avec les ERs (Diano et al., 1998). Etant donné que les effets de l’o,p’-DDT sont également inhibés par l’ICI 182.780 et le DNQX, ce PE pourrait engager les mêmes récepteurs que l’E2. Cependant, la voie d’activation des effets de l’o,p’-DDT serait partiellement différente: en effet, nos données indiquent le possible rôle du AhR dans la modulation des effets de l’o,p’-DDT sur la sécrétion de GnRH. Le AhR est un récepteur ubiquitaire se liant aux ligands endogènes ainsi qu’aux xénobitiques telle que la dioxine (Harper et al., 2006). L’o,p’-DDT pourrait donc être un ligand du AhR, puisque ses seuls effets sur la sécrétion de GnRH sont antagonisés par l’αnaphthoflavone. L’hypothèse envisagée serait que le complexe o,p’-DDT-AhR s’insère dans la machinerie de signalisation de l’E2 et soit transcriptionnellement fonctionnel dans la région régulatoire des gènes répondant à l’activation des ERs (Ohtake et al., 2003). 78 PEs et réponse sécrétoire de GnRH Après avoir montré que l’o,p’-DDT stimule la fréquence de sécrétion pulsatile de GnRH (Rasier et al., 2007), nous avons mené une approche similaire pour étudier la sécrétion de GnRH induite par le glutamate. Le rôle primordial de l’implication simultanée des soustype NMDA et kaïnate dans la réponse sécrétoire de GnRH a été démontré dans des études précédentes (Bourguignon et al., 1989b; Matagne et al., 2004 et 2005; Parent et al., 2005). En revanche, un antagoniste sélectif du récepteur AMPA n’affecte pas la sécrétion de GnRH induite par le glutamate, indiquant qu’il n’y a aucune implication du sous-type AMPA dans de telles conditions. Cependant, ces récepteurs apparaissent jouer certains rôles dans les effets amplifiés par l’E2 et l’o,p’-DDT, confirmant les travaux qui rapportent la stimulation de l’expression du sous-type AMPA par l’E2 dans l’hypothalamus de rat (Diano et al., 1997). A notre connaissance, nous rapportons pour la première fois l’implication du sous-type AMPA dans des effets rapides des PEs. Quelques études récentes ont toutefois déjà montré que les récepteurs AMPA modulent l’effet plastique, induit par l’E2, dans différentes populations de neurones (Tsurugizawa et al., 2005; Todd et al., 2007). Plus précisément, les récepteurs AMPA ont été mis en évidence dans l’implication des changements morphologiques neuronaux induits par l’E2 dans le noyau ventro-médial de l’hypothalamus, exclusivement chez des rats femelles (Todd et al., 2007). Non seulement le temps d’incubation, mais aussi la continuité de l’exposition du stéroïde ou du PE sont des critères cruciaux puisque la composante lente de la réponse sécrétoire n’apparaît pas si l’incubation est discontinue. Par contre, nous n’avons pas de preuve de l’imprégnation de la réponse causée par des stimulations répétées de glutamate. En outre, des effets rapides et non génomiques in vitro de l’E2 peuvent avoir lieu en quelques secondes à quelques minutes dans des conditions variées pour influencer des évènements cellulaires tels que des courants induits par le kaïnate dans des neurones de l’hippocampe (Improta-Brears et al., 1999) et des cascades de seconds messagers dans ce même organe (Gu et al., 1999) ou des neurones hypothalamiques (Lagrange et al., 1999; Abraham et al., 2004). Les effets amplificateurs de l’E2 et de l’o,p’-DDT, sur la sécrétion de GnRH induite par le glutamate, sont inhibés par les inhibiteurs des PKA, PKC et MAPK (Zhang et al., 2010). Ces observations confirment donc nos précédents résultats et fournissent une preuve supplémentaire d’une composante rapide et intracellulaire des effets des PEs. En résumé, cette seconde étude expérimentale montre que les PEs, en particulier l’o,p’-DDT, peuvent moduler la sécrétion de GnRH in vitro à partir de l’hypothalamus femelle immature via à la fois des effets rapides et lents, avec l’implication des récepteurs AMPA, des ERs et du AhR. 79 PEs et réponse sécrétoire de GnRH VII. Discussion générale et perspectives VII. DISCUSSION GENERALE ET PERSPECTIVES Résumé: Dans cette discussion générale, nous redéfinirons brièvement la problématique qui nous a motivés à réaliser ce travail de recherche. Nous intégrerons ensuite les résultats que nous avons observés dans les connaissances actuelles de l’influence des PEs sur le timing pubertaire et la maturation sexuelle après une exposition néonatale. Finalement, nous explorerons quelques pistes de recherche pour l’avenir. Changements séculaires du timing pubertaire et facteurs envisagés Les deux ou trois dernières décennies ont été marquées par des changements de l’âge au début de la puberté qui apparaissent assez complexes. En effet, les premiers enfants à entrer en puberté sont de plus en plus jeunes, en particulier les filles pour le début du développement des seins ainsi que montré aux Etats-Unis, au Danemark et en Belgique (Herman-Giddens et al., 1997; Lee et al., 2001; Aksglaede et al., 2009; Roelants et al., 2009). Une étude belge a montré que les garçons connaissaient semblable phénomène pour le début du développement testiculaire (Roelants et al., 2009). Toutefois, d’autres manifestations de la puberté comme les premières règles chez la fille surviennent à un âge stable et la fin de la puberté (cycles réguliers ou ovulatoires chez la fille et volume testiculaire adulte chez le garçon) est atteinte de plus en plus tard par un certain nombre de sujets. Dans notre travail, nous nous sommes focalisés sur le début de plus en plus précoce de la puberté chez la fille et les facteurs qui pourraient y contribuer. Les facteurs familiaux sous-tendus par les facteurs génétiques sont prépondérants dans le déterminisme du timing pubertaire, mais ceux-ci ne peuvent être de nature à expliquer les changements observés. En outre, des mécanismes tels que des polymorphismes ne peuvent pas être étudiés dans la mesure où les gènes qui contrôlent les variations physiologiques de la puberté restent peu connus. Un gène candidat est le variant LIN28B d’un gène qui encode un régulateur du processing des µRNAs (Ong et al., 2009). Toutefois, ce variant ne peut expliquer que 2 % de l’ensemble des variations physiologiques de timing qui s’étalent sur 4 à 5 années. Ni l’appartenance ethnique, ni les différences d’origine géographique, ne peuvent, à elles seules, expliquer la tendance à un avancement de l’âge au début de la puberté observé durant les dernières décennies. Une telle conclusion a été tirée sur base de l’analyse des origines des enfants de l’adoption internationale qui développent une puberté précoce 80 Discussion générale et perspectives (Krstevska-Konstantinova et al., 2001). Les facteurs nutritionnels, en particulier l’excédent d’apport énergétique, et l’obésité qui en découle ont été invoqués comme de possibles responsables, notamment via la sécrétion accrue de leptine qui y est associée (Frisch et Revelle, 1970 et 1971; Frisch et al., 1973). Ainsi, chez une fillette âgée de 9 ans, déficiente en leptine et traitée par cette hormone, la sécrétion pulsatile nocturne de LH (GnRH) apparaît (Farooqi et al., 1999). Chez l’humain comme chez le rongeur, la leptine est donc un pré-requis au fonctionnement normal de l’axe hypophyso-gonadique (Ahima et al., 1996; Chehab et al., 1996; Köpp et al., 1997; Montague et al., 1997; Strobel et al., 1998; Farooqi et al., 1999; Magni et al., 2000; Welt et al., 2004). Dès lors, certains pensent que la leptine pourrait causer un déclenchement de la puberté avancée aux Etats-Unis puisque l’avance du début de la puberté dans ce pays coïncide avec ce que d’aucuns considère comme une épidémie d’obésité. On remarquera toutefois que des données similaires rapportées récemment au Danemark concernant l’avance de l’âge du début du développement des seins ne sont pas associées à une modification séculaire de la corpulence des enfants qui est stable dans ce pays. Ceci suggère l’implication d’autres facteurs. Un enjeu lié au rôle possible des facteurs nutritionnels est celui de la période de la vie à laquelle ces effets s’exerceraient. Dans le mécanisme évoqué cidessus, l’hypothèse porte sur un effet de la nutrition durant la période qui précède immédiatement le début de la puberté. On peut, par ailleurs, se demander s’il n’existe pas, plus tôt dans la vie, des périodes ou fenêtres critiques au cours desquelles le timing d’un processus comme le déclenchement de la puberté serait programmé et éventuellement influencé par des facteurs comme la nutrition. A ce sujet, même si nous avons développé l’hypothèse de l’action des PEs chez les enfants de l’adoption internationale, nous avons également souligné que ces mêmes enfants sont plus susceptibles que d’autres d’avoir connu divers stress anté- et post-natals, parmi lesquels des restrictions tant sur le plan nutritionnel qu’affectif (Dominé et al., 2006). Programmation intra-utérine du timing pubertaire La question de la fenêtre critique de la période intra-utérine (que nous n’avons pas investiguée dans nos travaux expérimentaux) a déjà été évoquée dans le chapitre II, notamment sur base des PEs, en particulier le DES. Il est utile, dans cette discussion générale, de retourner à l’hypothèse originale de Barker et Osmond (1986) qui portait sur des aspects en relation avec la nutrition. Barker, un épidémiologiste anglais, s’est intéressé aux facteurs qui pouvaient expliquer les variations de mortalité d’une région à l’autre du Royaume-Uni, à la suite d’accidents coronariens. Il a observé que les variations régionales du taux de mortalité 81 Discussion générale et perspectives par infarctus du myocarde étaient en relation directe et étroite avec la mortalité néonatale dans ces mêmes régions, 60 années plus tôt. Partant du constat connu que la mortalité néonatale est inversement liée au poids de naissance, il a montré que le risque de décès par accidents coronariens était d’autant plus élevé que le poids de naissance était faible. Il en a émis l’hypothèse que les conditions nutritionnelles durant la vie prénatale et post-natale précoce pouvaient déterminer, en quelque sorte programmer, des perturbations ultérieures favorisant les accidents coronariens. En l’occurrence, les travaux ultérieurs ont montré que le retard de croissance intra-utérin (RCIU) était associé à un risque accru de syndrome métabolique pouvant expliquer l’athérosclérose et les accidents coronariens qui en découlent (Ibanez et al., 2009). Dans une perspective causale, différents facteurs sont à envisager en amont du RCIU. Parmi ceux-ci, les restrictions nutritionnelles durant la vie intra-utérine mais aussi les PEs dont certains se sont avérés responsables d’un RCIU à court terme (Ibanez et al., 1998; Ibanez et al., 2007), mais aussi d’un syndrome métabolique à long terme (Hugo et al., 2008; BenJonathan et al., 2009). Des mécanismes et concepts communs (Fig. 23) pourraient ainsi soustendre les observations de Barker et les effets du DES détaillés au chapitre II. La période intra-utérine et les premiers mois ou années de la vie constituent des périodes critiques durant lesquelles des évènements ultérieurs sont programmés et susceptibles d’être influencés par divers facteurs en raison de la plasticité des systèmes de régulation. Des modifications de l’environnement foetal qui touchent à la nutrition, au métabolisme ou aux hormones peuvent interférer avec la programmation physiologique et les mécanismes sont complexes. Par exemple, dans le cas de la régulation du métabolisme énergétique, une réduction de la production d’adiponectine est observée ainsi qu’une réduction de la sensibilité à la leptine qui joue un rôle organisationnel sur la mise en place de l’homéostasie du métabolisme énergétique, tôt dans la vie (Hugo et al., 2008; Ben-Jonathan et al., 2009). Des modifications épigénétiques qui portent notamment sur la méthylation et l’acétylation de l’ADN apparaissent comme centrales dans ces processus (Crews et McLachlan, 2006). Ces modifications induites par les facteurs environnementaux modifient l’expression de l’ADN, de telle sorte que l’acquis module l’inné. En outre, certains travaux récents suggèrent que les modifications épigénétiques seraient transmissibles aux générations suivantes si l’ADN des gamètes est concerné (Gore , 2008; Patisaul et Adewale, 2009; Bernal et Jirtle, 2010; Walker et Gore, 2011). Après une latence variable de quelques mois à plusieurs dizaines d’années, diverses manifestations surviennent et constituent en quelque sorte un «lifelong syndrome». Ainsi, un RCIU est prédictif de diverses perturbations hormonales et métaboliques tout au 82 Discussion générale et perspectives long de la vie (Tableau 7), parmi lesquelles une adrénarche prématurée, une insulinorésistance et un syndrome métabolique (Ibanez et al., 1998; Ibanez et al., 2007). Evènement environnemental: nutritionnel, métabolique, endocrinien, … DE- ou REPROGRAMMATION Manifestations diverses: Périodes critiques intra-utérine et post-natale précoce: SYNDROMES PLASTICITE Latence variable Barker et Osmond, 1986 Herbst et al., 1971 ? Mère DES RCIU Syndrome métabolique Systèmes endocrinien, reproducteur, métabolisme, SNC Décès Coronaropathie Filles adultes Cancers vagin Figure 23: Origines développementales des perturbations du contrôle physiologique de l’homéostasie (balance énergétique et reproduction) selon les hypothèses de Barker et Herbst. DES: diéthylstilbestrol; RCIU: retard de croissance intra-utérin; SNC: système nerveux central. Dans le cas du DES qui a évidemment été banni mais dont les effets sont toujours étudiés dans la descendance des femmes exposées au traitement, les constats des conséquences de l’exposition foetale ont été élargi à diverses anomalies du système reproducteur chez la femme et également chez l’homme (Herbst et Anderson, 1990; Merino, 1991; Schrager et Potter, 2004). A côté de ces aspects repro-toxiques, les données récentes chez l’animal indiquent que le DES peut avoir des effets neuro-toxiques, notamment sur l’hippocampe (SanMartin et al., 1999; Sato et al., 2002; Ogiue-Ikeda et al., 2008) et des effets métabo-toxiques qui apparaissent à l’âge adulte (Zangar et al., 1992; Piersma et al., 2002), à la suite d’une exposition précoce (Tableau 7). Un autre exemple où les données animales et humaines sont convergentes, est le syndrome de dysgénésie testiculaire proposé par Skaekebbaek et son équipe (2001): cette entité rassemble des anomalies génitales à la naissance chez le garçon (hypospadias et cryptorchidie), une oligospermie et des cancers de la lignée germinale dans le testicule (Tableau 7). Chez la fille, des signes de puberté précoce peuvent survenir. Parmi les PEs susceptibles d’expliquer ces manifestations, retenons les phtalates, agents associés à diverses matières plastiques, sans exclure d’autres substances. 83 Discussion générale et perspectives EVENEMENTS INTRA-UTERINS OU POST-NATALS PRECOCES Tableau 7: Manifestations possibles durant la vie entière suite à des évènements périnataux. MANIFESTATIONS ULTERIEURES POSSIBLES Nouveau-né Enfant Adolescent Adulte RCIU Adrénarche HyperandroHTA, obésité Insufprématurée génie ovarienne viscérale, fisance hypertriglycérinutridémie et diabète de tionnelle type II Cancers vaginaux MalformaPuberté avancée Cancer du sein tions utérines Exposition Hypospadias Oligospermie et au DES et cancer de la prostate cryptorchidie Altérations de Syndrome neurogenèse métabolique de l’hippocampe Développement précoce Exposition des seins aux phtalates Hypospadias Oligospermie et et cancer testiculaire cryptorchidie Syndrome de dysgénésie testiculaire DES: diéthylstilbestrol; HTA: hypertension artérielle; RCIU: retard de croissance intra-utérin. Quelle est l’évidence que le timing pubertaire fait l’objet d’une programmation intrautérine? Dans les modèles animaux comme le mouton qui se caractérise par un timing plus précoce du début de la puberté chez le mâle que la femelle, l’implication d’une programmation intra-utérine a été montrée. En effet, l’exposition foetale aux androgènes masculinise le timing pubertaire chez les femelles et, dans la même mesure, les organes génitaux externes (Kosut et al., 1997). Rôle des PEs dans les variations du timing pubertaire Ainsi que nous l’avons discuté dans le chapitre II, pratiquement toutes les formes de puberté précoce centrale touchent davantage la fille que le garçon. Les raisons de ce dimorphisme sexuel restent non élucidées. Il est remarquable que le modèle murin que nous avons exploité se caractérise par un semblable dimorphisme puisque la sécrétion pulsatile de GnRH à partir d’explants hypothalamiques d’animaux prépubères est accélérée par des 84 Discussion générale et perspectives concentrations d’E2 plus faibles chez la femelle que chez le mâle (Matagne et al., 2004). Dans d’autres espèces (oiseaux et poissons notamment), un dimorphisme sexuel est bien démontré notamment sur base de l’expression préférentielle de l’aromatase dans le cerveau du mâle (Balthazart, 1991; Vizziano-Cantonnet et al., 2010). Le lien entre ce dimorphisme et le comportement sexuel est bien établi, et une relation possible avec la maturation sexuelle n’a pas été invoquée à notre connaissance. Par ailleurs, l’aromatase localisée dans le cerveau est impliquée dans des troubles de la différenciation sexuelle chez des poissons traités par l’o,p’DDT (Kuhl et al., 2005). Bien que la raison de la tendance à un début plus avancé de la maturation pubertaire des fillettes ne soit pas encore évidente, il apparaît que l’exposition chronique à des agents toxiques environnementaux, qui affectent principalement le système reproducteur, pourrait y contribuer (Potashnik et al., 1984; Rogan et al., 1999; Mocarelli et al., 2000; Hama et al., 2001; Sahamoto et al., 2001). En Belgique, un taux de p,p’-DDE anormalement élevé a été mesuré dans le sérum d’enfants immigrants en raison de l’adoption internationale pour la plupart et qui avaient développé une puberté précoce après leur arrivée en Belgique. Cette dernière pourrait être associée à une exposition au DDT dans leur pays d’origine et, ensuite à une soustraction de l’environnement exposé, en raison de la migration en Belgique (Krstevska-Konstantinova et al., 2001; Parent et al., 2003). Le mécanisme permettant d’expliquer l’apparition d’une puberté précoce, dont la fréquence est 80 fois plus élevée chez ces jeunes filles que chez les autochtones, serait le suivant (Fig. 5): le DDT, doué de propriétés oestrogéno-mimétiques, entraîne à la fois un effet de promotion de la maturation hypothalamique (que nous avons étayé par nos travaux) mais également un rétrocontrôle hypohysaire négatif (inhibiteur). Ce dernier est particulièrement efficace chez le sujet prépubère qui y est très sensible (Grumbach, 1998). Il masque la maturation hypothalamique qui ne peut s’exprimer si les gonadotrophines sont freinées lorsque les enfants restent exposés à la substance dans leur pays d’origine. La migration en Belgique entraîne une diminution ou une disparition de l’exposition et une levée du rétrocontrôle inhibiteur hypophysaire. Ceci permet à la maturation hypothalamique déjà enclenchée de s’exprimer sous la forme d’une puberté précoce centrale qui est, en fait, secondaire à une origine périphérique (KrstevskaKonstantinova et al., 2001; Parent et al., 2003; Rasier et al., 2006). Il a été montré que les cohortes d’enfants de l’adoption internationale se caractérisent par un âge au début de la puberté globalement avancé (Parent et al., 2003). Le problème concerne donc l’ensemble de ces enfants migrants et non un sous-groupe seulement. Cela dit, l’ensemble de ces enfants a aussi été exposé au DDT et la relation de cause à effet entre cette exposition et l’avance du 85 Discussion générale et perspectives timing pubertaire est très difficile à démontrer. Nous avons imaginé de rechercher, via un questionnaire auto-administré, les enfants adoptés avec puberté différée et de pouvoir mesurer chez ceux-ci les taux de p,p’-DDE en postulant qu’ils pouvaient être plus bas à conditions égales d’âge à l’immigration et de délai depuis l’immigration. Ce projet s’est avéré impraticable. On peut s’interroger sur le rôle du p,p’-DDE mis en évidence dans le sérum des fillettes souffrant de puberté précoce. Dans la publication initiale rapportant les observations cliniques (Krstevska-Konstantinova et al., 2001), le DDE a été considéré comme un reflet de l’exposition antérieure au DDT dont il est dérivé. Il n’est toutefois pas exclu que le DDE ait contribué en tant que tel à la puberté précoce. Un concept mécanistique de la perturbation endocrinienne avancé récemment repose davantage sur le rapport entre effets oestrogéniques et androgéniques que sur un effet mimant ou antagonisant exclusivement les stéroïdes de l’un ou l’autre type. Une illustration clinique est apportée par la survenue de développement mammaire précoce suite à une exposition aux phtalates qui sont essentiellement doués d’activité anti-androgénique (Colon et al., 2000). Une autre illustration est celle d’un jeune garçon âgé de 4 ans atteint d’un syndrome de Peutz-Jeghers et qui, dans ce cadre, présente une gynécomastie bilatérale secondaire à la présence d’adénomes testiculaires qui sécrètent l’aromatase (Coen et al., 1991). En l’absence de toute élévation des sécrétions androgéniques, cette situation qui altère le rapport androgènes/oestrogènes suffit pour causer la gynécomastie. Chez le rat, semblable conclusion a été tirée sur base de l’exposition conjointe à un agent antiandrogénique et au DES, puissant oestrogène de synthèse (Rivas et al., 2002). Ainsi, les manifestations oestrogéniques causées par le DDT pourraient avoir été potentiées par les effets anti-androgéniques du DDE chez les fillettes exposées à l’insecticide. Choix des conditions expérimentales (dérivés étudiés et périodes d’exposition) Puisque nos observations cliniques ont été faites essentiellement chez des filles (Krstevska-Konstantinova et al., 2001) et que l’E2 influence préférentiellement la sécrétion de GnRH au niveau de l’hypothalamus des rats femelles (Matagne et al., 2004), ce modèle expérimental a été utilisé pour réaliser notre travail, dont les deux objectifs principaux étaient d’une part évaluer les effets des PEs sur le déclenchement de la puberté in vivo et d’autre part comprendre le(s) mécanisme(s) d’action impliqué(s) dans ces effets in vitro, chez le rat femelle. 86 Discussion générale et perspectives Parmi les deux isomères du DDT, dont les effets sur la fréquence pulsatile de GnRH in vitro sont similaires, l’o,p’-DDT a été préféré dans nos investigations in vivo pour son oestrogénicité plus marquée et sa toxicité plus faible (Heinrichs et al., 1971; Gellert et al., 1972). En outre, il s’agit de l’isomère utilisé dans de nombreuses études antérieures portant sur le contrôle neuroendocrinien de la reproduction (Wrenn et al., 1971; Gellert et al., 1974; Faber et al., 1991). Les doses utilisées pour les études in vivo ont été déterminées selon nos données in vitro et sont comparables à celles utilisées dans d’autres études chez les rongeurs (Desaulniers et al., 2005; Mussi et al., 2005). Dans nos travaux, il n’a pas été possible de tirer de conclusions sur base des concentrations des isomères du DDT et de ses dérivés dans le sérum. Les conditions d’exposition au DDT chez le rat et les jeunes filles migrantes sont, par ailleurs, difficiles à comparer sur base des seules informations disponibles chez les patientes, à savoir les concentrations sériques de p,p’-DDE mesurées plusieurs années plus tard. En outre, il est à noter que l’extrapolation des doses et des durées d’exposition aux substances chimiques chez les animaux de laboratoire ne représente pas toujours les conditions que les humains rencontrent dans leur habitat durant leur vie. Certaines études expérimentales, chez le rat nouveau-né soumis à une exposition précoce au DDT, ont rapporté des concentrations sériques environ 20 fois plus élevées que celles mesurées chez les jeunes filles migrantes (Heinrichs et al., 1971; Tomiyama et al., 2003; Mussi et al., 2005). Dans nos conditions, aucun dérivé du DDT, en particulier l’o,p’-DDE, n’a été détecté après un traitement avec l’o,p’-DDT, suggérant une faible transformation du DDT en DDE chez le rat. Cependant, Tomiyama et son équipe (2003) ont détecté du DDE plasmatique jusqu’à des concentrations 10 fois plus basses que celles du DDT, à peine 2 jours après le début d’exposition à l’insecticide. Par ailleurs, lorsque les PEs sont utilisés en mixtures, leurs effets requièrent des concentrations plus faibles qu’attendu (Rajapakse et al., 2004). En outre, des effets apparaissent en présence d’une mixture de substances à des concentrations qui n’entraînent pas d’effets lorsque ces substances sont utilisées individuellement (Christiansen et al., 2009). Des poissons exposés à des mixtures composées de métabolites du DDT ainsi que de dérivés des PBBs et des PCBs présentent un puberté précoce, une augmentation du rapport mâles/femelles et des différences de poids corporel, supportées par des modulations de la régulation des gènes impliqués dans la signalisation endocrinienne et la croissance (Lyche et al., 2010). Il est plus que probable que les patientes migrantes ont été exposées à une mixture de perturbateurs dans leurs pays d’origine et à d’autres mixtures après leur migration en Belgique. Etudier l’effet de mixtures n’était pas possible dans nos conditions car nous ignorons les substances en cause et leurs concentrations. Les protocoles expérimentaux s’en 87 Discussion générale et perspectives seraient trouvés alourdis de manière inacceptable et des conclusions n’auraient pas pu être tirées concernant le DDT. La fenêtre d’âge des JPN 6-10 coïncide avec la période périnatale chez les enfants. En ce qui concerne la maturation du SNC, le rat nouveau-né est en effet à un stade de maturation moins avancé que l’humain. Une période de 5 jours de traitement est relativement courte pour l’espérance de vie mais significative si l’on se réfère à la courte période de 3 semaines entre la naissance et la maturation sexuelle chez le rat. Quant à l’utilisation de rats femelles âgés de 15 jours pour l’étude de l’IP de GnRH, elle est basée sur nos résultats antérieurs qui montrent que la sécrétion de GnRH in vitro est affectée de façon maximale par l’E2 à cet âge (Matagne et al., 2004). Elle est aussi affectée à 5 jours, mais un tel âge se situe dans la fenêtre critique de la différenciation sexuelle du cerveau, pouvant causer des interférences possibles avec la programmation de la cyclicité oestrale (Heinrichs et al., 1971; Gellert et al., 1972). Un traitement durant la seconde semaine de vie post-natale est donc un compromis pour affecter potentiellement la maturation sexuelle en limitant les interférences autant que faire se peut avec le mécanisme d’ovulation sexuellement différencié. Cependant, de telles perturbations ont probablement encore lieu à ces âges de JPN 6-10 car des concentrations d’E2 et de DDT élevées n’induisent plus un premier oestrus précoce contrairement aux faibles doses; par contre, elles entraînent un délai prolongé entre l’OV et le premier oestrus. Si le concept de fenêtre critique de programmation est étendu à d’autres aspects que l’ovulation, notamment au contrôle de la balance énergétique, l’exposition au DDT se situe certainement dans la fenêtre critique de programmation. En effet, le développement d’un syndrome d’obésité et d’insulinorésistance après malnutrition intra-utérine est empêché par un traitement à la leptine entre les JPN 3 et 13 chez le rat (Vickers et al., 2005). Diverses études ont clarifié le possible rôle de la nature des PEs et des paramètres d’exposition (âge, dose et durée) dans les effets sur la maturation sexuelle. Chez les rongeurs, des pesticides tels que le MXC (oestrogénique/anti-androgénique) et le lindane (faiblement oestrogénique/anti-androgénique) causent, respectivement, une précocité et un retard de l’âge à l’OV, et tous deux entraînent des perturbations de la cyclicité oestrale (Cooper et al., 1989; Gray Jr et al., 1989; Laws et al., 2000). En outre, des taux sériques réduits de LH sont rapportés après une administration de lindane (Cooper et al., 1989). 88 Discussion générale et perspectives Mécanisme central versus périphérique de la puberté précoce expérimentale Après l’administration d’E2 à des rongeurs immatures, plusieurs études ont rapporté une inhibition de la sécrétion de LH (Caligaris et al., 1972; Andrews et Ojeda, 1977) et une réduction développementale des concentrations sériques de LH entre le JPN 15 et l’OV, à la fois en condition basale et en réponse à la GnRH (Ojeda et al., 1977; Ramaley, 1982). Dans nos conditions d’exposition à l’o,p’-DDT pendant 5 ou 10 jours, nous observons simultanément au JPN 15 une augmentation de la fréquence de la sécrétion pulsatile de GnRH in vitro et une diminution des taux de LH sériques in vivo, ce qui suggère la coexistence d’une stimulation de la maturation hypothalamique et d’une inhibition hypophysaire par un rétrocontrôle négatif. Toutefois, dans le contexte murin où une diminution des taux de LH survient physiologiquement à cette période, l’observation d’une telle diminution pouvait aussi résulter d’une maturation précoce de la sécrétion hypophysaire. Un rétrocontrôle inhibiteur au niveau hypothalamique et/ou hypophysaire est supporté par la réduction des niveaux sériques de LH après traitement de rats matures ou nouveau-nés avec de l’o,p’-DDT (Gellert et al., 1972; Gellert et al., 1974). Cependant, aucun changement dans la sécrétion basale de LH et en réponse à la GnRH n’est observé dans d’autres études 6 semaines après un traitement à l’o,p’DDT entre les JPN 1 et 10 (Faber et al., 1991). Le taux de LH inchangé en réponse à la GnRH aux JPN 15 et 22, dans notre étude expérimentale, pourrait s’expliquer par la coexistence d’effets inhibiteurs et stimulateurs qui se neutralisent à ces âges (Rasier et al., 2007). A côté des effets des PEs sur le système hypothalamo-hypophysaire, des effets directs sont possibles au niveau des tissus-cibles des stéroïdes sexuels. Ainsi, une OV précoce peut résulter soit d’un effet périphérique du DDT sur l’épithélium vaginal, soit d’une activité hypophyso-ovarienne précoce, soit des deux à la fois. Dans nos expériences in vivo, un effet central au moment de l’OV est suggéré par la brusque réduction de la LH en réponse à la GnRH observée chez les animaux traités. Par ailleurs, un possible premier oestrus précoce indique une activité prématurée de l’axe hypothalamo-hypophyso-ovarien. Un tel mécanisme physiopathologique qui implique un effet promoteur de la maturation au niveau neuroendocrinien est cohérent avec l’implication du DDT dans la précocité sexuelle apparaissant après migration chez les enfants issus de l’adoption internationale (KrstevskaKonstantinova et al., 2001; Parent et al., 2003; Rasier et al., 2006). Dans une étude danoise, il a été montré que les changements développementaux des taux hormonaux hypophysoovariens étaient observables avant l’établissement de la puberté et supportaient un mécanisme hypothalamo-hypophysaire de puberté précoce (Teilmann et al., 2006). Un objectif de nos 89 Discussion générale et perspectives expérimentations était d’étudier les effets d’une exposition prolongée au DDT de manière à reconstituer la situation des enfants exposés et non migrants. Une OV précoce suivie par un oestrus permanent est observée après l’administration d’E2 pendant les JPN 6-40. Une fois le traitement arrêté, le premier oestrus apparaît à un âge fortement retardé, ce qui indique à la fois un effet stimulateur périphérique du stéroïde et une inhibition centrale durant l’exposition. Un léger effet anorexigène de l’E2 est aussi observé, ce qui confirme les observations précédemment rapportées par Ramirez et Sawyer (1965) et par Ramirez (1981), tandis que l’o,p’-DDT cause une diminution dramatique du poids corporel, suggérant un possible effet toxique de l’insecticide (Tomiyama et al., 2003). Mécanisme hypothalamique de l’effet du DDT sur la sécrétion de GnRH En contraste avec d’autres modèles in vitro impliquant uniquement les neurones à GnRH notamment en tant que lignée cellulaire immortalisée, l’incubation statique d’explants hypothalamiques permet d’étudier la sécrétion pulsatile de GnRH in vitro comme le résultat de la fonction du neurone à GnRH préservé dans son environnement neurono-glial original qui régule et maintient cette sécrétion pulsatile de GnRH (Matagne et al., 2004; Rasier et al., 2007). Notons que les concentrations requises de certains réactifs tels que le glutamate sont plus élevées que celles utilisées dans les cultures cellulaires (Donoso et al., 1990; Ojeda et Urbanski, 1994; Kuehl-Kovarik et al., 2002; Matagne et al., 2005; Rubin et al., 2006). Cette différence qui relève probablement d’aspects méthodologiques (diffusion du réactif, dégradation, …), peut justifier un questionnement sur la validité de nos données in vitro. Cependant, la capacité des explants à répondre à des stimulations répétées de glutamate est maintenue pendant plusieurs heures et reste parfaitement régulière. Ceci suggère l’intégrité fonctionnelle de l’appareil neurono-glial impliqué dans le processus sécrétoire. Les concentrations des substances utilisées in vitro pour les études mécanistiques sont, par ailleurs, cohérentes avec celles utilisées par d’autres (Urbanski et al., 1996; Clark et al., 1998; Diel et al., 2002) et ont été choisies après une étude concentration-réponse sur l’amplification de la sécrétion de GnRH induite par le glutamate. De manière similaire à l’E2, les deux isomères du DDT augmentent rapidement la sécrétion de GnRH induite par le glutamate de façon concentration-dépendante. Le ratio E2:PE en terme d’activité biologique qui est observé avec les isomères du DDT et le BPA est cohérent avec d’autres études (Clark et al., 1998; Desaulniers et al., 2005; Rasier et al., 2006). Le p,p’-DDE, connu pour être doué d’une activité anti-androgénique et faiblement oestrogénique (Sohoni et Sumpter, 1998), n’est pas 90 Discussion générale et perspectives actif en tant que tel dans notre système malgré les concentrations élevées utilisées in vitro. Soulignons toutefois que les conclusions tirées in vitro ne peuvent être simplement transposées aux conditions in vivo. Des plus faibles concentrations d’E2 que celles requises pour un effet endéans 1 à 2 heures deviennent effectives après plusieurs heures d’incubation, ce qui peut impliquer la diffusion progressive des réactifs dans l’explant, une hypothèse cohérente avec le fait que des plus grandes concentrations de substances comme celles observées pour les acides aminés sont nécessaires dans les modèles d’explants contrairement à d’autres systèmes de cultures neuronales (Matagne et al., 2003). Par ailleurs, la mise en jeu de mécanismes génomiques dont la traduction et l’expression des effets de l’E2 est une autre explication possible. D’éventuels mécanismes génomiques sont, en effet, impliqués dans les actions de l’E2 via les ERs α et/ou β (Herbison, 1998; Herbison et Pape, 2001), à côté des effets rapides ou non génomiques illustrés par le Docteur Valérie Matagne au sein de notre laboratoire (Matagne et al., 2005). Dans le cas d’effets génomiques, la cible de l’E2 serait sans doute différente des neurones à GnRH puisque les corps cellulaires de GnRH sont absents des explants rétrochiasmatiques que nous avons étudiés (Purnelle et al., 1998). Quant aux effets rapides de l’E2, ils peuvent avoir lieu dans les secondes ou les minutes qui suivent l’application d’un stimulus. Parmi ceux-ci, mentionnons les courants induits par le kaïnate dans les neurones hippocampaux (Improta-Brears et al., 1999) et les cascades de seconds messagers dans l’hippocampe (Gu et al., 1999) ou les neurones hypothalamiques (Lagrange et al., 1999; Abraham et al., 2004) ainsi que le récepteur 30 couplé aux protéines G dans les neurones à GnRH (Noel et al., 2009). Nous fournissons aussi la preuve que l’o,p’-DDT peut directement stimuler la sécrétion de GnRH induite par le glutamate endéans 15 minutes, avec une augmentation de cette réponse sécrétoire après quelques heures d’exposition (Rasier et al., 2007). Par ailleurs, les effets du DDT sont également observés sur la sécrétion pulsatile après 1 à 2 heures d’incubation. L’ensemble des observations suggère que ces effets impliquent à la fois des mécanismes non génomiques (rapides ou à court terme) et des mécanismes génomiques (lents ou à long terme) comme mentionnés pour l’E2 (Matagne et al., 2004; Matagne et al., 2005) dans les mêmes conditions. Quelques études ont montré que le sous-type AMPA des récepteurs au glutamate module les effets plastiques induits par l’E2 dans différentes populations de neurones (Tsurugizawa et al., 2005; Todd et al., 2007) et qu’ils sont impliqués dans les changements morphologiques induits par l’E2 dans le noyau ventro-médian de l’hypothalamus, spécifiquement chez les rats femelles (Todd et al., 2007). Ce récepteur apparaît également 91 Discussion générale et perspectives jouer un rôle non négligeable dans les effets de l’E2 à la fois sur la sécrétion pulsatile de GnRH (Rasier et al., 2007) et sa sécrétion induite par le glutamate. L’o,p’-DDT apparaît impliquer les mêmes récepteurs que l’E2 et, par conséquent, le sous-type AMPA des récepteurs au glutamate est une classe supplémentaire de récepteur impliqué dans les effets du DDT, ce qui constitue la première preuve de son implication dans les effets rapides des PEs. Cependant, la voie des récepteurs impliqués dans les effets de l’o,p’-DDT est partiellement différente de celle d’E2, avec une participation du AhR, comme indiqué par la réduction préférentielle des effets de l’o,p’-DDT par son antagoniste. L’investigation des effets de l’insecticide via cette voie est justifiée puisque Ohtake et ses collègues (2003) ont rapporté que les dioxines peuvent mimer l’effet des oestrogènes via un mécanisme qui implique l’activation des ERs par le complexe AhR - translocateur nucléaire. Nos données indiquent aussi le rôle possible du AhR dans la modulation des effets de l’o,p’-DDT sur la sécrétion de GnRH. Il est donc concevable que le complexe o,p’-DDT-AhR agisse en réaction croisée avec la machinerie de signalisation de l’E2 et forme un complexe transcriptionnellement actif dans la région régulatrice des gènes répondant au ERα (Ohtake et al., 2003). En dehors de cette étape initiale, la voie semble similaire à l’E2 avec, comme déjà mentionné, l’implication du sous-type AMPA des récepteurs au glutamate dans les effets rapides, et les ERs à la fois dans les effets rapides et lents (Rasier et al., 2007). En outre, les effets amplificateurs de l’o,p’-DDT sur la sécrétion de GnRH induite par le glutamate sont prévenus par les inhibiteurs de la PKA et C, et des MAPK, ce qui fournit une preuve supplémentaire d’une composante rapide intracellulaire des effets des PEs. En résumé, nous avons mis en évidence un effet stimulant des isomères oestrogéniques du DDT sur la sécrétion pulsatile de GnRH ainsi que sur la sécrétion de GnRH induite par le glutamate chez le rat femelle immature. Le DDT entraîne un effet stimulant similaire à celui de l’E2, mais à des concentrations 100 à 1000 fois plus élevées que le stéroïde. Cette différence de concentration est cohérente avec les observations faites dans d’autres modèles in vivo et in vitro (Smeets et al., 1999; Legler et al., 2002). Par nos travaux, nous fournissons une preuve que le DDT peut influencer la maturation hypothalamo-hypophysaire femelle infantile via une accélération développementale précoce de la sécrétion de GnRH démontrée in vitro et une réduction précoce de la LH en réponse à la GnRH démontrée in vivo. Nous montrons aussi que cet insecticide cause une puberté précoce in vivo quand des individus immatures y sont exposés durant une période limitée. Les PEs, en particulier l’o,p’-DDT, peuvent moduler la sécrétion de 92 Discussion générale et perspectives GnRH in vitro dans l’hypothalamus femelle immature à travers à la fois des effets rapides et lents avec l’implication des ERs, du AhR et du sous-type AMPA des récepteurs au glutamate, ainsi que via les kinases intracellulaires A, C et MAPK. Perspectives La poursuite de travaux sur les effets de l’exposition anté- et périnatale à différents PEs est indispensable pour une compréhension réelle des relations exposition-désordre chez les animaux femelles immatures et, par extension, chez les jeunes filles. Parmi les alternatives devant lesquelles se trouvent les investigateurs, la suivante nous paraît cruciale: soit étudier isolément les effets d’une exposition précoce limitée à une substance bien caractérisée comme PE en vue d’approfondir les aspects mécanistiques (ce que nous avons réalisé dans ce travail); soit étudier les effets d’une exposition prolongée à une mixture de substances qui nous rapproche des conditions réelles dans le règne animal et chez l’humain. En effet, ce n’est pas l’exposition individuelle à une seule substance mais plutôt l’exposition cumulative à de nombreux agents chimiques qui détermine les effets observés (Soto et al., 1994; Soto et al., 1997). Le choix posé dans le laboratoire est le premier avec l’objectif d’étendre les aspects de l’homéostasie qui sont évalués au-delà de l’axe reproducteur et d’évaluer aussi l’impact sur le contrôle de la balance énergétique (Bourguignon et al., 2010). L’option prise est d’étudier le DES, un PE banni mais dont les effets sur différents systèmes sont bien caractérisés. Notamment, une exposition néonatale au DES pendant 5 jours entraîne une obésité avec insulino-résistance à l’âge adulte (Newbold et al., 2008). Les données les plus récentes du laboratoire (non encore publiées) indiquent que ce PE cause une diminution précoce de sensibilité de la sécrétion de GnRH à la leptine. On notera avec intérêt que dans ce cas, la puberté du rat femelle apparaît fortement retardée. La puberté est un phénomène dont l’expression des gènes oestrogéno-sensibles responsables de son déclenchement et la régulation par les déterminants moléculaires sont complexes (Sisk et Foster, 2004) et encore largement méconnus. Les perspectives que nous dessinons au terme de ce travail sont aussi orientées vers la biologie moléculaire et la recherche de biomarqueurs d’exposition aux PEs, notamment le gène oct-2 (Ojeda et al., 1999) et le facteur de transcription TTF-1/ebp/Nkx2.1 (Kugler et al., 2001). Il serait possible que l’o,p’-DDT, après liaison au ER, stimule la transcription de ces gènes et, par là-même, accélère l’apparition de la puberté. A cette fin, il serait intéressant de comparer l’expression des gènes cibles en présence de doses faibles versus fortes de PEs. L’interaction de l’o,p’- 93 Discussion générale et perspectives DDT avec le système GPR54/kisspeptine (de Roux et al., 2003; Seminara et al., 2003), lequel est un acteur important dans la régulation de la sécrétion de GnRH, pourra également être investigué. L’implication de ce système dans la perturbation neuroendocrinienne a d’ailleurs été démontrée récemment (Tena-Sempere, 2010; Servili et al., 2011). Enfin, d’autres études devront également permettre de définir de façon plus détaillée la contribution relative des formes α et β du ER ainsi que les sous-types AMPA et kaïnate des récepteurs au glutamate. Les effets des PEs sur la puberté ne représentent, en réalité, que la partie visible de l’iceberg et beaucoup d’autres effets potentiels méritent d’être investigués plus avant. Les modèles étudiés peuvent comporter les neurones à GnRH isolés dans les lignées cellulaires immortalisées aussi bien que l’animal in toto soumis à des stress précoces comme la malnutrition ou l’inflammation chronique chez la rate gestante. En outre, les implications pour d’autres structures du SNC, en particulier le cortex cérébral et l’hippocampe, méritent d’être étudiées (Parent et al., 2011). D'autres substances toxiques déclenchent des cascades de signalisation qui ont pour effet de modifier la structure biochimique du récepteur hormonal. Pour exemple, la phosphorylation (catalysée par une protéine kinase) d'un récepteur hormonal modifie les propriétés biochimiques de ce dernier, y compris ses interactions avec d’autres molécules, ses propriétés de liaison et ses fonctions. Or, certaines hormones nécessitent des composés ou des complexes accessoires pour fonctionner normalement, et la perturbation de la libération de ces complexes cellulaires nécessaires à l'activité hormonale est un autre mécanisme d'action possible des PEs. 94 Discussion générale et perspectives Bibliographie BIBLIOGRAPHIE Abraham IM, Todman MG, Korach KS and Herbison AE (2004). Critical in vivo roles for classical estrogen receptors in rapid estrogen actions on intracellular signalling in mouse brain. Endocrinology 145: 3055-3061. Adelman JP, Mason AJ, Hayflick JS and Seeburg PH (1986). Isolation of the gene and hypothalamic cDNA for the common precursor of gonadotropin-releasing hormone and prolactin release-inhibiting factor in human and rat. Proceedings of the National Academy of Sciences of the United States of America 83: 179-183. Adler BA and Crowley WR (1986). Evidence for γ-aminobutyric acid modulation of ovarian hormonal effects on luteinizing hormone secretion and hypothalamic catecholamine activity in the female rat. Endocrinology 118: 91-97. Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E and Flier JS (1996). Role of leptin in the neuroendocrine response to fasting. Nature 382: 250-252. Ahima RS, Dushay J, Flier SN, Prabakaran D and Flier JS (1997). Leptin accelerates the onset of puberty in normal female mice. Journal of Clinical Investigation 99: 391-395. Akema T, Chiba A and Kimura F (1990). On the relationship between noradrenergic stimulatory and GABAergic inhibitory systems in the control of luteinizing hormone secretion in female rats. Neuroendocrinology 52: 566-572. Akema T and Kimura F (1993). Differential effects of GABAA and GABAB receptor agonists on NMDA-induced and noradrenaline-induced luteinizing-hormone release in the ovariectomized estrogen-primed rat. Neuroendocrinology 57: 28-33. Aksglaede L, Sørensen K, Petersen JH, Skakkebæk NE and Juul A (2009). Recent decline in age at breast development: The Copenhagen puberty study. Pediatrics 123: 932-939. Albright DL, Voda AM, Smolensky MH, Hsi BP and Decker M (1990). Seasonal characteristics of and age at menarche. Progress in Clinical Biological Research 341: 709720. Allen E and Doisy EA (1989). The induction of a sexually mature condition in immature females by injection of the ovarian follicular hormone. Brain Research Developmental Brain Research 45: 69-75. Almazan G, Lefebvre DL and Zingg HH (2002). Ontogeny of hypothalamic vasopressin, oxytocin and somatostatin gene expression. Journal of Neuroendocrinology 14: 904-910. Amateau SK and McCarthy MM (2002). A novel mechanism of dendritic spine plasticity involving estradiol induction of prostaglandin-E2. Journal of Neuroscience 22: 8586-8596. 95 Bibliographie Amateau SK, Alt JJ, Stamps CL and McCarthy MM (2004). Brain estradiol content in newborn rats: Sex differences, regional heterogeneity, and possible de novo synthesis by the female telencephalon. Endocrinology 145: 2906-2917. Amateau SK and McCarthy MM (2004). Induction of PGE2 by estradiol mediates developmental masculinization of sex behavior. Nature Neuroscience 7: 643-650. Amoss M, Burgus R, Blackwell R, Vale W, Fellows R and Guillemin R (1971). Purification, amino acid composition and N-terminus of the hypothalamic luteinizing hormone releasing factor (LRF) of ovine origin. Biochemical and Biophysical Research Communications 44: 205-210. Andrews WW and Ojeda SR (1977). On the feedback actions of estrogen on gonadotropin and prolactin release in infantile female rats. Endocrinology 101: 1517-1523. Ashby J, Tinwell H, Soames A and Foster J (1999). Induction of hyperplasia and increased DNA content in the uterus of immature rats exposed to coumestrol. Environmental Health Perspectives 107: 819-822. Badger TM, Lynch EA and Fox PH (1985). Effects of fasting on luteinizing hormone dynamics in the male rat. Journal of Nutrition 115: 788-797. Bakker J, Honda S, Harada N and Balthazart J (2002). The aromatase knock-out mouse provides new evidence that estradiol is required during development in the female for the expression of sociosexual behaviors in adulthood. Journal of Neuroscience 22: 9104-9112. Bakker J, Honda S, Harada N and Balthazart J (2003). The aromatase knockout (ArKO) mouse provides new evidence that estrogens are required for the development of the female brain. Annals of the New York Academy of Sciences 1007: 251-262. Bakker J, De Mees C, Douhard Q, Balthazart J, Gabant P, Szpirer J and Szpirer C (2006). Alpha-fetoprotein protects the developing female mouse brain from masculinization and defeminization by estrogens. Nature Neuroscience 9: 220-226. Bakker J and Baum MJ (2008). Role for estradiol in female-typical brain and behavioral sexual differentiation. Frontiers in Neuroendocrinology 29: 1-16. Balthazart J (1991). Testosterone metabolism in the avian hypothalamus. Journal of Steroid Biochemistry and Molecular Biology 40: 557-570. Balthazart J and Ball GF (1998). The Japanese quail as a model system for the investigation of steroid-catecholamine interactions mediating appetitive and consummatory aspects of male sexual behavior. Annual Review of Sex Research 9: 96-176. 96 Bibliographie Balthazart J, Baillien M, Charlier TD, Cornil CA and Ball GF (2003). Multiple mechanisms control brain aromatase activity at the genomic and non-genomic level. Journal of Steroid Biochemistry and Molecular Biology 86: 367-379. Balthazart J and Ball GF (2006). Is brain estradiol a hormone or a neurotransmitter? Trends in Neurosciences 29: 241-249. Balthazart J, Taziaux M, Holloway K, Ball GF and Cornil CA (2009). Behavioral effects of brain-derived estrogens in birds. Annals of the New York Academy of Sciences 1163: 31-48. Barash IA, Cheung CC, Weigle DS, Ren H, Kabigting EB, Kuijper JL, Clifton DK and Steiner RA (1996). Leptin is a metabolic signal to the reproductive system. Endocrinology 137: 3144-3147. Barberis C and Tribollet E (1996). Vasopressin and oxytocin receptors in the central nervous system. Critical Reviews in Neurobiology 10: 119-154. Barker DJ and Osmond C (1986). Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1: 1077-1081. Barry J, Dubois MP and Poulain P (1973). LRF producing cells of the mammalian hypothalamus. A fluorescent antibody study. Z Zellforsch Mikrosk Anat 146: 351-366. Barry J and Carette B (1975). Immunofluorescence study of LRF neurons in primates. Cell and Tissue Research 164: 163-178. Baum MJ (1979). A comparison of the effects of methyltrienolone (R 1881) and 5 alphadihydrotestosterone on sexual behavior of castrated male rats. Hormones and Behavior 13: 165-174. Belchetz PE, Plant TM, Nakai Y, Keogh EJ and Knobil E (1978). Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotropin-releasing hormone. Science 202: 631-633. Ben-Jonathan N, Hugo ER and Brandebourg TD (2009). Effects of bisphenol A on adipokine release from human adipose tissue: Implications for the metabolic syndrome. Molecular and Cellular Endocrinology 304: 49–54. Bernal AJ and Jirtle RL (2010). Epigenomic disruption: The effects of early developmental exposures. Birth Defects Research. Part A, Clinical and Molecular Teratology 88: 938-944. Berson SA and Yalow RS (1968). General principles of radioimmunoassay. Clinica Chimica Acta 1968: 51-69. Besecke LM and Levine JE (1994). Acute increase in responsiveness of luteinizing hormone (LH)-releasing hormone nerve terminals to neuropeptide-Y stimulation before the preovulatory LH surge. Endocrinology 135: 63-66. 97 Bibliographie Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T and Volterra A (1998). Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391: 281-285. Bhattacharya AN, Dierschke DJ, Yamaji T and Knobil E (1972). The pharmacologic blockade of the circhoral mode of LH secretion in the ovariectomized rhesus monkey. Endocrinology 90: 778-786. Blake CA, Norman RL, Scaramuzzi RJ and Sawyer CH (1973). Inhibition of the proestrous surge of prolactin in the rat by nicotine. Endocrinology 92: 1334-1338. Blanck HM, Marcus M, Tolbert PE, Rubin C, Henderson AK, Hertzberg VS, Zhang RH and Cameron L (2000). Age at menarche and Tanner stage in girls exposed in utero and postnatally to polybrominated biphenyl. Epidemiology 11: 641–647. Bojlén K and Bentzon MW (1974). Seasonal variation in the occurrence of menarche. Danish Medical Bulletin 21: 161-168. Booth JE (1979). Evidence for separate masculinization and defeminization of the brain during development of male rats [proceedings]. Physiology 289: 53P. Bouret SG, Draper SJ and Simerly RB (2004). Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304: 108-110. Bourguignon JP and Franchimont P (1984). Puberty-related increase in episodic LHRH release from rat hypothalamus in vitro. Endocrinology 114: 1941-1943. Bourguignon JP, Gérard A, Debougnoux G, Rose J and Franchimont P (1987). Pulsatile release of gonadotropin-releasing hormone (GnRH) from the rat hypothalamus in vitro: Calcium and glucose dependency and inhibition by superactive GnRH analogs. Endocrinology 121: 993-999. Bourguignon JP, Gérard A and Franchimont P (1989a). Direct activation of gonadotropinreleasing hormone secretion through different receptors to neuroexcitatory amino acids. Neuroendocrinology 49: 402-408. Bourguignon JP, Gérard A, Mathieu J, Simons J and Franchimont P (1989b). Pulsatile release of gonadotropin-releasing hormone from hypothalamic explants is restrained by blockade of N-methyl-D-aspartate receptors. Endocrinology 125: 1090-1096. Bourguignon JP, Gérard A, Mathieu J, Mathieu A and Franchimont P (1990). Maturation of the hypothalamic control of pulsatile gonadotropin-releasing hormone secretion at onset of puberty. Increased activation of N-methyl-D-aspartate receptors. Endocrinology 127: 873881. Bourguignon JP, Gérard A, Alvarez Gonzalez ML and Franchimont P (1992). The 98 Bibliographie neuroendocrine mechanism of onset of puberty: Sequential reduction in activity of inhibitory and facilitatory N-Methyl-D-Aspartate receptors. Journal of Clinical Investigation 90: 17361744. Bourguignon JP, Gérard A, Alvarez Gonzalez ML and Franchimont P (1993). Control of pulsatile secretion of gonadotrophin releasing hormone from hypothalamic explants. Human Reproduction Suppl 2: 18-22. Bourguignon JP, Alvarez Gonzalez ML, Gérard A and Franchimont P (1994). Gonadotropin releasing hormone inhibitory autofeedback by subproducts antagonist at N-methyl-Daspartate receptors: A model of autocrine regulation of peptide secretion. Endocrinology 134: 1589-1592. Bourguignon JP, Gérard A, Alvarez Gonzalez ML, Purnelle G and Franchimont P (1995). Endogenous glutamate involvement in pulsatile secretion of gonadotropin-releasing hormone: Evidence from effect of glutamine and developmental changes. Endocrinology 136: 911-916. Bourguignon JP, Gérard A, Purnelle G, Czajkowski V, Yamanaka C, Lemaître M, Rigo JM, Moonen G and Franchimont P (1997). Duality of glutamatergic and GABAergic control of pulsatile GnRH secretion by rat hypothalamic explants: I. Effects of antisense oligodeoxynucleotides using explants including or excluding the preoptic area. Journal of Neuroendocrinology 9: 183-191. Bourguignon JP (2004). Control of the onset of puberty. In «Pediatric endocrinology: Mechanisms, manifestations and management». Pescovitz OH & Eugster E, eds. Lippincott Williams & Wilkins, 285-298. Bourguignon JP, Rasier G, Lebrethon MC, Gérard A, Naveau E and Parent AS (2010). Neuroendocrine disruption of pubertal timing and interactions between homeostasis of reproduction and energy balance. Molecular and Cellular Endocrinology 324: 110-120. Boyar R, Finkelstein J, Roffwarg H, Kapen S, Weitzman E and Hellman L (1972). Synchronization of augmented luteinizing hormone secretion with sleep during puberty. New England Journal of Medicine 287: 582-586. Brann DW, McDonald JK, Putnam CD and Mahesh VB (1991). Regulation of hypothalamic gonadotropin-releasing hormone and neuropeptide Y concentrations by progesterone and corticosteroids in immature rats: Correlation with luteinizing hormone and follicle-stimulating hormone release. Neuroendocrinology 54: 425-432. Brian JV, Harris CA, Scholze M, Backhaus T, Booy P, Lamoree M, Pojana G, Jonkers N, Runnalls T, Bonfà A, Marcomini A and Sumpter JP (2005). Accurate prediction of the 99 Bibliographie response of freshwater fish to a mixture of estrogenic chemicals. Environmental Health Perspectives 113: 721-728. Bridges NA, Hindmarsh PC, Matthews DR and Brook CG (1994). The effect of changing gonadotropin-releasing hormone pulse frequency on puberty. Journal of Clinical Endocrinology and Metabolism 79: 841-847. Buchanan S, Robertson GW and Hocking PM (2000). Effects of food restriction or delayed photostimulation on ovarian follicle number, plasma oestradiol concentration and vaginal collagen content in male-line turkeys. British Poultry Science 41: 502-507. Bulger WH, Muccitelli RM and Kupfer D (1978a). Interactions of chlorinated hydrocarbon pesticides with the 8S estrogen–binding protein in rat testes. Steroids 32: 165-177. Bulger WH, Muccitelli RM and Kupfer D (1978b). Interactions of methoxychlor, methoxychlor base-soluble contaminant, and 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane with rat uterine estrogen receptor. Journal of Toxicology and Environmental Health 4: 881893. Butler JA, Sjöberg M and Coen CW (1999). Evidence for oestrogen receptor alphaimmunoreactivity in gonadotrophin-releasing hormone-expressing neurones. Journal of Neuroendocrinology 11: 331-335. Cagampang FR, Maeda K, Yokoyama A and Ota K (1990). Effect of food deprivation on the pulsatile LH release in the cycling and ovariectomized female rat. Hormone and Metabolic Research 22: 269-272. Cagen SZ, Waechter JM Jr, Dimond SS, Breslin WJ, Butala JH, Jekat FW, Joiner RL, Shiotsuka RN, Veenstra GE and Harris LR (1999a). Normal reproductive organ development in CF-1 mice following prenatal exposure to bisphenol A. Toxicological Sciences 50: 36-44. Cagen SZ, Waechter JM Jr, Dimond SS, Breslin WJ, Butala JH, Jekat FW, Joiner RL, Shiotsuka RN, Veenstra GE and Harris LR (1999b). Normal reproductive organ development in Wistar rats exposed to bisphenol A in the drinking water. Regulatory Toxicology and Pharmacology 30: 130-139. Caligaris L, Astrada JJ and Taleisnik S (1972). Influence of age on the release of luteinizing hormone induced by estrogen and progesterone in immature rats. Journal of Endocrinology 55: 97-103. Calogero AE, Palumbo MA, Bosboom AM, Burrello N, Ferrara E, Palumbo G, Petraglia F and D'Agata R (1998). The neuroactive steroid allopregnanolone suppresses hypothalamic gonadotropin-releasing hormone release through a mechanism mediated by the gammaaminobutyric acidA receptor. Journal of Endocrinology 158: 121-125. 100 Bibliographie Carlsen E, Giwercman A, Keiding N and Skakkebaek NE (1992). Evidence for decreasing quality of semen during past 50 years. British Medical Journal 305: 609-613. Carlson DL, De Vault DS and Swackhamer DL (2010). On the rate of decline of persistent organic contaminants in lake trout (Salvelinus namaycush) from the Great Lakes, 1970-2003. Environmental Science and Technology 44: 2004-2010. Carson R (1962). Silent Spring. In «The New Yorker magazine». Douglas WO, eds. The Book of the Month Club, Houghton Mifflin. Chapin RE, Delaney J, Wang Y, Lanning L, Davis B, Collins B, Mintz N and Wolfe G (1999). The effects of 4-nonylphenol in rats: A multigeneration reproduction study. Toxicological Sciences 52: 80-91. Charlier C and Plomteux G (2002). Determination of organochlorine pesticides residues in the blood of healthy individuals. Clinical Chemistry and Laboratory Medicine 40: 361-364. Chehab FF, Lim ME and Lu R (1996). Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nature Genetics 12: 318-320. Chehab FF, Mounzih K, Lu R and Lim ME (1997). Early onset of reproductive function in normal female mice treated with leptin. Science 275: 88-90. Cheung AP, Lu JK and Chang RJ (1997). Pulsatile gonadotrophin secretion in women with polycystic ovary syndrome after gonadotrophin-releasing hormone agonist treatment. Human Reproduction 12: 1156-1164. Christiansen S, Scholze M, Dalgaard M, Vinggaard AM, Axelstad M, Kortenkamp A and Hass U (2009). Synergistic disruption of external male sex organ development by a mixture of four antiandrogens. Environmental Health Perspectives 117: 1839-1846. Cicero TJ, Meyer ER, Miller BT and Bell RD (1988). Age-related differences in the sensitivity of serum luteinizing hormone to prototypic mu, kappa and delta opiate agonists and antagonists. Journal of Pharmacology and Experimental Therapeutics 246: 14-20. Clark EJ, Norris DO and Jones RE (1998). Interactions of gonadal steroids and pesticides (DDT and DDE) on gonadal duct in larval tiger salamanders Ambystoma tigrinum. General and Comparative Endocrinology 109: 94-105. Clarke IJ and Cummins JT (1982). The temporal relationship between gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) secretion in ovariectomized ewes. Endocrinology 111: 1737-1739. Clarke IJ, Cummins JT, Findlay JK, Burman KJ and Doughton BW (1984). Effects on plasma luteinizing hormone and follicle-stimulating hormone of varying the frequency and amplitude 101 Bibliographie of gonadotropin-releasing hormone pulses in ovariectomized ewes with hypothalamopituitary disconnection. Neuroendocrinology 39: 214-221. Clarke IJ, Scott CJ, Rao A, Pompolo S and Barker-Gibb ML (2000). Seasonal changes in the expression of neuropeptide Y and pro-opiomelanocortin mRNA in the arcuate nucleus of the ovariectomized ewe: Relationship to the seasonal appetite and breeding cycles. Journal of Neuroendocrinology 12: 1105-1111. Clasadonte J, Poulain P, Beauvillain JC and Prevot V (2008). Activation of neuronal nitric oxide release inhibits spontaneous firing in adult gonadotropin-releasing hormone neurons: A possible local synchronizing signal. Endocrinology 149: 587-596. Cohen P (1993). Month at menarche: A re-evaluation of the seasonal hypothesis. Annals of Human Biology 20: 198-202. Cohn BA, Cirillo PM, Wolff MS, Schwingl PJ, Cohen RD, Sholtz RI, Ferrara A, Christianson RE, van den Berg BJ and Siiteri PK (2003). DDT and DDE exposure in mothers and time to pregnancy in daughters. Lancet 361: 2205-2206. Colborn T and Clement C (1992). Chemically-induced alternations in sexual and functional development: The wildlife/human connection. Eds. Princeton Scientific Publishing Co. Colon I, Caro D, Bourdony CJ and Rosario O (2000). Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. Environmental Health Perspectives 108: 895–900. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ and Bauer TL et al. (1996). Serum immunoreactive-leptin concentrations in normal-weight and obese humans. New England Journal of Medicine 334: 292-295. Conte FA, Grumbach MM, Kaplan SL and Reiter EO (1980). Correlation of luteinizing hormone-releasing factor-induced luteinizing hormone and follicle-stimulating hormone release from infancy to 19 years with the changing pattern of gonadotropin secretion in agonadal patients: Relation to the restraint of puberty. Journal of Clinical Endocrinology and Metabolism 50: 163-168. Cooper RL, Chadwick RW, Rehnberg GL, Goldman JM, Booth KC, Hein JF and McElroy WK (1989). Effects of lindane on hormonal control of reproductive function in the female rat. Toxicology and Applied Pharmacology 99: 384-394. Corbier P, Roffi J and Rhoda J (1983). Female sexual behavior in male rats: Effect of hour of castration at birth. Physiology and Behavior 30: 613-616. 102 Bibliographie Corbier P (1985). Sexual differentiation of positive feedback: Effect of hour of castration at birth on estradiol-induced luteinizing hormone secretion in immature male rats. Endocrinology 116: 142-147. Cornell-Bell AH, Finkbeiner SM, Cooper MS and Smith SJ (1990). Glutamate induces calcium waves in cultured astrocytes: Long-range glial signaling. Science 247: 470-473. Cornil CA, Taziaux M, Baillien M, Ball GF and Balthazart J (2006). Rapid effects of aromatase inhibition on male reproductive behaviors in Japanese quail. Hormones and Behavior 49: 45-67. Couzinet B and Schaison G (1993). The control of gonadotrophin secretion by ovarian steroids. Human Reproduction Suppl 2: 97-101. Crews D and McLachlan JA (2006). Epigenetics, evolution, endocrine disruption, health, and disease. Endocrinology 147: 4-10. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE and Weigle DS (2001). A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50: 1714-1719. Dacre JC and Jennings RW (1970). Organochlorine insecticides in normal and carcinogenic human lung tissues. Toxicology and Applied Pharmacology 17: 277. Daikoku S and Koide I (1998). Spatiotemporal appearance of developing LHRH neurons in the rat brain. Journal of Comparative Neurology 393: 34-47. DeFazio RA, Heger S, Ojeda SR and Moenter SM (2002). Activation of A-type gammaaminobutyric acid receptors excites gonadotropin-releasing hormone neurons. Molecular Endocrinology 16: 2872-2891. Denham M, Schell LM, Deane G, Gallo MV, Ravenscroft J and DeCaprio AP (2005). Akwesasne Task Force on the Environment. Relationship of lead, mercury, mirex, dichlorodiphenyldichloroethylene, hexachlorobenzene, and polychlorinated biphenyls to timing of menarche among Akwesasne Mohawk girls. Pediatrics 115: 127–134. Den Hond E, Roels HA, Hoppenbrouwers K, Nawrot T, Thijs L, Vandermeulen C, Winneke G, Vanderschueren D and Staessen JA (2002). Sexual maturation in relation to polychlorinated aromatic hydrocarbons: Sharpe and Skakkebaek’s hypothesis revisited. Environmental Health Perspectives 110: 771–776. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL and Milgrom E (2003). Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proceedings of the National Academy of Sciences of the United States of America 100: 10972-10976. 103 Bibliographie de Roux N (2006). GnRH receptor and GPR54 inactivation in isolated gonadotropic deficiency. Best Practice and Research: Clinical Endocrinology and Metabolism 20: 515-528. Desaulniers D, Cooke GM, Leingartner K, Soumano K, Cole J, Yang J, Wade M and Yagminas A (2005). Effects of postnatal exposure to a mixture of polychlorinated biphenyls, p,p’-dichlorodiphenyltrichloroethane and p,p’-dichlorodiphenyldichloroethene in prepubertal and adult female Sprague-Dawley rats. International Journal of Toxicology 24: 111-127. Diano S, Naftolin F and Horvath TL (1997). Gonadal steroids target AMPA glutamate receptor-containing neurons in the rat hypothalamus, septum and amygdala: A morphological and biochemical study. Endocrinology 138: 778-789. Diano S, Naftolin F and Horvath TL (1998). Kainate glutamate receptors (GluR5-7) in the rat arcuate nucleus: Relationship to tanycytes, astrocytes, neurons and gonadal steroid receptors. Journal of Neuroendocrinology 10: 239-247. Diaz DR, Fleming DE and Rhees RW (1995). The hormone-sensitive early postnatal periods for sexual differentiation of feminine behavior and luteinizing hormone secretion in male and female rats. Brain Research Developmental Brain Research 86: 227-232. Diel P, Olff S, Schmidt S and Michna H (2002). Effects of the environmental estrogens bisphenol A, o,p’-DDT, p-tert-octylphenol and coumestrol on apoptosis induction, cell proliferation and the expression of estrogen sensitive molecular parameters in the human breast cancer cell line MCF-7. Journal of Steroid Biochemistry and Molecular Biology 80: 61-70. Dluzen DE and Ramirez VD (1981). Presence and localization of immunoreactive luteinizing hormone-releasing hormone within the olfactory bulbs of adult male and female rats. Peptides 2: 493-496. Dominé F, Parent AS, Rasier G, Lebrethon MC and Bourguignon JP (2006). Assessment and mechanism of variations in pubertal timing in internationally adopted children: A developmental hypothesis. European Journal of Endocrinology 155: 17-25. Donoso AO and Banzan AM (1984). Effects of increase of brain GABA levels on the hypothalamic-pituitary-luteinizing hormone axis in rats. Acta Endocrinologica (Copenh) 106: 298-304. Donoso AO, Lopez FJ and Negro-Vilar A (1990). Glutamate-receptors of the non-N-methylD-aspartic acid type mediate the increase in luteinizing hormone-releasing hormone release by excitatory amino acids in vitro. Endocrinology 126: 414-420. Donovan BT and van der Werff ten Bosch JJ (1956). Precocious puberty in rats with hypothalamic lesions. Nature 178: 745. 104 Bibliographie Doolan CM, Condliffe SB and Harvey BJ (2000). Rapid non-genomic activation of cytosolic cyclic AMP-dependent protein kinase activity and [Ca(2+)](i) by 17beta-oestradiol in female rat distal colon. British Journal of Pharmacology 129: 1375-1386. Dörner G (1981). Sex hormone dependent brain differentiation and sexual behavior. Experimental Brain Research Suppl 3: 238-245. Drouva SV, Laplante E, Gautron JP and Kordon C (1984). Effects of 17 beta-estradiol on LHRH release from rat mediobasal hypothalamic slices. Neuroendocrinology 38: 152-157. Dufy B, Dufy-Barbe L, Vincent JD and Knobil E (1979). Electrophysiological study of hypothalamic neurons and gonadotropin regulation in rhesus monkey. Journal of Physiology 75: 105-108. Duittoz AH and Batailler M (2000). Pulsatile GnRH secretion from primary cultures of sheep olfactory placode explants. Journal of Reproduction and Fertility 120: 391-396. Dziedzic B, Prevot V, Lomniczi A, Jung H, Cornea A and Ojeda SR (2003). Neuron-to-glia signaling mediated by excitatory amino acid receptors regulates ErbB receptor function in astroglial cells of the neuroendocrine brain. Journal of Neuroscience 23: 915-926. Eskenazi B, Chevrier J, Rosas LG, Anderson HA, Bornman MS, Bouwman H, Chen A, Cohn BA, de Jager C, Henshel DS, Leipzig F, Leipzig JS, Lorenz EC, Snedeker SM and Stapleton D (2009). The Pine River statement: Human health consequences of DDT use. Environmental Health Perspectives 117: 1359-1367. Evans NP, Dahl GE, Mauger D and Karsch FJ (1995). Estradiol induces both qualitative and quantitative changes in the pattern of gonadotropin-releasing hormone secretion during the presurge period in the ewe. Endocrinology 136: 1603-1609. Evans JJ, Reid RA, Wakeman SA, Croft LB and Benny PS (2003). Evidence that oxytocin is a physiological component of LH regulation in non-pregnant women. Human Reproduction 18: 1428-1431. Eyigor O and Jennes L (2000). Kainate receptor subunit-positive gonadotropin-releasing hormone neurons express c-Fos during the steroid-induced luteinizing hormone surge in the female rat. Endocrinology 141: 779-786. Faber KA, Basham K and Hughes CL Jr (1991). The effect of neonatal exposure to DES and o,p'-DDT on pituitary responsiveness to GnRH in adult castrated rats. Reproductive Toxicology 5: 363-369. Falkenstein E and Wehling M (2000). Nongenomically initiated steroid actions. European Journal of Clinical Investigation 30: 51-54. 105 Bibliographie Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, Hughes IA, McCamish MA and O'Rahilly S (1999). Effects of recombinant leptin therapy in a child with congenital leptin deficiency. New England Journal of Medicine 341: 879-884. Feder HH and Whalen RE (1965). Feminine behavior in neonatally castrated and estrogentreated male rats. Science 147: 306-307. Fei H, Okano HJ, Li C, Lee GH, Zhao C, Darnell R and Friedman JM (1997). Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proceedings of the National Academy of Sciences of the United States of America.94: 70017005. Fernald RD and White RB (1999). Gonadotropin-releasing hormone genes: Phylogeny, structure, and functions. Frontiers in Neuroendocrinology 20: 224-240. Fernandez-Fernandez R, Aguilar E, Tena-Sempere M and Pinilla L (2005). Effects of polypeptide YY(3-36) upon luteinizing hormone-releasing hormone and gonadotropin secretion in prepubertal rats: In vivo and in vitro studies. Endocrinology 146: 1403-1410. Finn PD, Cunningham MJ, Pau KY, Spies HG, Clifton DK and Steiner RA (1998). The stimulatory effect of leptin on the neuroendocrine reproductive axis of the monkey. Endocrinology 139: 4652-4662. Foidart A, de Clerck A, Harada N and Balthazart J (1994). Aromatase-immunoreactive cells in the quail brain: Effects of testosterone and sex dimorphism. Physiology and Behavior 55: 453-464. Förstermann U, Schmidt HH, Pollock JS, Sheng H, Mitchell JA, Warner TD, Nakane M and Murad F (1991). Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochemical Pharmacology 42: 1849-1857. Foster DL and Olster DH (1985). Effect of restricted nutrition on puberty in the lamb: Patterns of tonic luteinizing hormone (LH) secretion and competency of the LH surge system. Endocrinology 116: 375-381. Frank RT, Kingery HM and Gustavson RG (1925). The female sex hormone. Journal of the American Medical Association 85: 1558-1559. Freeman ME (1994). The neuroendocrine control of the ovarian cycle of the rat. In «The Physiology of Reproduction». Knobil E & Neill J, eds. Raven Press, New York, 613-658. Frisch RE and Revelle R (1970). Height and weight at menarche and a hypothesis of critical body weights and adolescent events. Science 169: 397-399. 106 Bibliographie Frisch RE and Revelle R (1971). The height and weight of girls and boys at the time of initiation of the adolescent growth spurt in height and weight and the relationship to menarche. Human Biology 43: 140-159. Frisch RE (1973). Influences on age of menarche. Lancet 1: 1007. Frisch RE and McArthur JW (1974). Menstrual cycles: Fatness as a determinant of minimum weight for height necessary for their maintenance or onset. Science185: 949-951. Funabashi T, Daikoku S, Shinohara K and Kimura F (2000). Pulsatile gonadotropin-releasing hormone (GnRH) secretion is an inherent function of GnRH neurons, as revealed by the culture of medial olfactory placode obtained from embryonic rats. Neuroendocrinology 71: 138-144. Funabashi T, Daikoku S, Suyama K, Mitsushima D, Sano A and Kimura F (2002). Role of gamma-aminobutyric acid neurons in the release of gonadotropin-releasing hormone in cultured rat embryonic olfactory placodes. Neuroendocrinology 76: 193-202. Funabashi T, Sano A, Mitsushima D and Kimura F (2003). Bisphenol A increases progesterone receptor immunoreactivity in the hypothalamus in a dose-dependent manner and affects sexual behaviour in adult ovariectomized rats. Journal of Neuroendocrinology 15: 134140. Furuta M, Funabashi T and Kimura F (2001). Intracerebroventricular administration of ghrelin rapidly suppresses pulsatile luteinizing hormone secretion in ovariectomized rats. Biochemical and Biophysical Research Communications 288: 780-785. Gabant P, Forrester L, Nichols J, Van Reeth T, De Mees C, Pajack B, Watt A, Smitz J, Alexandre H, Szpirer C and Szpirer J (2002). Alpha-fetoprotein, the major fetal serum protein, is not essential for embryonic development but is required for female fertility. Proceedings of the National Academy of Sciences of the United States of America 99: 1286512870. Gallo F, Morale MC, Spina-Purrello V, Tirolo C, Testa N, Farinella Z, Avola R, Beaudet A and Marchetti B (2000). Basic fibroblast growth factor (bFGF) acts on both neurons and glia to mediate the neurotrophic effects of astrocytes on LHRH neurons in culture. Synapse 36: 233-253. Gautron JP, Leblanc P, Bluet-Pajot MT, Pattou E, L'Héritier A, Mounier F, Ponce G, Audinot V, Rasolonjanahary R and Kordon C (1992). A second endogenous molecular form of mammalian hypothalamic luteinizing hormone-releasing hormone (LHRH), (hydroxyproline9) LHRH, releases luteinizing hormone and follicle-stimulating hormone in vitro and in vivo. Molecular and Cellular Endocrinology 85: 99-107. 107 Bibliographie Gearing M and Terasawa E (1991). Prostaglandin E2 mediates the stimulatory effect of methoxamine on in vivo luteinizing hormone-releasing hormone (LH-RH) release in the ovariectomized female rhesus monkey. Brain Research 560: 276-281. Gellert RJ, Heinrichs WL and Swerdloff RS (1972). DDT homologues: Estrogen-like effects on the vagina, uterus, and pituitary of the rat. Endocrinology 91: 1095-1100. Gellert RJ, Heinrichs WL and Swerdloff R (1974). Effects of neonatally-administered DDT homologs on reproductive function in male and female rats. Neuroendocrinology 16: 84-94. Gerardin DC and Pereira OC (2002). Reproductive changes in male rats treated perinatally with an aromatase inhibitor. Pharmacology Biochemistry and Behavior 71: 301-305. Gestrin ED, White RB and Fernald RD (1999). Second form of gonadotropin-releasing hormone in mouse: Immunocytochemistry reveals hippocampal and periventricular distribution. Federation of European Biochemical Societies Letters 448: 289-291. Gladen BC, Ragan B and Rogan WJ (2000). Pubertal growth and development and prenatal and lactational exposure to polychlorinated biphenyls and dichlorodiphenyl dichloroethene. Journal of Pediatrics 136: 490-496. Gogan F, Beattie IA, Hery M, Laplante E and Kordon D (1980). Effect of neonatal administration of steroids or gonadectomy upon estradiol-induced luteinizing hormone release in rats of both sexes. Journal of Endocrinology 85: 69-74. Golub MS, Hogrefe CE, Germann SL, Lasley BL, Natarajan K and Tarantal AF (2003). Effects of exogenous estrogenic agents on pubertal growth and reproductive system maturation in female rhesus monkeys. Toxicological Sciences 74: 103-113. Gonzalez-Manchon C, Parrilla R and Ayuso MS (1990). Role of fatty acid in the control of protein synthesis in liver cells. Biochemistry International 21: 933-940. Gore AC (2002). Organochlorine pesticides directly regulate gonadotropin-releasing hormone gene expression and biosynthesis in the GT1-7 hypothalamic cell line. Molecular and Cellular Endocrinology 192: 157-170. Gore AC (2008). Developmental programming and endocrine disruptor effects on reproductive neuroendocrine systems. Frontiers in Neuroendocrinology 29: 358-374. Gore AC and Terasawa E (1991). A role for norepinephrine in the control of puberty in the female rhesus monkey, Macaca mulatta. Endocrinology129: 3009-3017. Goroll D, Arias P and Wuttke W (1993). Preoptic release of amino acid neurotransmitters evaluated in peripubertal and young adult female rats by push-pull perfusion. Neuroendocrinology 58: 11-15. 108 Bibliographie Gorski RA (1968). Influence of age on a perinatal administration of a low dose of androgen. Endocrinology 82: 1001-1004. Goto-Kazeto R, Kight KE, Zohar Y, Place AR and Trant JM (2004). Localization and expression of aromatase mRNA in adult zebrafish. General and Comparative Endocrinology 139: 72-84. Gottsch ML, Clifton DK and Steiner RA (2006). Kisspepeptin-GPR54 signaling in the neuroendocrine reproductive axis. Molecular and Cellular Endocrinology 254-255: 91-96. Grady KL, Phoenix CH and Young WC (1965). Role of the developing rat testis in differentiation of the neural tissues mediating mating behavior. Journal of Comparative and Physiological Psychology 59: 176. Gray DL, Warshawsky D, Xue W, Nines R, Wang Y, Yao R and Stoner GD (2001). The effects of a binary mixture of benzo(a)pyrene and 7H-dibenzo(c,g)carbazole on lung tumors and K-ras oncogene mutations in strain A/J mice. Experimental Lung Research 27: 245-253. Gray LE Jr, Ostby JS, Ferrell JM, Sigmon ER and Goldman JM (1988). Methoxychlor induces estrogen-like alterations of behavior and the reproductive tract in the female rat and hamster: Effects on sex behavior, running wheel activity, and uterine morphology. Toxicology and Applied Pharmacology 96: 525-540. Gray LE Jr, Ostby J, Ferrell J, Rehnberg G, Linder R, Cooper R, Goldman J, Slott V and Laskey J (1989). A dose-response analysis of methoxychlor-induced alterations of reproductive development and function in the rat. Fundamental and Applied Toxicology 12: 92-108. Gray MN, Aylward LL and Keenan RE (2006). Relative cancer potencies of selected dioxinlike compounds on a body-burden basis: Comparison to current toxic equivalency factors (TEFs). Journal of Toxicology Environmental Health, Part A. 69: 907-917. Gruaz NM, Pierroz DD, Rohner-Jeanrenaud F, Sizonenko PC and Aubert ML (1993). Evidence that neuropeptide Y could represent a neuroendocrine inhibitor of sexual maturation in unfavorable metabolic conditions in the rat. Endocrinology 133: 1891-1894. Gruaz NM, d'Allèves V, Charnay Y, Skottner A, Ekvärn S, Fryklund L and Aubert ML (1997). Effects of constant infusion with insulin-like growth factor-I (IGF-I) to immature female rats on body weight gain, tissue growth and sexual function. Evidence that such treatment does not affect sexual maturation of fertility. Endocrine 6: 11-19. Gruetter CA, Barry BK, McNamara DB, Gruetter DY, Kadowitz PJ and Ignarro L (1979). 109 Bibliographie Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine. Journal of Cyclic Nucleotide Research 5: 211-224. Grumbach MM (1998). Citation for the 1998 Robert H. Williams Distinguished Leadership Award of the Endocrine Society to Dr. Delbert A. Fisher. Endocrine Reviews 19: 508-510. Gu Q and Moss RL (1996). 17 beta-Estradiol potentiates kainate-induced currents via activation of the cAMP cascade. Journal of Neuroscience 16: 3620-3629. Gu Q, Korach KS and Moss RL (1999). Rapid action of 17β-estradiol on kainate-induced currents in hippocampal neurons lacking intracellular estrogen receptors. Endocrinology 140: 660-666. Guo YL, Lambert GH, Hsu CC and Hsu MM (2004). Yucheng: Health effects of prenatal exposure to polychlorinated biphenyls and dibenzofurans. International Archives of Occupational and Environmental Health 77: 153-158. Hakansson ML, Brown H, Ghilardi N, Skoda RC and Meister B (1998). Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. Journal of Neuroscience 18: 559-572. Hales TG, Sanderson MJ and Charles AC (1994). GABA has excitatory actions on GnRHsecreting immortalized hypothalamic (GT1-7) neurons. Neuroendocrinology 59: 297-308. Hama Y, Uematsu M, Sakurai Y and Kusano S (2001). Sex ratio in the offspring of male radiologists. Academic Radiology 8: 421-424. Han SK, Todman MG and Herbison AE (2004). Endogenous GABA release inhibits the firing of adult gonadotropin-releasing hormone neurons. Endocrinology 145: 495-499. Harper PA, Riddick DS and Okey AB (2006). Regulating the regulator: Factors that control levels and activity of the aryl hydrocarbon receptor. Biochemical Pharmacology 72: 267-279. Harris GC and Levine JE (2003). Pubertal acceleration of pulsatile gonadotropin-releasing hormone release in male rats as revealed by microdialysis. Endocrinology 144: 163-171. Harris GW and Jacobson D (1952). Functional grafts of the anterior pituitary gland. Proceedings of the Royal Society of London (Biol) 139: 263. Hawkins MB, Thornton JW, Crews D, Skipper JK, Dotte A and Thomas P (2000). Identification of a third distinct estrogen receptor and reclassification of estrogen receptors in teleosts. Proceedings of the National Academy of Sciences of the United States of America 97: 10751-10756. Heinrichs WL, Gellert RJ, Bakke JL and Lawrence NL (1971). DDT administered to neonatal rats induces persistent estrus syndrome. Science 173: 642-643. 110 Bibliographie Herbison AE and Dyer RG (1991). Effect on luteinizing hormone secretion of GABA receptor modulation in the medial preoptic area at the time of proestrous luteinizing hormone surge. Neuroendocrinology 53: 317-320. Herbison AE, Heavens RP, Dye S and Dyer RG (1991). Acute action of oestrogen on medial preoptic gamma-aminobutyric acid neurons: Correlation with oestrogen negative feedback on luteinizing hormone secretion. Journal of Neuroendocrinology 3: 101-106. Herbison AE, Augood SJ, Simonian SX and Chapman C (1995). Regulation of GABA transporter activity and mRNA expression by estrogen in rat preoptic area. Journal of Neuroscience 15: 8302-8309. Herbison AE, Simonian SX, Norris PJ and Emson PC (1996). Relationship of neuronal nitric oxide synthase immunoreactivity to GnRH neurons in the ovariectomized and intact female rat. Journal of Neuroendocrinology 8: 73-82. Herbison AE (1998). Multimodal influence of estrogen upon gonadotropin-releasing hormone neurons. Endocrine Reviews 19: 302-330. Herbison AE and Pape JR (2001). New evidence for estrogen receptors in gonadotropinreleasing hormone neurons. Frontiers in Neuroendocrinology 22: 292-308. Herbst AL, Ulfelder H and Poskanzer DC (1971). Adenocarcinoma of vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. New England Journal of Medicine 284: 878-881. Herbst AL and Anderson D (1990). Clear cell adenocarcinoma of the vagina and cervix secondary to intrauterine exposure to diethylstilbestrol. Seminars in Surgical Oncology 6: 343-346. Herman-Giddens ME, Slora EJ, Wasserman RC, Bourdony CJ, Bhapkar MV, Koch GG and Hasemeier CM (1997). Secondary sexual characteristics and menses in young girls seen in office practice: A study from the Paediatric Research in Office Settings Network. Pediatrics 99: 505-512. Himes JH (2006). Examining the evidence for recent secular changes in the timing of puberty in US children in light of increases in the prevalence of obesity. Molecular and Cellular Endocrinology 254-255: 13-21. Hiney JK, Ojeda SR and Dees WL (1991). Insulin-like growth factor I: A possible metabolic signal involved in the regulation of female puberty. Neuroendocrinology 54: 420-423. Hiney JK, Srivastava V, Nyberg CL, Ojeda SR and Dees WL (1996). Insulin-like growth factor I of peripheral origin acts centrally to accelerate the initiation of female puberty. Endocrinology 137: 3717-3728. 111 Bibliographie Hiney JK, Sower SA, Yu WH, McCann SM and Dees WL (2002). Gonadotropin-releasing hormone neurons in the preoptic-hypothalamic region of the rat contain lamprey gonadotropin-releasing hormone III, mammalian luteinizing hormone-releasing hormone, or both peptides. Proceedings of the National Academy of Sciences of the United States of America 99: 2386-2391. Hoffman WS, Adler H, Fishbein WI and Bauer FC (1967). Relation of pesticide concentrations in fat to pathological changes in tissues. Archives of Environmental Health 15: 758-765. Hong Y, Li H, Yuan YC and Chen S (2009). Molecular characterization of aromatase. Annals of the New York Academy of Sciences 1155: 112-120. Horvath TL, Diano S, Sotonyi P, Heiman M and Tschöp M (2001). Minireview: Ghrelin and the regulation of energy balance -- a hypothalamic perspective. Endocrinology 142: 41634169. Hosny S and Jennes L (1998). Identification of alpha1B adrenergic receptor protein in gonadotropin releasing hormone neurones of the female rat. Journal of Neuroendocrinology 10: 687-692. Hotchkiss AK, Parks-Saldutti LG, Ostby JS, Lambright C, Furr J, Vandenbergh JG and Gray LE Jr (2004). A mixture of the "antiandrogens" linuron and butyl benzyl phthalate alters sexual differentiation of the male rat in a cumulative fashion. Biology of Reproduction 71: 1852-1861. Howdeshell KL, Furr J, Lambright CR, Rider CV, Wilson VS and Gray LE Jr (2007). Cumulative effects of dibutyl phthalate and diethylhexyl phthalate on male rat reproductive tract development: Altered fetal steroid hormones and genes. Toxicological Sciences 99: 190202. Hrabovszky E, Shughrue PJ, Merchenthaler I, Hajszán T, Carpenter CD, Liposits Z and Petersen SL (2000). Endocrinology 141: 3506-3509. Hrabovszky E, Steinhauser A, Barabás K, Shughrue PJ, Petersen SL, Merchenthaler I and Liposits Z (2001). Estrogen receptor-beta immunoreactivity in luteinizing hormone-releasing hormone neurons of the rat brain. Endocrinology 142: 3261-3264. Hugo ER, Brandebourg TD, Woo JG, Loftus J, Alexander JW and Ben-Jonathan N (2008). Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environmental Health Perspectives 116: 1642-1647. 112 Bibliographie Ibáñez L, Francois I, Potau N and de Zegher F (1998). Precocious pubarche, hyperinsulinism and ovarian hyperandrogenism in girls: Relation to reduced fetal growth. Journal of Clinical Endocrinology and Metabolism 83: 3558-3662. Ibáñez L, Jaramillo A, Enríquez G, Miró E, López-Bermejo A, Dunger D and de Zegher F (2007). Polycystic ovaries after precocious pubarche: Relation to prenatal growth. Human Reproduction 22: 395-400. Ibáñez L, Lopez-Bermejo A, Díaz M, Suarez L and de Zegher F (2009). Low-birth weight children develop lower sex hormone binding globulin and higher dehydroepiandrosterone sulfate levels and aggravate their visceral adiposity and hypoadiponectinemia between six and eight years of age. Journal of Clinical Endocrinology and Metabolism 94: 3696-3699. Improta-Brears T, Whorton AR, Codazzi F, York JD, Meyer T and McDonnell DP (1999). Estrogen-induced activation of mitogen-activated protein kinase requires mobilization of intracellular calcium. Proceedings of the National Academy of Sciences of the United States of America 96: 4686-4691. Jacobson CD and Gorski RA (1981). Neurogenesis of the sexually dimorphic nucleus of the preoptic area in the rat. Journal of Comparative Neurology 196: 519-529. Jung H, Carmel P, Schwartz MS, Witkin JW, Bentele KH, Westphal M, Piatt JH, Costa ME, Cornea A, Ma YJ and Ojeda SR (1999). Some hypothalamic hamartomas contain transforming growth factor alpha, a puberty-inducing growth factor, but not luteinizing hormone-releasing hormone neurons. Journal of Clinical Endocrinology and Metabolism 84: 4695-4701. Kah O, Pellegrini E, Mouriec K, Diotel N, Anglade I, Vaillant C, Thieulant ML, Tong SK, Brion F, Chung BC and Pakdel F (2009). Oestrogens and neurogenesis: New functions for an old hormone. Lessons from the zebrafish. Social Biology 203: 29-38. Kallas H (1929). Puberté précoce par parabiose. Comptes rendus des séances de la société de biologie 100: 979-980. Kalra PS, Kalra SP, Krulich L, Fawcett CP and McCann SM (1972). Involvement of norepinephrine in transmission of the stimulatory influence of progesterone on gonadotropin release. Endocrinology 90: 1168-1176. Kalra SP and Crowley WR (1984). Norepinephrine-like effects of neuropeptide Y on LH release in the rat. Life Sciences 35: 1173-1176. Kalra PS (1985). Stimulation of hypothalamic LHRH levels and release by gonadal steroids. Journal of Steroid Biochemistry 23: 725-731. 113 Bibliographie Kalra PS, Sahu A, Bonavera JJ and Kalra SP (1992). Diverse effects of tachykinins on luteinizing hormone release in male rats: Mechanism of action. Endocrinology 131: 11951201. Kalra SP, Dube MG, Pu S, Xu B, Horvath TL and Kalra PS (1999). Interacting appetiteregulating pathways in the hypothalamic regulation of body weight. Endocrine Reviews 20: 68-100. Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H and Wakabayashi I (2001). Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes 50: 2438-2443. Kaplan SL and Grumbach MM (1990). Clinical review 14: Pathophysiology and treatment of sexual precocity. Journal of Clinical Endocrinology and Metabolism 71: 785-789. Kapoor IP, Metcalf RL, Nystrom RF and Sangha GK (1970). Comparative metabolism of methoxychlor, methiochlor, and DDT in mouse, insects, and in a model ecosystem. Journal of Agricultural and Food Chemistry 18: 1145-1152. Kask A, Rägo L, Wikberg JE and Schiöth HB (1998). Evidence for involvement of the melanocortin MC4 receptor in the effects of leptin on food intake and body weight. European Journal of Pharmacology 360: 15-19. Kato T, Nakano T, Kojima K, Nagatsu T and Sakakibara S (1980). Changes in prolyl endopeptidase during maturation of rat brain and hydrolysis of substance P by the purified enzyme. Journal of Neurochemistry 35: 527-535. Kato M, Ui-Tei K, Watanabe M, Sakuma Y (2003). Characterization of voltage-gated calcium currents in gonadotropin-releasing hormone neurons tagged with green fluorescent protein in rats. Endocrinology 144: 5118-5125. Kauffman AS, Clifton DK and Steiner RA (2007). Emerging ideas about kisspeptin- GPR54 signaling in the neuroendocrine regulation of reproduction. Trends in Neurosciences 30: 504511. Kaufman JM, Kesner JS, Wilson RC and Knobil E (1985). Electrophysiological manifestation of luteinizing hormone-releasing hormone pulse generator activity in the rhesus monkey: Influence of alpha-adrenergic and dopaminergic blocking agents. Endocrinology 116: 13271333. Kavlock RJ, Daston GP, DeRosa C, Fenner-Crisp P, Gray LE, Kaattari S, Lucier G, Luster M, Mac MJ, Maczka C, Miller R, Moore J, Rolland R, Scott G, Sheehan DM, Sinks T and Tilson HA (1996). Research needs for the risk assessment of health and environmental effects of 114 Bibliographie endocrine disruptors: A report of the U.S. EPA-sponsored workshop. Environmental Health Perspectives Suppl 4: 715-740. Keen KL, Burich AJ, Mitsushima D, Kasuya E and Terasawa E (1999). Effects of pulsatile infusion of the GABA(A) receptor blocker bicuculline on the onset of puberty in female rhesus monkeys. Endocrinology 140: 5257-5266. Kelce WR, Stone CR, Laws SC, Gray LE, Kemppainen JA and Wilson EM (1995). Persistent DDT metabolite p,p’-DDE is a potent androgen receptor antagonist. Nature 375: 581-585. Kelly MJ, Qiu J, Wagner EJ and Rønnekleiv OK (2002). Rapid effects of estrogen on G protein-coupled receptor activation of potassium channels in the central nervous system (CNS). Journal of Steroid Biochemistry and Molecular Biology 83: 187-193. Kennedy GC and Mitra J (1963). Body weight and food intake as initiating factors for puberty in the rat. Journal of Physiology 166: 408-418. Key T and Reeves G (1994). Organochlorines in the environment and breast cancer. British Medical Journal 308: 1520-1521. Khorram O, Pau KY and Spies HG (1987). Bimodal effects of neuropeptide Y on hypothalamic release of gonadotropin-releasing hormone in conscious rabbits. Neuroendocrinology 45: 290-297. Kimura T, Ogita K, Kusui C, Ohashi K, Azuma C and Murata Y (1999). What knockout mice can tell us about parturition. Reviews of Reproduction 4: 73-80. Knauf C, Prevot V, Stefano GB, Mortreux G, Beauvillain JC and Croix D (2001). Evidence for a spontaneous nitric oxide release from the rat median eminence: Influence on gonadotropin-releasing hormone release. Endocrinology 142: 2343-2350. Knobil E (1974). On the control of gonadotropin secretion in the rhesus monkey. Recent Progress in Hormone Research 30: 1-46. Knobil E (1980). The neuroendocrine control of the menstrual cycle. Recent Progress in Hormone Research 36: 53-88. Knobil E, Plant TM, Wildt L, Belchetz PE and Marshall G (1980). Control of the rhesus monkey menstrual cycle: Permissive role of hypothalamic gonadotropin-releasing hormone. Science 207: 1371-1373. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H and Kangawa K (1999). Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402: 656-660. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB and Buxton HT (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. 115 Bibliographie streams, 1999-2000: A national reconnaissance. Environmental Science and Technology 36: 1202-1211. Köpp W, Blum WF, von Prittwitz S, Ziegler A, Lübbert H, Emons G, Herzog W, Herpertz S, Deter HC, Remschmidt H and Hebebrand J (1997). Low leptin levels predict amenorrhea in underweight and eating disordered females. Molecular Psychiatry 2: 335-340. Koppen G, Den Hond E, Nelen V, Van De Mieroop E, Bruckers L, Bilau M, Keune H, Van Larebeke N, Covaci A, Van De Weghe H, Schroijen C, Desager K, Stalpaert M, Baeyens W and Schoeters G (2009). Organochlorine and heavy metals in newborns: Results from the Flemish Environment and Health Survey (FLEHS 2002-2006). Environment International 35: 1015-1022. Kortenkamp A (2008). Lowdose mixture effects of endocrine disrupters: Implications for risk assessment and epidemiology. International Journal of Andrology 31: 233-240. Kosut SS, Wood RI, Herbosa-Encarnacion C and Foster DL (1997). Prenatal androgens time neuroendocrine puberty in the sheep: Effect of testosterone dose. Endocrinology 138: 10721077. Krsmanović LZ, Stojilković SS, Merelli F, Dufour SM, Virmani MA and Catt KJ (1992). Calcium signaling and episodic secretion of gonadotropin-releasing hormone in hypothalamic neurons. Proceedings of the National Academy of Sciences of the United States of America 89: 8462-8466. Krstevska-Konstantinova M, Charlier C, Craen M, Du Caju M, Heinrichs C, de Beaufort C, Plomteux G and Bourguignon JP (2001). Sexual precocity after immigration from developing countries to Belgium: Evidence of previous exposure to organochlorine pesticides. Human Reproduction 16: 1020-1026. Kuehl-Kovarik MC, Pouliot WA, Halterman GL, Handa RJ, Dudek FE and Partin KM (2002). Episodic bursting activity and response to excitatory amino acids in acutely dissociated gonadotropin-releasing hormone neurons genetically targeted with green fluorescent protein. Journal of Neuroscience 22: 2313-2322. Kuhl AJ, Manning S and Brouwer M (2005). Brain aromatase in Japanese medaka (Oryzias latipes): Molecular characterization and role in xenoestrogen-induced sex reversal. Journal of Steroid Biochemistry and Molecular Biology 96: 67-77. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA (1996). Cloning of a novel receptor expressed in rat prostate and ovary. Proceedings of the National Academy of Sciences of the United States of America 93: 5925-5930. 116 Bibliographie Kulin HE, Grumbach MM and Kaplan SL (1969). Changing sensitivity of the pubertal gonadal hypothalamic feedback mechanism in man. Science 166: 1012-1013. Kuohung W and Kaiser UB (2006). GPR54 and KiSS-1: Role in the regulation of puberty and reproduction. Reviews in Endocrine and Metabolic Disorders 7: 257-263. Kusano K, Fueshko S, Gainer H and Wray S (1995). Electrical and synaptic properties of embryonic luteinizing hormone-releasing hormone neurons in explant cultures. Proceedings of the National Academy of Sciences of the United States of America 92: 3918-3922. Kwon S, Stedman DB, Elswick BA, Cattley RC and Welsch F (2000). Pubertal development and reproductive functions of Crl:CD BR Sprague-Dawley rats exposed to bisphenol A during prenatal and postnatal development. Toxicological Sciences 55: 399-406. Lagrange AH, Rønnekleiv OK and Kelly MJ (1995). Estradiol-17 beta and mu-opioid peptides rapidly hyperpolarize GnRH neurons: A cellular mechanism of negative feedback? Endocrinology 136: 2341-2344. Lagrange AH, Wagner EJ, Ronnekleiv OK and Kelly MJ (1999). Rapid effects of estrogen to modulate G protein-coupled receptors via activation of protein kinase A and protein kinase C pathways. Steroids 64: 64-75. Lasdun A and Orlowski M (1990). Inhibition of endopeptidase 24.15 greatly increases the release of luteinizing hormone and follicle stimulating hormone in response to luteinizing hormone/releasing hormone. Journal of Pharmacology and Experimental Therapeutics 253: 1265-1271. Laurent FM, Hindelang C, Klein MJ, Stoeckel ME and Felix JM (1989). Expression of the oxytocin and vasopressin genes in the rat hypothalamus during development: An in situ hybridization study. Brain Research Developmental Brain Research 46: 145-154. Laws SC, Carey SA, Ferrell JM, Bodman GJ and Cooper RL (2000). Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats. Toxicological Sciences 54: 154-167. Lebrethon MC, Vandersmissen E, Gérard A, Parent AS, Junien JL and Bourguignon JP (2000). In vitro stimulation of the prepubertal rat gonadotropin-releasing hormone pulse generator by leptin and neuropeptide Y through distinct mechanisms. Endocrinology 141: 1464-1469. Lebrethon MC, Aganina A, Fournier M, Gérard A, Parent AS and Bourguignon JP (2007). Effects of in vivo and in vitro administration of ghrelin, leptin and neuropeptide mediators on pulsatile gonadotrophin-releasing hormone secretion from male rat hypothalamus before and after puberty. Journal of Neuroendocrinology 19: 181-188. 117 Bibliographie Lee P, Guo SS and Kulin HE (2001). Age of puberty: Data from the United States of America. Acta Pathologica, Microbiologica et Immunologica Scandinavica 109: 81-88. Lee YH, Du JL, Shih YS, Jeng SR, Sun LT and Chang CF (2004). In vivo and in vitro sex steroids stimulate seabream gonadotropin-releasing hormone content and release in the protandrous black porgy, Acanthopagrus schlegeli. General and Comparative Endocrinology 139: 12-19. Legler J, Zeinstra LM, Schuitemaker F, Lanser PH, Bogerd J, Brouwer A, Vethaak AD, De Voogt P, Murk AJ and Van der Burg B (2002). Comparison of in vivo and in vitro reporter gene assays for short-term screening of estrogenic activity. Environmental Science and Technology 36: 4410-4415. Lehman MN and Karsch FJ (1993). Do gonadotropin-releasing hormone, tyrosine hydroxylase-, and beta-endorphin-immunoreactive neurons contain estrogen receptors? A double-label immunocytochemical study in the Suffolk ewe. Endocrinology 133: 887-895. Leijs MM, Koppe JG, Olie K, van Aalderen WM, Voogt P, Vulsma T, Westra M and ten Tusscher GW (2008). Delayed initiation of breast development in girls with higher prenatal dioxin exposure; a longitudinal cohort study. Chemosphere 73: 999-1004. Lephart ED (1996). A review of brain aromatase cytochrome P450. Brain Research Reviews 22: 1-26. Levine JE and Ramirez VD (1982). Luteinizing hormone-releasing hormone release during the rat estrous cycle and after ovariectomy, as estimated with push-pull cannulae. Endocrinology 111: 1439-1448. Lew RA, Tetaz TJ, Glucksman MJ, Roberts JL and Smith AI (1994). Evidence for a two-step mechanism of gonadotropin-releasing hormone metabolism by prolyl endopeptidase and metalloendopeptidase EC 3.4.24.15 in ovine hypothalamic extracts. Journal of Biological Chemistry 269: 12626-12632. Lew RA, Cowley M, Clarke IJ and Smith AI (1997). Peptidases that degrade gonadotropinreleasing hormone: Influence on LH secretion in the ewe. Journal of Neuroendocrinology 9: 707-712. Lopez FJ, Donoso AO and Negro-Vilar A (1990). Endogenous excitatory amino acid neurotransmission regulates the estradiol-induced LH surge in ovariectomized rats. Endocrinology 126: 1771-1773. Lyche JL, Nourizadeh-Lillabadi R, AlmaasC, Stavik B and Berg V (2010). Natural mixtures of persistent organic pollutants (POP) increase weight gain, advance puberty, and induce 118 Bibliographie changes in gene expression associated with steroid hormones and obesity in female zebrafish. Journal of Toxicology and Environmental Health, Part A. 73: 1032–1057. Ma YJ, Hill DF, Junier MP, Costa ME, Felder SE and Ojeda SR (1994). Expression of epidermal growth factor receptor changes in the hypothalamus during the onset of female puberty. Molecular and Cellular Neuroscience 5: 246-262. Ma YJ, Berg-von der Emde K, Rage F, Wetsel WC and Ojeda SR (1997). Hypothalamic astrocytes respond to transforming growth factor-alpha with the secretion of neuroactive substances that stimulate the release of luteinizing hormone-releasing hormone. Endocrinology 38: 19-25. Ma YJ, Hill DF, Creswick KE, Costa ME, Cornea A, Lioubin MN, Plowman GD and Ojeda SR (1999). Neuregulins signaling via a glial erbB-2-erbB-4 receptor complex contribute to the neuroendocrine control of mammalian sexual development. Journal of Neuroscience 19: 9913-9927. MacDonald MC and Wilkinson M (1990). Peripubertal treatment with N-methyl-D-aspartic acid or neonatally with monosodium glutamate accelerates sexual maturation in female rats, an effect reversed by MK-801. Neuroendocrinology 52: 143-149. MacLusky NJ and Naftolin F (1981). Sexual differentiation of the central nervous system. Science 211: 1294-1302. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S et al. (1995). Leptin levels in human and rodent: Measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nature Medicine 1: 1155-1161. Magni P, Vettor R, Pagano C, Calcagno A, Beretta E, Messi E, Zanisi M, Martini L and Motta M (1999). Expression of a leptin receptor in immortalized gonadotropin-releasing hormone-secreting neurons. Endocrinology 140: 1581-1585. Magni P, Motta M and Martini L (2000). Leptin: A possible link between food intake, energy expenditure, and reproductive function. Regulatory Peptides 92: 51-56. Mahachoklertwattana P, Sanchez J, Kaplan SL and Grumbach MM (1994). N-methyl-Daspartate (NMDA) receptors mediate the release of gonadotropin-releasing hormone (GnRH) by NMDA in a hypothalamic GnRH neuronal cell line (GT1-1). Endocrinology 134: 10231030. Mahesh VB, Zamorano P, De Sevilla L, Lewis D and Brann DW (1999). Characterization of ionotropic glutamate receptors in rat hypothalamus, pituitary and immortalized gonadotropinreleasing hormone (GnRH) neurons (GT1-7 cells). Neuroendocrinology 69: 397-407. 119 Bibliographie Maier-Bode H (1960). On the problem of the presence of DDT in the body fat of man. Med Esp 3: 284-286. Majdoubi M, Sahu A, Ramaswamy S and Plant TM (2000). Neuropeptide Y: A hypothalamic brake restraining the onset of puberty in primates. Proceedings of the National Academy of Sciences of the United States of America 97: 6179-6184. Martínez de la Escalera G, Choi AL and Weiner RI (1994). Biphasic gabaergic regulation of GnRH secretion in GT1 cell lines. Neuroendocrinology 59: 420-425. Masotto C, Wisniewski G and Negro-Vilar A (1989). Different gamma-aminobutyric acid receptor subtypes are involved in the regulation of opiate-dependent and independent luteinizing hormone-releasing hormone secretion. Endocrinology 125: 548-553. Matagne V, Lebrethon MC, Gérard A and Bourguignon JP (2003). In vitro paradigms for the study of GnRH neuron function and estrogen effects. Annals of the New York Academy of Sciences 1007: 129-142. Matagne V, Rasier G, Lebrethon MC, Gérard A and Bourguignon JP (2004). Estradiol stimulation of pulsatile gonadotropin-releasing hormone secretion in vitro: Correlation with perinatal exposure to sex steroids and induction of sexual precocity in vivo. Endocrinology 145: 2775-2783. Matagne V (2005). Effets génomiques et non génomiques des oestrogènes sur le contrôle hypothalamique de l’axe gonadotrope au cours du développement neuroanatomique des systèmes peptidiques. Thèse de Doctorat. Matagne V, Lebrethon MC, Gérard A and Bourguignon JP (2005). Kainate/estrogen receptors and intracellular signalling pathways involved in estradiol rapid effects on gonadotropinreleasing hormone secretion in vitro. Endocrinology. 146: 2313-2323. Matsuo H, Baba Y, Nair RM, Arimura A and Schally AV (1971). Structure of the porcine LH- and FSH-releasing hormone. I. The proposed amino acid sequence. Biochemical and Biophysical Research Communications 43: 1334-1339. McCann SM (1962). A hypothalamic luteinizing hormone factor. American Journal of Physiology 202: 432-434. McCarthy MM, Wright CL and Schwarz JM (2009). New tricks by an old dogma: mechanisms of the Organizational/Activational Hypothesis of steroid-mediated sexual differentiation of brain and behavior. Hormones and Behavior 55: 655-665. McDonald JK, Han C, Noe BD and Abel PW (1988). High levels of NPY in rabbit cerebrospinal fluid and immunohistochemical analysis of possible sources. Brain Resarch 463: 259-267. 120 Bibliographie McEwen B (2002). Estrogen actions throughout the brain. Recent Progress in Hormone Research 57: 357-384. McNeilly AS, Crawford JL, Taragnat C, Nicol L and McNeilly JR (2003). The differential secretion of FSH and LH: Regulation through genes, feedback and packaging. Reproduction Suppl 61: 463-476. Meijs-Roelofs HM, Kramer P and van Leeuwen EC (1991). The N-methyl-D-aspartate receptor antagonist MK-801 delays the onset of puberty and may acutely block the first spontaneous LH surge and ovulation in the rat. Journal of Endocrinology 131: 435-441. Melcangi RC, Galbiati M, Messi E, Piva F, Martini L and Motta M (1995). Type 1 astrocytes influence luteinizing hormone-releasing hormone release from the hypothalamic cell line GT1-1: Is transforming growth factor-beta the principle involved? Endocrinology 136: 679686. Mellon SH, Griffin LD and Compagnone NA (2001). Biosynthesis and action of neurosteroids. Brain Research Developmental Brain Research 37: 3-12. Mercer JG, Moar KM, Rayner DV, Trayhurn P and Hoggard N (1997). Regulation of leptin receptor and NPY gene expression in hypothalamus of leptin-treated obese (ob/ob) and coldexposed lean mice. Federation of European Biochemical Societies Letters 402: 185-188. Merino MJ (1991). Vaginal cancer: The role of infectious and environmental factors. American Journal of Obstetrics and Gynecology 165: 1255-1262. Merriam GR and Wachter KW (1982). Algorithms for the study of episodic hormone secretion. American Journal of Physics 243: 310-318. Miller KP, Gupta RK and Flaws JA (2006). Methoxychlor metabolites may cause ovarian toxicity through estrogen-regulated pathways. Toxicological Sciences 93: 180-188. Minami S, Frautschy SA, Plotsky PM, Sutton SW and Sarkar DK (1990). Facilitatory role of neuropeptide Y on the onset of puberty: Effect of immunoneutralization of neuropeptide Y on the release of luteinizing hormone and luteinizing-hormone-releasing hormone. Neuroendocrinology 52: 112-115. Minami S and Sarkar DK (1992). Central administration of neuropeptide Y induces precocious puberty in female rats. Neuroendocrinology 56: 930-934. Mitra SW, Hoskin E, Yudkovitz J, Pear L, Wilkinson HA, Hayashi S, Pfaff DW, Ogawa S, Rohrer SP, Schaeffer JM, McEwen BS and Alves SE (2003). Immunolocalization of estrogen receptor beta in the mouse brain: Comparison with estrogen receptor alpha. Endocrinology 144: 2055-2067. 121 Bibliographie Mitsushima D, Yokawa T, Nishihara M and Takahashi M (1994). Attenuation of the expression of circadian rhythms by chronic outputs from the VMH in rats. Physiology and Behavior56: 891-899. Mocarelli P, Gerthoux PM, Ferrari E, Patterson DG Jr, Kieszak SM, Brambilla P, Vincoli N, Signorini S, Tramacere P, Carreri V, Sampson EJ, Turner WE and Needham LL (2000). Paternal concentrations of dioxin and sex ratio of offspring. Lancet 355: 1858-1863. Moenter SM, Caraty A and Karsch FJ (1990). The estradiol-induced surge of gonadotropinreleasing hormone in the ewe. Endocrinology 127: 1375-1384. Moenter SM and Chu Z (2012). Rapid nongenomic effects of oestradiol on gonadotrophinreleasing hormone neurones. Journal of Endocrinology 24: 117-121. Mol NM, Sørensen N, Weihe P, Andersson AM, Jørgensen N, Skakkebaek NE, Keiding N and Grandjean P (2002). Spermaturia and serum hormone concentrations at the age of puberty in boys prenatally exposed to polychlorinated biphenyls. European Journal of Endocrinology 146: 357-363. Mong JA, Nuñez JL and McCarthy MM (2002). GABA mediates steroid-induced astrocyte differentiation in the neonatal rat hypothalamus. Journal of Neuroendocrinology 14: 45-55. Montague CT, Prins JB, Sanders L, Digby JE and O'Rahilly S (1997). Depot- and sex-specific differences in human leptin mRNA expression: Implications for the control of regional fat distribution. Diabetes 46: 342-347. Moore JPJ, Shang E and Wray S (2002). In situ GABAergic modulation of synchronous gonadotropin-releasing hormone-1 neuronal activity. Journal of Neuroscience 22: 8932-8941. Mosselman S, Polman J and Dijkema R (1996). ER beta: Identification and characterization of a novel human estrogen receptor. Federation of European Biochemical Societies Letters 392: 49-53. Mussi P, Ciana P, Raviscioni M, Villa R, Regondi S, Agradi E, Maggi A and Di LorenzoD (2005). Activation of brain estrogen receptors in mice lactating from mothers exposed to DDT. Brain Research Bulletin 65: 241-247. Nabekura J, Oomura Y, Minami T, Mizuno Y and Fukuda A (1986). Mechanism of the rapid effect of 17 beta-estradiol on medial amygdala neurons. Science 233: 226-228. Naftolin F (1994). Brain aromatization of androgens. Journal of Reproductive Medicine 39: 257-261. Naftolin F and Brawer JR (1978). The effect of estrogens on hypothalamic structure and function. American Journal of Obstetrics and Gynecology 132: 758-765. 122 Bibliographie Naftolin F, Horvath TL and Balthazart J (2001). Estrogen synthetase (aromatase) immunohistochemistry reveals concordance between avian and rodent limbic systems and hypothalami. Experimental Biology and Medicine (Maywood) 226: 717-725. Nagel SC, vom Saal FS, Thayer KA, Dhar MG, Boechler M and Welshons WV (1997). Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environmental Health Perspectives 105: 70-76. Newbold RR, Padilla-Banks E, Jefferson WN and Heindel JJ (2008). Effects of endocrine disruptors on obesity. International Journal of Andrology 31: 201-208. Noel SD, Keen KL, Baumann DI, Filardo EJ and Terasawa E (2009). Involvement of G protein-coupled receptor 30 (GPR30) in rapid action of estrogen in primate LHRH neurons. Molecular Endocrinology 23: 349-359. Nunez L, Villalobos C, Boockfor FR and Frawley LS (2000). The relationship between pulsatile secretion and calcium dynamics in single, living gonadotropin-releasing hormone neurons. Endocrinology 141: 2012-2017. Odum J, Lefevre PA, Tittensor S, Paton D, Routledge EJ, Beresford NA, Sumpter JP and Ashby J (1997). The rodent uterotrophic assay: Critical protocol features, studies with nonyl phenols, and comparison with a yeast estrogenicity assay. Regulatory Toxicology and Pharmacology 25: 176-188. Ogiue-Ikeda M, Tanabe N, Mukai H, Hojo Y, Murakami G, Tsurugizawa T, Takata N, Kimoto T and Kawato S (2008). Rapid modulation of synaptic plasticity by estrogens as well as endocrine disrupters in hippocampal neurons. Brain Research Reviews 57: 363-375. Ohtake F, Takeyama KI, Matsumoto T, Kitagawa H, Yamamoto Y, Nohara K, Tohyama C, Krust A, Mimura J, Chambon P, Yanagisawa J, Fujii-Kuriyama Y and Kato S (2003). Modulation of estrogen receptor signalling by association with the activated dioxin receptor. Nature 423: 545-550. Ojeda SR, Jameson HE and McCann SM (1977). Developmental changes in pituitary responsiveness to luteinizing hormone-releasing hormone (LHRH) in the female rat: Ovarianadrenal influence during the infantile period. Endocrinology 100: 440-451. Ojeda SR, Naor Z and Negro-Vilar A (1979). The role of prostaglandins in the control of gonadotropin and prolactin secretion. Prostaglandins and Medicine 2: 249-275. Ojeda SR and Campbell WB (1982). An increase in hypothalamic capacity to synthesize prostaglandin E2 precedes the first preovulatory surge of gonadotropins. Endocrinology 111: 1031-1037. 123 Bibliographie Ojeda SR, Urbanski HF, Katz KH and Costa ME (1986). Activation of estradiol-positive feedback at puberty: Estradiol sensitizes the LHRH-releasing system at two different biochemical steps. Neuroendocrinology 43: 259-265. Ojeda SR, Urbanski HF, Costa ME, Hill DF and Moholt-Siebert M (1990). Involvement of transforming growth factor alpha in the release of luteinizing hormone-releasing hormone from the developing female hypothalamus. Proceedings of the National Academy of Sciences of the United States of America 87: 9698-9702. Ojeda SR and Urbanski HF (1994). Puberty in the rat. In «The physiology of reproduction». Knobil E & Neil JD, eds. Raven Press Ltd, New York, 2: 363-409. Ojeda SR, Hill J, Hill DF, Costa ME, Tapia V, Cornea A and Ma YJ (1999). The oct-2 POUdomain gene in the neuroendocrine brain: A transcriptional regulator of mammalian puberty. Endocrinology 140: 3774-3789. Ojeda SR and Terasawa E (2002). Neuroendocrine regulation of puberty. In «Hormones, brain and behavior». Pfaff D, Arnold A, Etgen A, Fahrbach S, Moss R & Rubin R, eds. New York: Elsevier, 4: 589–659. Olszewski PK, Li D, Grace MK, Billington CJ, Kotz CM and Levine AS (2003). Neural basis of orexigenic effects of ghrelin acting within lateral hypothalamus. Peptides 24: 597-602. Ong KK, Emmett P, Northstone K, Golding J, Rogers I, Ness AR, Wells JC and Dunger DB (2009). Infancy weight gain predicts childhood body fat and age at menarche in girls. Journal of Clinical Endocrinology and Metabolism 94: 1527-1532. Ottem EN, Godwin JG and Petersen SL (2002). Glutamatergic signaling through the Nmethyl-D-aspartate receptor directly activates medial subpopulations of luteinizing hormonereleasing hormone (LHRH) neurons, but does not appear to mediate the effects of estradiol on LHRH gene expression. Endocrinology 143: 4837-4845. Ouyang F, Perry MJ, Venners SA, Chen C, Wang B, Yang G, Fang Z, Zang T, Wang L, Xu X and Wang X (2005). Serum DDT, age at menarche, and abnormal menstrual cycle length. Occupational and Environmental Medicine 62: 878-884. Palanza P, Parmigiani S and vom Saal FS (2001). Effects of prenatal exposure to low doses of diethylstilbestrol, o,p'DDT, and methoxychlor on postnatal growth and neurobehavioral development in male and female mice. Hormones and Behavior 40: 252-265. Papadimitriou A, Pantsiotou S, Douros K, Papadimitriou DT, Nicolaidou P and Fretzayas A (2008). Timing of pubertal onset in girls: Evidence for non-gaussian distribution. Journal of Clinical Endocrinology and Metabolism 93: 4422-4425. 124 Bibliographie Parent AS, Lebrethon MC, Gérard A, Vandersmissen E and Bourguignon JP (2000). Leptin effects on pulsatile gonadotropin releasing hormone secretion from the adult rat hypothalamus and interaction with cocaine and amphetamine regulated transcript peptide and neuropeptide Y. Regulatory Peptides 92: 17-24. Parent AS, Teilmann G, Juul A, Skakkebaek NE, Toppari J and Bourguignon JP (2003). The timing of normal puberty and the age limits of sexual precocity: Variations around the world, secular trends, and changes after migration. Endocrine Reviews 24: 668-693. Parent AS, Lebrethon MC, Gérard A and Bourguignon JP (2005). Factors accounting for perinatal occurrence of pulsatile gonadotropin-releasing hormone secretion in vitro. Biology of Reproduction 72: 143-149. Parent AS, Mungenast AE, Lomniczi A, Sandau US, Peles E, Bosch MA, Rønnekleiv OK and Ojeda SR (2007). A contactin-receptor-like protein tyrosine phosphatase beta complex mediates adhesive communication between astroglial cells and gonadotrophin-releasing hormone neurones. Journal of Neuroendocrinology 19: 847-859. Parent AS, Rasier G, Matagne V, Lomniczi A, Lebrethon MC, Gérard A, Ojeda SR and Bourguignon JP (2008). Oxytocin facilitates female sexual maturation through a glia-toneuron signaling pathway. Endocrinology 149: 1358-1365. Parent AS, Naveau E, Gérard A, Bourguignon JP and Westbrook GL (2011). Early developmental actions of endocrine disruptors on the hypothalamus, hippocampus, and cerebral cortex. Journal of Toxicology and Environmental Health, Part B: Critical Reviews 14: 328-345. Parhar IS (2002). Cell migration and evolutionary significance of GnRH subtypes. Progress in Brain Research 141: 3-17. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S and Haydon PG (1994). Glutamatemediated astrocyte-neuron signalling. Nature 369: 744-747. Partsch CJ and Sippel WG (2001). Pathogenesis and epidemiology of precocious puberty. Effects of exogenous estrogens. Human Reproduction Update 7: 292-302. Patisaul HB, Dindo M, Whitten PL and Young LJ (2001). Soy isoflavone supplements antagonize reproductive behavior and estrogen receptor alpha- and beta-dependent gene expression in the brain. Endocrinology 142: 2946-2952. Patisaul HB and Adewale HB (2009). Long-term effects of environmental endocrine disruptors on reproductive physiology and behavior. Frontiers in Behavioral Neuroscience 3: 10. 125 Bibliographie Pau KY, Berria M, Hess DL and Spies HG (1995). Hypothalamic site-dependent effects of neuropeptide Y on gonadotropin-releasing hormone secretion in rhesus macaques. Journal of Neuroendocrinology 7: 63-67. Payne J, Rajapakse N, Wilkins M and Kortenkamp A (2000). Prediction and assessment of the effects of mixtures of four xenoestrogens. Environmental Health Perspectives 108: 983987. Payne J, Scholze M and Kortenkamp A (2001). Mixtures of four organochlorines enhance human breast cancer cell proliferation. Environmental Health Perspectives 109: 391-397. Pellegrini E, Menuet A, Lethimonier C, Adrio F, Gueguen MM, Tascon C, Anglade I, Pakdel F and Kah O (2005). Relationships between aromatase and estrogen receptors in the brain of teleost fish. General and Comparative Endocrinology 142: 60-66. Perez SE, Chen EY and Mufson EJ (2003). Distribution of estrogen receptor alpha and beta immunoreactive profiles in the postnatal rat brain. Brain Research Developmental Brain Research 145: 117-139. Pierotti AR, Lasdun A, Ayala JM, Roberts JL and Molineaux CJ (1991). Endopeptidase-24.15 in rat hypothalamic/pituitary/gonadal axis. Molecular and Cellular Endocrinology 76: 95-103. Pierroz DD, Gruaz NM, d'Alièves V and Aubert ML (1995). Chronic administration of neuropeptide Y into the lateral ventricle starting at 30 days of life delays sexual maturation in the female rat. Neuroendocrinology 61: 293-300. Piersma AH, Verhoef A, Sweep CG, de Jong WH and van Loveren H (2002). Developmental toxicity but no immunotoxicity in the rat after prenatal exposure to diethylstilbestrol. Toxicology 174: 173-181. Ping L, Mahesh VB, Bhat GK and Brann DW (1997). Regulation of gonadotropin-releasing hormone and luteinizing hormone secretion by AMPA receptors. Evidence for a physiological role of AMPA receptors in the steroid-induced luteinizing hormone surge. Neuroendocrinology 66: 246-253. Plant TM (1982). Effects of orchidectomy and testosterone replacement treatment on pulsatile luteinizing hormone secretion in the adult rhesus monkey (Macaca mulatta). Endocrinology 110: 1905-1913. Plant TM (1986). Gonadal regulation of hypothalamic gonadotropin-releasing hormone release in primates. Endocrine Reviews. 7: 75-88. Plant TM (1994). Puberty in primates. In «The physiology of reproduction». Knobil E & Neill J, eds. 2nd ed. New York: Raven Press, 2: 453–485. 126 Bibliographie Plant TM (2006). The role of KiSS-1 in the regulation of puberty in higher primates. European Journal of Endocrinology 155 Suppl 1: 11-16. Plant TM, Gay VL, Marshall GR and Arslan M (1989). Puberty in monkeys is triggered by chemical stimulation of the hypothalamus. Proceedings of the National Academy of Sciences of the United States of America 86: 2506-2510. Plapinger L and McEwen BS (1973). Ontogeny of estradiol-binding sites in rat brain. I. Appearance of presumptive adult receptors in cytosol and nuclei. Endocrinology 93: 11191128. Potashnik G, Goldsmith J and Insler V (1984). Dibromochloropropane-induced reduction of the sex-ratio in man. Andrologia 16: 213-218. Prevot V, Croix D, Bouret S, Dutoit S, Tramu G, Stefano GB and Beauvillain JC (1999). Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: Implication of neuro-glio-endothelial interactions in gonadotropin-releasing hormone release. Neuroscience 94: 809-819. Prevot V, Bouret S, Croix D, Takumi T, Jennes L, Mitchell V and Beauvillain JC (2000). Evidence that members of the TGTbeta superfamily play a role in regulation of the GnRH neuroendocrine axis: Expression of a type I serine-threonine kinase receptor for TGRbeta and activin in GnRH neurones and hypothalamic areas of the female rat. Journal of Neuroendocrinology 12: 665-670. Prevot V, Rio C, Cho GJ, Lomniczi A, Heger S, Neville CM, Rosenthal NA, Ojeda SR and Corfas G (2003). Normal female sexual development requires neuregulin-erbB receptor signaling in hypothalamic astrocytes. Journal of Neuroscience 23: 230-239. Proos LA, Hofvander Y and Tuvemo T (1991). Menarcheal age and growth pattern of Indian girls adopted in Sweden. I. Menarcheal age. Acta Paediatrica Scandinavica 80: 852-858. Pugliese MT, Lifshitz F, Grad G, Fort P and Marks-Katz M (1983). Fear of obesity. A cause of short stature and delayed puberty. New England Journal of Medicine 309: 513-518. Purnelle G, Gérard A, Czajkowski V and Bourguignon JP (1997). Pulsatile secretion of gonadotropin-releasing hormone by rat hypothalamic explants without cell bodies of GnRH neurons. Neuroendocrinology 66: 305-312. Purnelle G, Gérard A, Czajkowski V and Bourguignon JP (1998). Pulsatile secretion of gonadotropin-releasing hormone by rat hypothalamic explants without cell bodies of GnRH neurons. Neuroendocrinology 67: 57. 127 Bibliographie Putz O, Schwartz CB, Kim S, LeBlanc GA, Cooper RL and Prins GS (2001a). Neonatal lowand high-dose exposure to estradiol benzoate in the male rat: I. Effects on the prostate gland. Biology of Reproduction 65: 1496-1505. Putz O, Schwartz CB, LeBlanc GA, Cooper RL and Prins GS (2001b). Neonatal low- and high-dose exposure to estradiol benzoate in the male rat: II. Effects on male puberty and the reproductive tract. Biology of Reproduction 65: 1506-1517. Quan X, Zhao X, Chen S, Zhao H, Chen J and Zhao Y (2005). Enhancement of p,p'-DDT photodegradation on soil surfaces using TiO2 induced by UV-light. Chemosphere 60: 266273. Rajapakse N, Silva E, Scholze M and Kortenkamp A (2004). Deviation from additivity with estrogenic mixtures containing 4-nonylphenol and 4-tert-octylphenol detected in the ESCREEN assay. Environmental Science and Technology 38: 6343-6352. Rage F, Hill DF, Sena-Esteves M, Breakefield XO, Coffey RJ, Costa ME, McCann SM and Ojeda SR (1997). Targeting transforming growth factor alpha expression to discrete loci of the neuroendocrine brain induces female sexual precocity. Proceedings of the National Academy of Sciences of the United States of America 94: 2735-2740. Ramaley JA (1982). Pituitary gonadotrophin-releasing hormone responsiveness in the prepubertal period: Effect of delayed puberty onset. Neuroendocrinology 34: 387-394. Ramirez DV and McCann SM (1963). Comparison of the regulation of luteinizing hormone (LH) secretion in immature and adult rats. Endocrinology 72: 452-464. Ramirez VD and Sawyer CH (1965). Advancement of puberty in the female rat by estrogen. Endocrinology 76: 1158-1168. Ramirez I (1981). Estradiol-induced changes in lipoprotein lipase, eating and body weight in rats. American Journal of Physics 240: 533-538. Rasier G, Toppari J, Parent AS and Bourguignon JP (2006). Female sexual maturation and reproduction after prepubertal exposure to estrogens and endocrine disrupting chemicals: A review of rodent and human data. Molecular and Cellular Endocrinology 254-255: 187-201. Rasier G, Parent AS, Gérard A, Lebrethon MC and Bourguignon JP (2007). Early maturation of gonadotropin-releasing hormone secretion and sexual precocity after exposure of infantile female rats to estradiol or dichlorodiphenyltrichloroethane. Biology of Reproduction 77: 734742. Rasier G, Parent AS, Gérard A, Denooz R, Lebrethon MC, Charlier C and Bourguignon JP (2008). Mechanisms of interaction of endocrine disrupting chemicals with glutamate-evoked secretion of gonadotropin-releasing hormone. Toxicological Sciences 102: 33-41. 128 Bibliographie Reichlin S (1998). Neuroendocrinology. In «Williams Textbook of Endocrinology». Wilson JD, Foster DW, Kronenberg HM & Larsen PR, eds. 9th ed. Saunders, Philadelphia, 165-248. Rettori V, Belova N, Dees WL, Nyberg CL, Gimeno M and McCann SM (1993). Role of nitric oxide in the control of luteinizing hormone-releasing hormone release in vivo and in vitro. Proceedings of the National Academy of Sciences of the United States of America 90: 10130-10134. Rettori V, Canteros G, Renoso R, Gimeno M and McCann SM (1997). Oxytocin stimulates the release of luteinizing hormone-releasing hormone from medial basal hypothalamic explants by releasing nitric oxide. Proceedings of the National Academy of Sciences of the United States of America 94: 2741-2744. Revelli A, Massobrio M and Tesarik J (1998). Nongenomic actions of steroid hormones in reproductive tissues. Endocrine Reviews 19: 3-17. Richter TA, Keen KL and Terasawa E (2002). Synchronisation of Ca(2+) oscillations among primate LHRH neurons and non neuronal cells in vitro. Journal of Neurophysiology 88: 15591567. Rider CV, Furr J, Wilson VS and Gray LE Jr (2008). A mixture of seven antiandrogens induces reproductive malformations in rats. International Journal of Andrology 31: 249-262. Rivas A, Fisher J, McKinnell C, Atanassova N and Sharpe RM (2002). Induction of reproductive tract developmental abnormalities in the male rat by lowering androgen production or action in combination with a low dose of diethylstilbestrol: Evidence for importance of the androgen-estrogen balance. Endocrinology 143: 4797-4808. Roa J and Tena-Sempere M (2007). KISS-1 system and reproduction: Comparative aspects and roles in the control of female gonadotropic axis in mammals. General and Comparative Endocrinology 153: 132-140. Robinson J, Richardson A, Hunter CG, Crabtree AN and Rees HJ (1965). Organochlorine insecticide content of human adipose tissue in south-eastern England. British Journal of. Industrial Medicine 22: 220-224. Rochdi L, Theraulaz L, Enjalbert A and Gautron JP (2000). Differential in vitro secretion of gonadotropin-releasing hormone (GnHR) and [hydroxyproline] GnRH from the rat hypothalamus during postnatal development. Journal of Neuroendocrinology 12: 919-926. Roelants M, Hauspie R and Hoppenbrouwers K (2009). References for growth and pubertal development from birth to 21 years in Flanders, Belgium. Annals of Human Biology 36: 680694. 129 Bibliographie Rogan WJ, Gladen BC, Guo YL and Hsu CC (1999). Sex ratio after exposure to dioxin-like chemicals in Taiwan. Lancet 353: 206-207. Rojansky N, Brzezinski A and Schenker JG (1992). Seasonality in human reproduction: An update. Human Reproduction 7: 735-745. Rometo AM and Rance NE (2008). Changes in prodynorphin gene expression and neuronal morphology in the hypothalamus of postmenopausal women. Journal of Neuroendocrinology 20: 1376-1381. Roselli CE, Abdelgadir SE, Ronnekleiv OK and Klosterman SA (1998). Anatomic distribution and regulation of aromatase gene expression in the rat brain. Biology of Reproduction 58: 79-87. Roselli CE and Resko JA (2001). Cytochrome P450 aromatase (CYP19) in the non-human primate brain: Distribution, regulation, and functional significance. Journal of Steroid Biochemistry and Molecular Biology 79: 247-253. Rosenfield RL (1996). The ovary and female sexual maturation. In «Pediatric Endocrinology». Sperling MA, eds. Saunders, Philadelphia, 329-385. Roy D, Angelini NL and Belsham DD (1999). Estrogen directly respresses gonadotropinreleasing hormone (GnRH) gene expression in estrogen receptor-alpha (ERalpha)- and ERbeta-expressing GT1-7 GnRH neurons. Endocrinology 140: 5045-5053. Rubin BS, Lenkowski JR, Schaeberle CM., Vandenberg LN, Ronsheim PM and Soto A (2006). Evidence of altered brain sexual differenciation in mice exposed perinatally to low, environmentally relevant levels of bisphenol A. Endocrinology 147: 3681-3691. Saito K, Chida Y, Adachi S and Yamauchi K (2003). In vitro induction of luteinizing hormone synthesis by estrogen in organ-cultured pituitary glands of the Japanese eel, Anguilla japonica. Zoological Science 20: 69-73. SanMartín S, Gutiérrez M, Menéndez L, Hidalgo A and Baamonde A (1999). Effects of diethylstilbestrol on mouse hippocampal evoked potentials in vitro. Cellular and Molecular Neurobiology 19: 691-703. Sarkar DK, Chiappa SA, Fink G and Sherwood NM (1976). Gonadotropin-releasing hormone surge in pro-oestrous rats. Nature 264: 461-463. Sarkar DK and Fink G (1980). Luteinizing hormone releasing factor in pituitary stalk plasma from long-term ovariectomized rats: Effects of steroids. Journal of Endocrinology 86: 511524. 130 Bibliographie Sato K, Matsuki N, Ohno Y and Nakazawa K (2002). Effects of 17beta-estradiol and xenoestrogens on the neuronal survival in an organotypic hippocampal culture. Neuroendocrinology 76: 223-234. Schally AV, Arimura A, Baba Y, Nair RM, Matsuo H, Redding TW and Debeljuk L (1971). Isolation and properties of the FSH and LH-releasing hormone. Biochemical and Biophysical Research Communications 43: 393-399. Schrager S and Potter BE (2004). Diethylstilbestrol exposure. American Family Physician 69: 2395-2400. Schwantzel-Fukuda M, Crossin KL, Pfaff DW, Bouloux PM, Hardelin JP and Petit C (1996). Migration of luteinizing hormone-releasing hormone (LHRH) neurons in early human embryos. Journal of Comparative Neurology 366: 547-557. Seeburg PH and Adelman JP (1984). Characterization of cDNA for precursor of human luteinizing hormone releasing hormone. Nature 311: 666-668. Selvage D and Johnston CA (2001). Central stimulatory influence of oxytocin on preovulatory gonadotropin-releasing hormone requires more than the median eminence. Neuroendocrinology 74: 129-134. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, BoAbbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O’Rahilly S, Carlton MB, Crowley WF Jr; Aparicio SA and Colledge WH (2003). The GPR54 gene as a regulator of puberty. New England Journal of Medicine 349: 1614-1627. Seminara SB and Kaiser UB (2005). New gatekeepers of reproduction: GPR54 and its cognate ligand, KISS-1. Endocrinology 146: 1686-1688. Servili A, Le Page Y, Leprince J, Caraty A, Escobar S, Parhar IS, Seong JY, Vaudry H and Kah O (2011). Organization of two independent kisspeptin systems derived from evolutionary-ancient kiss genes in the brain of zebrafish. Endocrinology 152: 1527-1540. Shaw ND, Histed SN, Srouji SS, Yang J, Lee H and Hall JE (2010). Estrogen negative feedback on gonadotropin secretion: Evidence for a direct pituitary effect in women. Journal of Clinical Endocrinology and Metabolism 95: 1955-1961. Shen ES, Meade EH, Perez MC, Deecher DC, Negro-Vilar A and Lopez FJ (1998). Expression of functional estrogen receptors and galanin messenger ribonucleic acid in immortalized luteinizing hormone-releasing hormone neurons: Estrogenic control of galanin gene expression. Endocrinology 139: 939-948. 131 Bibliographie Sherwood NM, Chiappa SA and Fink G (1976). Immunoreactive luteinizing hormone releasing factor in pituitary stalk blood from female rats: Sex steroid modulation of response to electrical stimulation of preoptic area or median eminence. Journal of Endocrinology 70: 501-511. Shintani M, Ogawa Y, Ebihara K, Aizawa-Abe M, Miyanaga F, Takaya K, Hayashi T, Inoue G, Hosoda K, Kojima M, Kangawa K and Nakao K (2001). Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway. Diabetes 50: 227-232. Shivers BD, Harlan RE, Morrell JI and Pfaff DW (1983). Absence of oestradiol concentration in cell nuclei of LHRH-immunoreactive neurones. Nature 304: 345-347. Silva E, Rajapakse N and Kortenkamp A (2002). Something from "nothing"--eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environmental Science and Technology 36: 1751-1756. Silverman AJ, Livne I and Witkin JW (1994). The gonadotropin-releasing hormone (GnRH), neuronal system: Immunocytochemistry and in situ hybridization. In «The physiology of reproduction». Knobil E & Neill JD, eds. New York: Raven Press, 1683. Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW and Liao JK (2000). Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 407: 538-541. Sisk CL, Richardson HN, Chappell PE and Levine JE (2001). In vivo gonadotropin-releasing hormone secretion in female rats during peripubertal development and on proestrus. Endocrinology 142: 2929-2936. Sisk CL and Foster DL (2004). The neural basis of puberty and adolescence. Nature Neuroscience 7: 1040-1047. Skakkebaek NE, Rajpert-De Meyts E and Main KM (2001). Testicular dysgenesis syndrome: An increasingly common developmental disorder with environmental aspects. Human Reproduction 16: 972-978. Skynner MJ, Sim JA and Herbison AE (1999). Detection of estrogen receptor alpha and beta messenger ribonucleic acids in adult gonadotropin-releasing hormone neurons. Endocrinology 140: 5195-5201. Smeets JM, van Holsteijn I, Giesy JP, Seinen W and van den Berg M (1999). Estrogenic potencies of several environmental pollutants, as determined by vitellogenin induction in a carp hepatocyte assay. Toxicological Sciences 50: 206-213. 132 Bibliographie Smith SS, Waterhouse BD and Woodward DJ (1987). Sex steroid effects on extrahypothalamic CNS. I. Estrogen augments neuronal responsiveness to iontophoretically applied glutamate in the cerebellum. Brain Research 422: 40-51. Smith SS, Gong QH, Hsu FC, Markowitz RS, Ffrench-Mullen JM and Li X (1998). GABA(A) receptor alpha4 subunit suppression prevents withdrawal properties of an endogenous steroid. Nature 392: 926-930. Smith SS, Ruderman Y, Frye C, Homanics G and Yuan M (2006). Steroid withdrawal in the mouse results in anxiogenic effects of 3alpha,5beta-THP: A possible model of premenstrual dysphoric disorder. Psychopharmacology (Berl). 186: 323-333. Smith SS, Shen H, Gong QH and Zhou X (2007). Neurosteroid regulation of GABA(A) receptors: Focus on the alpha4 and delta subunits. Pharmacology and Therapeutics 116: 5876. Smyth C and Wilkinson M (1994). A critical period for glutamate receptor-mediated induction of precocious puberty in female rats. Journal of Neuroendocrinology 6: 275-284. Snedeker SM (2001). Pesticides and breast cancer risk: A review of DDT, DDE, and dieldrin. Environmental Health Perspectives Suppl 1: 35-47. Soto AM, Chung KL and Sonnenschein C (1994). The pesticides endosulfan, toxaphene, and dieldrin have estrogenic effects on human estrogen-sensitive cells. Environmental Health Perspectives 102: 380-383. Soto AM, Fernandez MF, Luizzi MF, Oles Karasko AS and Sonnenschein C (1997). Developing a marker of exposure to xenoestrogen mixtures in human serum. Environmental Health Perspectives Suppl 3: 647-654. Spergel DJ, Krsmanovic LZ, Stojilkovic SS and Catt KJ (1995). L-type Ca2+ channels mediate joint modulation by gamma-amino-butyric acid and glutamate of [Ca2+]i and neuropeptide secretion in immortalized gonadodropin-releasing hormone neurons. Neuroendocrinology 61: 499-508. Steinberg RM, Juenger TE and Gore AC (2007). The effects of prenatal PCBs on adult female paced mating reproductive behaviors in rats. Hormones and Behavior 51: 364-372. Steinberg RM, Walker DM, Juenger TE, Woller MJ and Gore AC (2008). The effects of perinatal PCBs on adult female rat reproduction: Development, reproductive physiology, and second generational effects. Biology of Reproduction 78: 1091-1101. Steiner RA, Bremner WJ and Clifton DK (1982). Regulation of luteinizing hormone pulse frequency and amplitude by testosterone in the adult male rate. Endocrinology 111: 20552061. 133 Bibliographie Strobel A, Issad T, Camoin L, Ozata M and Strosberg AD (1998). A leptin missense mutation associated with hypogonadism and morbid obesity. Nature Genetics 18:213-215. Strom BL, Rita Schinnar, Ekhard E, Ziegler, Kurt T, Barnhart MD, Mary D, Sammel SCD, George A, Macones MD, Virginia A, Stallings MD, Jean M, Drulis BA, Steven E, Nelson BA, Sandra A and Hanson BA (2001). Exposure to soy-based formula in infancy and endocrinological and reproductive outcomes in young adulthood. Journal of American Medical Association 286: 807-814. Suter KJ, Pohl CR and Wilson ME (2000). Circulating concentrations of nocturnal leptin, growth hormone, and insulin-like growth factor-I increase before the onset of puberty in agonadal male monkeys: Potential signals for the initiation of puberty. Journal of Clinical Endocrinology and Metabolism 85: 808-814. Sutton SW, Mitsugi N, Plotsky PM and Sarkar DK(1988). Neuropeptide Y (NPY): A possible role in the initiation of puberty. Endocrinology 123: 2152-2154. Savabieasfahani M, Kannan K, Astapova O, Evans NP and Padmanabhan V (2006). Developmental programming: Differential effects of prenatal exposure to bisphenol-A or methoxychlor on reproductive function. Endocrinology 147: 5956-5966. Swaab DF, Slob AK, Houtsmuller EJ, Brand T and Zhou JN (1995). Increased number of vasopressin neurons in the suprachiasmatic nucleus (SCN) of „bisexual“ adult male rats following perinatal treatment with the aromatase blocker ATD. Brain Research Developmental Brain Research 85: 273-279. Tanner JM (1962). Growth at adolescence. 2nd ed. Oxford, Blackwell. Tao S, Yu Y, Liu W, Wang X, Cao J, Li B, Lu X and Wong MH (2008). Validation of dietary intake of dichlorodiphenyltrichloroethane and metabolites in two populations from Beijing and Shenyang, China based on the residuals in human milk. Environmental Science and Technology 42: 7709-7714. Tartaglia LA (1997). The leptin receptor. Journal of Biological Chemistry 272: 6093-6096. Teilmann G, Juul A, Skakkebæk NE and Toppari (2002). Putative effects of endocrine disrupters on pubertal development in the human. Best Practice and Research: Clinical Endocrinology and Metabolism 16: 105-121. Teilmann G, Pedersen CB, Skakkebæk NE and Jensen TK (2006). Increased risk of precocious puberty in internationally adopted children in Denmark. Pediatrics 118: 391-399. Tena-Sempere M (2006). GPR54 and kisspeptin in reproduction. Human Reproduction Update 12: 631-639. 134 Bibliographie Tena-Sempere M (2010). Roles of kisspeptins in the control of hypothalamic-gonadotropic function: Focus on sexual differentiation and puberty onset. Endocrine Development 17: 5262. Tena-Sempere M, Barreiro ML, Aguilar E and Pinilla L (2004). Mechanisms for altered reproductive function in female rats following neonatal administration of raloxifene. European Journal of Endocrinology 150: 397-403. Terasawa E (1998). Cellular mechanism of pulsatile LHRH release. General and Comparative Endocrinology 112: 283-295. Terasawa E, Krook C, Hei DL, Gearing M, Schultz NJ and Davis GA (1988). Norepinephrine is a possible neurotransmitter stimulating pulsatile release of luteinizing hormone-releasing hormone in the rhesus monkey. Endocrinology 123: 1808-1816. Terasawa E, Keen KL, Mogi K and Claude P (1999). Pulsatile release of luteinizing hormonereleasing (LHRH) in cultured LHRH neurons derived from the embryonic olfactory placode oft he rhesus monkey. Endocrinology 140: 1432-1441. Terasawa E, Kurian JR, Guerriero KA, Kenealy BP, Hutz ED and Keen KL (2010). Recent discoveries on the control of gonadotrophin-releasing hormone neurones in nonhuman primates. Journal of Neuroendocrinology 22: 630-638. Theintz GE (1994). Endocrine adaptation to intensive physical training during growth. Clinical Endocrinology 41: 267-272. Thomas JE, Ou LT and All-Agely A (2008). DDE remediation and degradation. Reviews of Environmental Contamination and Toxicology 194: 55-69. Todd BJ, Schwarz JM, Mong JA and McCarthy MM (2007). Glutamate AMPA/kainate receptors, not GABA(A) receptors, mediate estradiol-induced sex differences in the hypothalamus. Developmental Neurobiology 67: 304-315. Tomiyama N, Watanabe M, Takeda M, Harada T and Kobayashi H (2003). A comparative study on the reliability of toxicokinetic parameters for predicting hepatotoxicity of DDT in rats receiving a single or repeated administration. Journal of Toxicological Sciencess 28: 403413. Tong TY and Goh VH (2001). Effects of 4-hydroxyandrostenedione and hyperstimulation with pregnant mare serum gonadotrophin on early embryonic development in rats. Canadian Journal of Physiology and Pharmacology 79: 744-753. Topaloglu AK and Kotan LD (2010). Molecular causes of hypogonadotropic hypogonadism. Current Opinion in Obstetrics and Gynecology 22: 264-270. 135 Bibliographie Toppari J, Larsen JC, Christiansen P, Giwercman A, Grandjean P, Guillette LJ Jr, Jégou B, Jensen TK, Jouannet P, Keiding N, Leffers H, McLachlan JA, Meyer O, Müller J, Rajpert-De Meyts E, Scheike T, Sharpe R, Sumpter J and Skakkebaek NE (1996). Male reproductive health and environmental xenoestrogens. Environmental Health Perspectives 104: 741-803. Toran-Allerand CD, Guan X, MacLusky NJ, Horvath TL, Diano S, Singh M, Connolly ESJ, Nethrapalli IS and Tinnikov AA (2002). ER-X: A novel, plasma membrane-associated, putative estrogen, receptor that is regulated during development and after ischemic brain injury. Journal of Neuroscience 22: 8391-8401. Traebert M, Riediger T, Whitebread S, Scharrer E and Schmid HA (2002). Ghrelin acts on leptin-responsive neurons in the rat arcuate nucleus. Journal of Neuroendocrinology 14: 580586. Trudeau VL, Murthy CK, Habibi HR, Sloley BD and Peter RE (1993). Effects of sex steroid treatments on gonadotropin-releasing hormone-stimulated gonadotropin secretion from the goldfish pituitary. Biology of Reproduction 48: 300-307. Tsai PS, Werner S and Weiner RI (1995). Basic fibroblast growth factor is a neurotropic factor in GT1 gonadotropin-releasing hormone neuronal cell lines. Endocrinology 136: 38313838. Tschöp M, Smiley D and Heiman ML (2000). Ghrelin induces adiposity in rodents. Nature 407: 908-913. Tsurugizawa T, Mukai H, Tanabe N, Murakami G, Hojo Y, Kominami S, Mitsushashi K, Komatsuzaki Y, Morrison JH, Janssen WGM, Kimoto T and Kawato S (2005). Estrogen induces rapid decrease in dendritic thorns of CA3 pyramidal neurons in adult male rat hippocampus. Biochemical and Biophysical Research Communications 337: 1345-1352. Tsuruo Y, Ishimura K, Fujita H and Osawa Y (1994). Immunocytochemical localization of aromatasecontaining neurons in the rat brain during pre- and postnatal development. Cell and Tissue Research 278: 29-39. Tyl RW, Myers CB, Marr MC, Thomas BF, Keimowitz AR, Brine DR, Veselica MM, Fail PA, Chang TY, Seely JC, Joiner RL, Butala JH, Dimond SS, Cagen SZ, Shiotsuka RN, Stropp GD and Waechter JM (2002). Three-generation reproductive toxicity study of dietary bisphenol A in CD Sprague-Dawley rats. Toxicological Sciences 68: 121-146. Unsworth WP, Taylor JA and Robinson JE (2005). Prenatal programming of reproductive neuroendocrine function: The effect of prenatal androgens on the development of estrogen positive feedback and ovarian cycles in the ewe. Biology of Reproduction 72: 619-627. 136 Bibliographie Urbanski HF and Ojeda SR (1986). The development of afternoon minisurges of luteinizing hormone secretion in prepubertal female rats is ovary dependent. Endocrinology 118: 11871193. Urbanski HF and Ojeda SR (1987). Activation of luteinizing hormone-releasing hormone release advances the onset of female puberty. Neuroendocrinology 46: 273-276. Urbanski HF and Ojeda SR (1990). A role for N-methyl-D-aspartate (NMDA) receptors in the control of LH secretion and initiation of female puberty. Endocrinology 126: 1774-1776. Urbanski HF, Fahy MM, Daschel M and Meshul C (1994). N-methyl-D-aspartate receptor gene expression in the hamster hypothalamus and in immortalized luteinizing hormonereleasing hormone neurones. Journal of Reproduction and Fertility 100: 5-9. Urbanski HF, Kohama SG and Garyfallou VT (1996). Mechanisms mediating the response of gonadotropin-releasing hormone neurons to excitatory amino acids. Reviews of Reproduction. 1: 173-181. Vasiliu O, Muttineni J and Karmaus W (2004). In utero exposure to organochlorines and age at menarche. Human Reproduction 19: 1506-1512. Verney C, el Amraoui A and Zecevic N (1996). Comigration of tyrosine hydroxylase- and gonadotropin-releasing hormone-immunoreactive neurons in the nasal area of human embryos. Brain Research Developmental Brain Research 97: 251-259. Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A, Breier BH and Harris M (2005). Neonatal leptin treatment reverses developmental programming. Endocrinology 146: 4211-4216. Viglietti-Panzica C, Montoncello B, Mura E, Pessatti M and Panzica GC (2005). Organizational effects of diethylstilbestrol on brain vasotocin and sexual behavior in male quail. Brain Research Bulletin 65: 225-233. Vijayan E and McCann SM (1978). The effects of intraventricular injection of gammaaminobutyric acid (GABA) on prolactin and gonadotropin release in conscious female rats. Brain Research 155: 35-43. Virdis R, Street ME, Zampolli M, Radetti G, Pezzini B, Benelli M, Ghizzoni L and Volta C (1998). Precocious puberty in girls adopted from developing countries. Archives of Disease in Childhood 78: 152-154. Vizziano-Cantonnet D, Anglade I, Pellegrini E, Gueguen MM, Fostier A, Guiguen Y and Kah O (2011). Sexual dimorphism in the brain aromatase expression and activity, and in the central expression of other steroidogenic enzymes during the period of sex differentiation in monosex rainbow trout populations.General and Comparative Endocrinology 170: 346-355. 137 Bibliographie Voigt P, Ma YJ, Gonzalez D, Fahrenbach WH, Wetsel WC, Berg-von der Emde K, Hill DF, Taylor KG, Costa ME, Seidah NG and Ojeda SR (1996). Neural and glial-mediated effects of growth factors acting via tyrosine kinase receptors on luteinizing hormone-releasing hormone neurons. Endocrinology 137: 2593-2605. vom Saal FS, Timms BG, Montano MM, Palanza P, Thayer KA, Nagel SC, Dhar MD, Ganjam VK, Parmigiani S and Welshons WV (1997). Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses. Proceedings of the National Academy of Sciences of the United States of America 94: 20562061. Vulliémoz NR, Xiao E, Xia-Zhang L, Germond M, Rivier J and Ferin M (2004). Decrease in luteinizing hormone pulse frequency during a five-hour peripheral ghrelin infusion in the ovariectomized rhesus monkey. Journal of Clinical Endocrinology and Metabolism 89: 57185723. Wade CB, Robinson S, Shapiro RA and Dorsa DM (2001). Estrogen receptor (ER)alpha and ERbeta exhibit unique pharmacologic properties when coupled to activation of the mitogenactivated protein kinase pathway. Endocrinology 142: 2336-2342. Wagner CK and Morrell JI (1997). Neuroanatomical distribution of aromatase mRNA in the rat brain: Indications of regional regulation. 61: 307-314. Walker DM and Gore AC (2011). Transgenerational neuroendocrine disruption of reproduction. Nature Reviews Endocrinology 7: 197-207. Warner M, Samuels S, Mocarelli P, Gerthoux PM, Needham L, Patterson DG Jr and Eskenazi B (2004). Serum dioxin concentrations and age at menarche. Environmental Health Perspectives 112: 1289-1292. Wasserman M, Nogueira DP, Tomatis L et al. (1976). Organochlorine compounds in neoplastic and adjacent apparently normal breast tissue. Bulletin of Environmental Contamination and Toxicology 15: 478-484. Watanabe G and Terasawa E (1989). In vivo release of luteinizing hormone releasing hormone increases with puberty in the female rhesus monkey. Endocrinology 125: 92-99. Watson CS, Norfleet AM, Pappas TC and Gametchu B (1999). Rapid actions of estrogens in GH3/B6 pituitary tumor cells via a plasma membrane version of estrogen receptor-alpha. Steroids 64: 5-13. Weiner RI and Ganong WF (1971). Effect of the depletion of brain catecholamines on puberty and the estrous cycle in the rat. Neuroendocrinology 8: 125-135. 138 Bibliographie Weisz J and Ward IL (1980). Plasma testosterone and progesterone titers of pregnant rats, their male and female fetuses, and neonatal offspring. Endocrinology 106: 306-316. Welt CK, Chan JL, Bullen J, Murphy R, Smith P, DePaoli AM, Karalis A and Mantzoros CS (2004). Recombinant human leptin in women with hypothalamic amenorrhea. New England Journal of Medicine 351: 987-997. Wetsel WC (1995). Immortalized hypothalamic luteinizing hormone-releasing hormone (LHRH) neurons: A new tool for dissecting the molecular and cellular basis of LHRH physiology. Cellular and Molecular Neurobiology 15: 43-78. Wetsel WC and Srinivasan S (2002). Pro-GnRH processing. Progress in Brain Research 141: 221-241. Wildt L, Marshall G and Knobil E (1980). Experimental induction of puberty in the infantile female rhesus monkey. Science 207: 1373-1375. Wolf DM, Langan-Fahey SM, Parker CJ, McCague R and Jordan VC (1993). Investigation of the mechanism of tamoxifen-stimulated breast tumor growth with nonisomerizable analogues of tamoxifen and metabolites. Journal of the National Cancer Institute 85: 806-812. Wolff MS, Britton JA, Boguski L, Hochman S, Maloney N, Serra N, Liu Z, Berkowitz G, Larson S and Forman J (2008). Environmental exposures and puberty in inner-city girls. Environmental Research 107: 393-400. Wood RI, Kim SJ and Foster DL (1996). Prenatal androgens defeminize activation of GnRH neurons in response to estradiol stimulation. Journal of Neuroendocrinology 8: 617-625. Wrenn TR, Weyant JR, Fries GF and Bitman J (1971). Effect of several dietary levels of o,p'DDT on reproduction and lactation in the rat. Bulletin of Environmental Contamination and Toxicology 6: 471-480. Wu TJ, Pierotti AR, Jakubowski M, Sheward WJ, Glucksman MJ, Smith AI, King JC, Fink G and Roberts JL (1997). Endopeptidase EC 3.4.24.15. presence in the rat median eminence and hypophysial portal blood and its modulation of the luteinizing hormone surge. Journal of Neuroendocrinology 9: 813-822. Xia L, Van Vugt D, Alston EJ, Luckhaus J and Ferin M (1992). A surge of gonadotropinreleasing hormone accompanies the estradiol-induced gonadotropin surge in the rhesus monkey. Endocrinology 131: 2812-2820. Yamanaka C, Lebrethon MC, Vandersmissen E, Gérard A, Purnelle G, Lemaitre M, Wilk S and Bourguignon JP (1999). Early prepubertal ontogeny of pulsatile gonadotropin-releasing hormone (GnRH) secretion: I. Inhibitory autofeedbak control through prolyl endopeptidase degradation of GnRH. Endocrinology 140: 4609-4615. 139 Bibliographie Yang CY, Yu ML, Guo HR, Lai TJ, Hsu CC, Lambert G and Guo YL (2005). The endocrine and reproductive function of the female Yucheng adolescents prenatally exposed to PCBs/PCDFs. Chemosphere 61: 355-360. Yin P, Kawashima K and Arita J (2002). Direct actions of estradiol on the anterior pituitary gland are required for hypothalamus-dependent lactotrope proliferation and secretory surges of luteinizing hormone but not of prolactin in female rats. Neuroendocrinology 75: 392-401. Ying GG, Kookana RS and Dillon P (2003). Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material. Water Research 37: 3785-3791. Ying GG and Kookana RS (2005). Sorption and degradation of estrogen-like-endocrine disrupting chemicals in soil. Environmental Toxicology and Chemistry 24: 2640-2645. Zanassi P, Paolillo M, Feliciello A, Avvedimento EV, Gallo V and Schinelli S (2001). cAMPdependent protein kinase induces cAMP-response element-binding protein phosphorylation via an intracellular calcium release/ERK-dependent pathway in striatal neurons. Journal of Biological Chemistry 276: 11487-11495. Zangar RC, Springer DL, McCrary JA, Novak RF, Primiano T and Buhler DR (1992). Changes in adult metabolism of aflatoxin B1 in rats neonatally exposed to diethylstilbestrol. Alterations in alpha-class glutathione S-transferases. Carcinogenesis 13: 2375-2379. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L and Friedman JM (1994). Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425-432. Zhang C, Kelly MJ and Rønnekleiv OK (2010). 17Beta-estradiol rapidly increases K(ATP) activity in GnRH via a protein kinase signaling pathway. Endocrinology 151: 4477-4484. 140 Bibliographie Annexes Estradiol Stimulation of Pulsatile Gonadotropin-Releasing Hormone Secretion in Vitro : Correlation with Perinatal Exposure to Sex Steroids and Induction of Sexual Precocity in Vivo V. Matagne, G. Rasier, M.-C. Lebrethon, A. Gérard and J.-P. Bourguignon Endocrinology 2004 145:2775-2783 originally published online Feb 26, 2004; , doi: 10.1210/en.2003-1259 To subscribe to Endocrinology or any of the other journals published by The Endocrine Society please go to: http://endo.endojournals.org//subscriptions/ Copyright © The Endocrine Society. All rights reserved. Print ISSN: 0021-972X. Online 0013-7227/04/$15.00/0 Printed in U.S.A. Endocrinology 145(6):2775–2783 Copyright © 2004 by The Endocrine Society doi: 10.1210/en.2003-1259 Estradiol Stimulation of Pulsatile GonadotropinReleasing Hormone Secretion in Vitro: Correlation with Perinatal Exposure to Sex Steroids and Induction of Sexual Precocity in Vivo V. MATAGNE, G. RASIER, M.-C. LEBRETHON, A. GÉRARD, AND J.-P. BOURGUIGNON Developmental Neuroendocrinology Unit, Center for Cellular and Molecular Neurobiology, University of Liège, Centre Hospitalier Universitaire, Sart-Tilman, B-4000 Liège, Belgium Our aim was to study the effect of estradiol (E2) on pulsatile GnRH secretion in vitro in relation to sex and development. When hypothalamic explants obtained from 5- and 15-d-old female rats were exposed to E2 (10ⴚ7 M), a reduction of GnRH interpulse interval (IPI) occurred but not at 25 and 50 d of age. This effect was prevented by the estrogen receptor antagonist ICI 182.780 and the AMPA/kainate receptor antagonist DNQX but not by the AMPA and N-methyl-D-aspartate receptor antagonists SYM 2206 and MK-801. E2 did not affect GnRH IPI in hypothalamic explants obtained from male rats. Therefore, the possible relation between the female-specific effects of E2 in vitro and perinatal sexual differentiation was investigated. When using explants obtained from female rats masculinized through testosterone injection on postnatal d 1, E2 was no I N CONDITIONS SUCH AS congenital adrenal hyperplasia (1, 2), sex-steroid-secreting tumors (3), or gonadotropin-independent sexual precocity (4, 5), the secondary occurrence of central precocious puberty has led to the hypothesis that sex steroids could promote hypothalamic maturation. In addition, the different forms of central precocious puberty are remarkably more frequent in the female than in the male (6), suggesting that the female hypothalamus could be more sensitive to triggering signals such as sex steroids. Hypothalamic mechanisms, however, are difficult to study in humans because they can only be assessed indirectly through pituitary gonadotropin secretions that are directly inhibited by a potent negative feedback, particularly in the immature individual (7). In the rat, evidence has been provided that sexual maturation could be advanced after estrogen administration before puberty (8). Since we have set up a rat hypothalamic explant paradigm in which developmental changes in frequency of pulsatile GnRH secretion can be observed (9), we first aimed at studying the developmental and sex-related effects of sex steroids in the hypothalamus in vitro. Abbreviations: AMPA, ␣-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid; ATD, 1,4,6-androstatrien-3,17-dione; DNQX, 6,7-dinitroquinoxaline-2,3-dione; E2, estradiol; ER, estrogen receptor; GABA, ␥-aminobutyric acid; IPI, interpulse interval; NMDA, N-methyl-d-aspartate; T, testosterone; V.O., vaginal opening. Endocrinology is published monthly by The Endocrine Society (http:// www.endo-society.org), the foremost professional society serving the endocrine community. longer effective in vitro at 5 and 15 d. In addition, with explants obtained from male rats demasculinized through perinatal aromatase inhibitor treatment, E2 became capable of decreasing GnRH IPI in vitro at 15 d. To study the possible pathophysiological significance of early hypothalamic E2 effects, female rats received a single E2 injection on postnatal d 10. This resulted in reduced GnRH IPI in vitro on d 15 as well as advancement in age at vaginal opening and first estrus. In conclusion, E2 decreases the GnRH IPI in the immature female hypothalamus in vitro through a mechanism that depends on perinatal brain sexual differentiation and that could be involved in some forms of female precocious puberty. (Endocrinology 145: 2775–2783, 2004) In previous studies, we found that the developmental changes in frequency of pulsatile GnRH secretion in vitro were associated with an increase in stimulatory glutamatergic inputs (10 –12), an increase in activity of glutaminase (an enzyme involved in glutamate biosynthesis) (13), and a reduction in prolyl endopeptidase activity that resulted in a decreased inhibitory GnRH autofeedback mediated by the GnRH1–5 degradation product through interaction at the Nmethyl-d-aspartate (NMDA) subtype of glutamate receptors (12, 14). Moreover, in vivo studies in rats and monkeys have shown the involvement of glutamate receptors in the experimental induction of precocious puberty using NMDA receptor agonists and delayed puberty using NMDA receptor antagonists (15–18). Our second aim was to study the possible involvement of glutamate receptors in estradiol (E2) effects on GnRH secretion in vitro. The impact of E2 on adult reproductive function depends on brain sexual differentiation during the perinatal period (19, 20). In females, neonatal injection of testosterone (T) disrupts estrous cyclicity in the adult and induces male sexual behavior (19). In males orchidectomized at birth, an LH surge (20) can be induced by E2 treatment in adulthood, and the male brain can also be demasculinized using an aromatase inhibitor within the first hours after birth (21, 22). Our third aim was to determine whether perinatal sexual differentiation could influence the effects of E2 on pulsatile GnRH secretion in vitro. In addition, we aimed to study whether the effects of E2 on GnRH pulse frequency in vitro could be observed after E2 treatment of immature female rats in vivo 2775 2776 Endocrinology, June 2004, 145(6):2775–2783 and whether this effect could possibly be associated with subsequent precocious puberty. Materials and Methods Animals and reagents Pregnant rats and 5-, 15-, 25-, and 50-d-old male and female Wistar rats were purchased from the University of Liège and housed under standardized conditions (22 C, lights on from 0630 to 1830 h, food and water ad libitum). Each litter contained nine pups, and weaning occurred at the age of 3 wk. The day of birth was considered as postnatal d 1. All experiments were carried out with the approval of the Belgian Ministry of Agriculture and the Ethical Committee at the University of Liege. The incubation medium MEM (phenol red-free MEM) was purchased from Life Technologies, Inc. (Invitrogen Corp., Merelbeke, Belgium). Sesame oil was purchased from VWR international (Leuven, Belgium). The aromatase inhibitor ATD (1,4,6-androstatrien-3,17-dione) was purchased from Steraloids Inc. (Newport, RI). The NMDA receptor antagonist MK-801 was obtained from Merck Sharp & Dohme research laboratory (Rahway, NJ). The AMPA/kainate receptor antagonist DNQX (6,7-Dinitroquinoxaline-2,3-dione), the AMPA receptor antagonist SYM 2206 (4-aminophenyl-1,2-dihydro-1-methyl-2-propylcarbamoyl-6,7methylenedioxyphtalazine) and the estrogen receptor (ER) antagonist ICI 182.780 were purchased from Tocris (Fisher Bioblock Scientific, Illkirch, France). 17-E2 and T were purchased from Sigma-Aldrich (Bornem, Belgium); and R76713, racemic Vorozole, an aromatase inhibitor, was obtained from Janssen Pharmaceutica (Beerse, Belgium). All steroids were dissolved initially in absolute ethanol and subsequently in incubation medium to achieve a final ethanol concentration of 0.01%. R76713 was initially diluted in 20% polyethyleneglycol (3.35 mg/ml) and subsequently in the incubation medium to achieve a 10⫺5 m solution containing 0.02% polyethyleneglycol. All the other drugs were diluted directly in the incubation medium. Hypothalamic explant incubation and hormone assays The animals were rapidly decapitated between 1000 and 1100 h, and trunk blood was collected. After decapitation, the retrochiasmatic hypothalamus was rapidly dissected and transferred into a static incubator as described in detail previously (23, 24). The medium consisted of phenol red free MEM supplemented with glucose, magnesium, glycine, and bacitracin (25 mm, 1 mm, 10 nm, 20 m, respectively). The incubation FIG. 1. Schematic illustration of the in vivo experiments, with treatment and investigations represented on an age scale. Matagne et al. • Developmental Effect of E2 on GnRH Secretion medium was collected and renewed every 7.5 min and kept frozen until assayed. Each experiment included 12–16 hypothalamic explants, which were incubated individually, each in a separate chamber. In each experiment, at least two explants were incubated in MEM alone and used as controls. GnRH was measured in duplicate using a RIA method with intra- and interassay coefficients of 14 and 18%, respectively (24, 25). The CR11-B81 anti-GnRH antiserum (final dilution, 1:80,000) was kindly provided by Dr. V. D. Ramirez (Urbana, IL) (26). The data below the limit of detection (5 pg/7.5 min) were assigned that value. After 4 h clotting at room temperature, trunk blood was centrifuged (10 min at 1500 ⫻ g). Serum was collected and stored at ⫺20 C until assayed. The LH assay material was kindly provided by the National Institute of Diabetes and Digestive and Kidney Diseases program. The samples were measured in duplicate. Study protocols In vitro experiments. The effect of E2 on pulsatile GnRH secretion was studied using explants obtained from female and male rats at 5, 15, 25, and 50 d of age. The steroid was used for the whole 4-h experimental period. The explants were incubated with 10⫺9–10⫺7 m E2 in initial experiments. Subsequently, explants obtained from 15-d-old male and female rats were used and incubated using 10⫺7 m E2. To study the implication of ionotropic glutamate receptor subtypes, the antagonists MK-801 (3.10⫺6 m), DNQX (10⫺6 m), or SYM2206 (10⫺6 m) were used together with E2 or alone as control. The dosage of the antagonists was selected based on previous experiments (23, 24). The effect of T was studied by incubation with T (10⫺7 m). The aromatase involvement in the T effect was studied through coincubation of T with the aromatase inhibitor R76713 (10⫺5 m), which was also used alone as control. The involvement of ER was studied using the ER antagonist ICI 182.780 (10⫺7 m) in the incubation medium together with E2 or alone as control. In vivo experiments. In Fig. 1, a schematic summary of the in vivo experiments is shown on an age scale. Protocol A. Masculinization of female rats. On postnatal d 1, female pups received either a single sc injection of 1.25 mg T in 100 l sesame oil (27) or vehicle only, for control purposes. The animals were killed either on postnatal d 5 or on d 15, and pulsatile GnRH secretion was studied in vitro in the presence of 10⫺7 m E2 or in MEM alone. Protocols B and C. Demasculinization of male rats. In protocol B, pregnant rats were injected daily sc with the aromatase inhibitor ATD (5 mg in Matagne et al. • Developmental Effect of E2 on GnRH Secretion 100 l sesame oil) from d 17–21 of gestation. In the control group, pregnant rats were injected with vehicle. In the offspring, the male pups were injected sc with 3 mg ATD in 50 l sesame oil on postnatal d 1, 6, and 11 (28). The control rats were injected with the vehicle only. The animals were killed either on postnatal d 5 or 15, and pulsatile GnRH secretion was studied in vitro with or without the addition of 10⫺7 m E2. In protocol C, ATD was administered as silicone implants (length, 5 mm; inner diameter, 1.6 mm; outer diameter, 2.4 mm; Degania Silicone Silclear tubing, Degania Bet, Israel). Within 5 h after birth, the pups were anesthetized through ice-cooling and surgically implanted in the neck (29). The animals were killed on d 15 to obtain the hypothalamic explants and to study pulsatile GnRH secretion with or without 10⫺7 m E2. Protocol D. Single E2 administration in immature female rats. Ten-day-old female rats received a single sc injection of E2 (10 mg/kg given in 100 l sesame oil) (30, 31), which is comparable to the dose used by others (32). This particular age was selected to be outside of the critical period for sexual differentiation of the brain (31), and a single injection was given to avoid the persisting negative feedback effect that could result from repeated or prolonged administration. To increase the likelihood of an effect after a single administration, we used a massive dose that was greater than in the previous experiments showing induction of precocious puberty (8). There were three groups of 14 rats injected either with E2 or with sesame oil or saline. On d 15, five rats from each group were killed to study pulsatile GnRH secretion in vitro in the absence of any steroid in the incubation medium. Serum LH was also measured using trunk blood. In the remaining animals, sexual maturation was subsequently evaluated by daily examination for imperforation of the vaginal membrane (vaginal opening, V.O.). Thereafter, vaginal smears were taken every day in the afternoon until postnatal d 60. Slides of vaginal smears were colored following the papanicolaou method and examined to detect the occurrence of estrus cycle. The age at the first estrus was considered when vaginal smears contained primary leukocytes after the first proestrus phase, which was characterized by cornified cells (33). Statistical analysis The mean LH levels (ng/ml) were calculated after log transform and expressed as geometric mean. GnRH secretory pulses were detected using the PULSAR program for PC (basic version by S. Rosberg) (34). The cut-off criteria for peak detection were determined empirically and were G1 ⫽ 2.5 and G2 ⫽ 2 (35). Peak splitting parameter was set at 2.7, and the intraassay coefficient was used as B coefficient (35). Data concerning the interpulse interval (IPI) from different experiments were pooled and expressed as mean ⫾ sd. The mean (⫾sd) amplitude of GnRH secretory pulses was calculated (pg/7.5 min fraction), and the data from different experiments were analyzed separately by t test to avoid biases due to interassay variations FIG. 2. Representative profiles of pulsatile GnRH secretion from six individual hypothalamic explants obtained at 15 d in female (left and middle panels) and male (right panels) rats and incubated in control conditions or together with different concentrations of E2 (mean ⫾ SD). GnRH IPI is given together with the number of explants studied in each condition (n). *, P ⬍ 0.05 (controls vs. E2 10⫺8 M, t ⫽ 6.127, df ⫽ 27; controls vs. E2 10⫺7 M, t ⫽ 12.4, df ⫽ 44). The limit of detection was 5 pg/7.5 min. Endocrinology, June 2004, 145(6):2775–2783 2777 between experiments. In several instances, all the explants in a group showed a similar GnRH IPI. Then, sd was zero and could not be represented in the figures. Similarly, when V.O. occurred at the same age in all the rats in a control group, the sd was zero and could not be represented. Significant effect of treatment was determined by t test (control vs. E2 incubation). The effect of antagonist on control and treated groups was determined by ANOVA test (one-way ANOVA) followed by Newman-Keuls post test when the threshold for significance of difference (P ⬍ 0.05) was reached. Results As shown in Fig. 2, incubation of individual hypothalamic explants obtained in 15-d-old female rats with different E2 concentrations (10⫺9–10⫺7 m) resulted in a significant doserelated decrease of GnRH IPI. E2 effectiveness occurred in the nanomolar range as observed in other studies (36, 37). In subsequent experiments, we used the highest concentration because it was the most efficient in our paradigm. In explants from 15-d-old male rats, no significant decrease of GnRH IPI was caused by 10⫺7 m of E2 (Fig. 2). With explants from 5-d-old female rats, E2 (10⫺7 m) caused a significant decrease in GnRH IPI, whereas no effect of E2 on pulsatile GnRH secretion could be observed at 25 or 50 d in the female or at any age studied in the male (Table 1). GnRH pulse amplitude (mean ⫾ sd, pg/7.5 min) was not affected by E2 at 5 d or 25 d in both sexes. In 15-d-old female rats, discrepant data were obtained because GnRH pulse amplitude was slightly, but significantly, decreased in one experiment (mean amplitude ⫾ sd; controls, 9.9 ⫾ 0.2 pg/7.5 min; E2, 7.4 ⫾ 0.4 pg/7.5 min; t ⫽ 5.657; df ⫽ 16), whereas a significant increase in amplitude was seen in a second experiment (controls, 10.3 ⫾ 0.4 pg/7.5 min; E2, 15.6 ⫾ 2 pg/7.5 min; t ⫽ 7.7; df ⫽ 19). In a third experiment, amplitude was found to be higher and more variable with no significant changes. As previously reported (23, 35), the NMDA receptor antagonist MK-801 resulted in a significant increase of GnRH IPI (59 ⫾ 3 vs. 68 ⫾ 4 min, control vs. MK-801, Fig. 3) when hypothalamic explants of 15-d-old rats were used. In contrast, the AMPA/kainate receptor antagonist (DNQX) or the specific AMPA receptor antagonist (SYM 2206) did not affect the GnRH IPI in similar conditions (control, 59 ⫾ 3 min; 2778 Endocrinology, June 2004, 145(6):2775–2783 Matagne et al. • Developmental Effect of E2 on GnRH Secretion DNQX, 60 ⫾ 4 min; SYM2206, 62 ⫾ 1 min). When similar experiments were performed in the presence of 10⫺7 m of E2 (Fig. 3), the reduction of GnRH IPI caused by E2 was not observed anymore in the presence of DNQX (59 ⫾ 2 min). Using SYM 2206, the E2 effect was still observed (62 ⫾ 1 min vs. 48 ⫾ 2 min, SYM 2206 vs. E2/SYM 2206). Likewise, the E2 effect was still observed in the presence of MK-801 (68 ⫾ 4 vs. 58 ⫾ 1 min, MK-801 vs. E2/MK-801). With hypothalamic explants obtained from female rats and incubated in the presence of the ER antagonist ICI 182.780, the reduction of the GnRH IPI caused by E2 was absent (Table 2). T was as effective as E2 in decreasing GnRH IPI in female explants, and this effect was significantly prevented by an aromatase inhibitor (R76713, 10⫺5 m) that had no effect when used alone. When explants obtained from male rats were incubated either with E2 or with T, no change in GnRH IPI was observed (Table 2). Because E2 could affect the GnRH IPI in the female only, we studied the involvement of steroid imprinting in the perinatal period. As shown in Fig. 4, after female rats were androgenized through a sc injection of T on postnatal d 1, the hypothalamic explants studied on d 5 and 15 did not show any significant change in GnRH IPI when incubated with E2 (84 ⫾ 2 vs. 90 ⫾ 0 min at 5 d, 58 ⫾ 1 vs. 61 ⫾ 2 min at 15 d, TABLE 1. Effect of E2 (10⫺7 M) on the IPI of pulsatile GnRH secretion in vitro using male and female rat (n) hypothalamic explants Females Males Age (d) Control Estradiol Control Estradiol 5 15 25 50 85 ⫾ 15 (15) 59 ⫾ 3 (24) 35 ⫾ 3 (6) 34 ⫾ 0 (3) 75 ⫾ 7a (14) 44 ⫾ 6a (22) 32 ⫾ 2 (7) 34 ⫾ 3 (3) 83 ⫾ 15 (11) 60 ⫾ 1 (11) 41 ⫾ 2 (6) 34 ⫾ 3 (3) 87 ⫾ 2 (11) 56 ⫾ 4 (11) 45 ⫾ 10 (8) 35 ⫾ 2 (3) Data are mean ⫾ SD (min, a P ⬍ 0.05, E2 vs. control, 5-d-old female rats: t ⫽ 2.16, df ⫽ 27; 15-d-old female rats: t ⫽ 12.4, df ⫽ 44). FIG. 3. Effect of antagonists of NMDA (MK-801), AMPA/kainate (DNQX), and AMPA receptors (SYM 2206) on GnRH IPI (mean ⫾ SD, min) using (n) hypothalamic explants obtained from 15-dold female rats and incubated in control conditions or with E2. NS, Nonsignificant; *, P ⬍ 0.05 (MK-801, F ⫽ 79.27, df ⫽ 3; DNQX, F ⫽ 68.23, df ⫽ 3; SYM2206, F ⫽ 67.69, df ⫽ 3. E2 vs. control). With control explants from female rats injected neonatally with the vehicle, E2 could significantly decrease the GnRH IPI in vitro at both ages (75 ⫾ 0 vs. 86 ⫾ 10 min at 5 d, 45 ⫾ 6 vs. 56 ⫾ 7 min at 15 d, E2 vs. control). When male rats were demasculinized through perinatal administration of the aromatase inhibitor ATD, E2 caused a significant decrease in GnRH IPI at 15 d (48 ⫾ 4 min vs. 60 ⫾ 0 min, E2 vs. control). A nonsignificant effect was observed at 5 d (83 ⫾ 5 vs. 86 ⫾ 6 min, E2 vs. control). Using explants from male rats treated perinatally with vehicle, E2 had no effect on the GnRH IPI. To decrease the stress due to manipulation, we implanted male pups with a capsule containing ATD within 5 h after birth. In this case, the results obtained were similar to those obtained in ATD-injected pups (Table 3), which indicates that neonatal inhibition of aromatase activity is sufficient for E2 effect to occur. After a single massive injection of E2 on d 10 in vivo, the GnRH IPI studied in vitro on d 15 was found to be significantly reduced (Fig. 5). On the same day, serum LH was decreased in the E2-treated animals. In the E2-injected female rats, the age at V.O. (27 ⫾ 1 d) and at first estrus (33 ⫾ 1 d) was significantly advanced in comparison with controls injected with vehicle (V.O., 31 ⫾ 1 d; first estrus, 37 ⫾ 2 d) or saline (V.O., 33 ⫾ 0 d; first estrus, 38 ⫾ 1 d). Age at V.O. was also advanced after vehicle injection when compared with saline, but age at first estrus was not significantly different between these two groups. Discussion The developmental increase in GnRH pulse frequency is an important event for the pubertal changes in gonadotropin secretion and has been observed in vivo in the female (38) and the male rat (39) as well as in the female monkey (40) and in vitro, using our rat explant paradigm (9). The critical age period for such changes, however, was earlier in vitro (9) than Matagne et al. • Developmental Effect of E2 on GnRH Secretion Endocrinology, June 2004, 145(6):2775–2783 2779 in vivo (38, 39). Isolation of the hypothalamus could suppress extrahypothalamic inhibiting inputs and account for earlier manifestation of the accelerated GnRH pulse generator. In this study, the developmental acceleration of pulsatile GnRH secretion in vitro was found to be stimulated by E2 specifically in the immature female hypothalamus and through a TABLE 2. Effect of E2 and testosterone and ER antagonist (ICI 182.781) and aromatase inhibitor (R76713) on the IPI of pulsatile GnRH secretion in vitro using (n) 15-d-old rat hypothalamic explants Steroid antagonist None ICI 182.780 (10⫺7 R76713 (10⫺5 M) None M) Sex Control F F F M 59 ⫾ 3 (24) 61 ⫾ 1 (4) 59 ⫾ 6 (4) 60 ⫾ 1 (11) E2 (10⫺7 M) 44 ⫾ 6a (22) 57 ⫾ 1 (5) 57 ⫾ 2 (11) T (10⫺7 M) 46 ⫾ 4a (6) 56 ⫾ 6 (4) 51 ⫾ 4 (4) Data are mean ⫾ SD (min, a P ⬍ 0.05, control vs. E2: t ⫽ 12.4, df ⫽ 44; control vs. T: t ⫽ 11.36, df ⫽ 28) FIG. 4. E2 effect in vitro on the GnRH IPI (mean ⫾ SD) obtained using (n) hypothalamic explants from female rats androgenized neonatally through sc injection of 1.25 mg T on postnatal d 1 (upper panel) and from male rats treated perinatally using 5 mg of the inhibitor of aromatase ATD injected daily sc to the dams on d 17–21 of gestation and 3 mg to the pups on postnatal d 1, 6, and 11 (lower panels). *, P ⬍ 0.05, control vs. E2 (5-d-old female rats, vehicle, t ⫽ 2.379, df ⫽ 8; 15-d-old female rats, vehicle, t ⫽ 2.484, df ⫽ 6; 15-d-old male rats, ATD, t ⫽ 11;54, df ⫽ 6). mechanism dependent on perinatal brain sexual differentiation. In addition, E2 administration to immature female rats in vivo resulted in both stimulation of pulsatile GnRH secretion in the hypothalamus and subsequent precocious puberty. The physiological significance of our data in the normal immature rat was uncertain due to normally limited or absent exposure to sex steroids in such young animals. However, ultrasensitive E2 assay showed much higher plasma levels in prepubertal girls than in boys, which was proposed to be responsible for the faster maturation in girls than in boys (41). Considering the abnormal early exposure to sex steroids, our observations could provide a pathophysiological basis for central precocious puberty occurring as a complication of peripheral sexual precocity. Using the rat model, we explored the possible pathophysiological significance of accelerated hypothalamic maturation induced by abnormal early exposure to sex steroids, a putative mechanism of central precocious puberty occurring 2780 Endocrinology, June 2004, 145(6):2775–2783 Matagne et al. • Developmental Effect of E2 on GnRH Secretion secondarily to peripheral precocity (1– 4). In the female rat, chronic treatment with low doses of E2 between postnatal d 5 and 30 resulted in early peripheral signs of puberty as shown by early V.O. (42). Because administration of high doses of E2 before d 10 caused brain masculinization with loss of estrus cyclicity (19, 31), we elected to use a single E2 administration on d 10 to avoid interfering with this sexually differentiated process, so that the timing of first estrus cyclicity, a presumably centrally driven pubertal event, could be studied. The E2 administration in vivo resulted in a reduction of serum LH 5 d after E2 injection, which is in agreement with pituitary negative feedback effects that characterize immature female rats (42, 43). A decrease in the age at V.O., as well as at first estrus, was also observed. These results are in agreement with other findings (32) and point out that the hypothalamic-pituitary-gonadal axis is sensitive to E2 maturational effect in vivo both peripherally (V.O.) and centrally (first estrus). In addition, the study of pulsatile GnRH secretion in vitro provided evidence of concomitant advance in the developmental acceleration of GnRH pulse frequency that could account for subsequent occurrence of central precocious puberty. This pattern was similar to several clinical conditions such as congenital adrenal hyperplasia (1, 2), sex steroid secreting tumors (3), and gonadotropinindependent sexual precocity (4, 5), where central precocious puberty occurred after treatment suppressing the peripheral excess of sex steroids. So, these conditions account for withdrawal of sex steroids after a period of exposure (6) such as obtained here after an acute massive E2 administration. E2 effects on GnRH neurons or GnRH secretion in the hypothalamus were shown in several conditions using different paradigms. Using hypothalamic explants from adult female monkeys, an increase in GnRH release was observed in vitro 12 and 48 h after E2 treatment in vivo, whereas LH secretion was reduced after 12 h and increased after 48 h (44). Such a discrepancy between E2 effects on GnRH secretion in TABLE 3. Effect of perinatal inhibition of aromatase activity in 15-d-old male rats; ATD was delivered through silastic implants with or without (control) aromatase inhibitor Implants Empty ATD Control 59 ⫾ 1 (3) 60 ⫾ 0 (5) E2 (10⫺7 M) 58 ⫾ 1 (3) 48.9 ⫾ 2a (6) Data are mean ⫾ SD (min, a P ⬍ 0.05, E2 vs. control, ATD implants: t ⫽ 10.73, df ⫽ 3). N (n) explants were used in each condition. vitro and gonadotropin secretion in vivo were consistent with our in vivo data showing reduced serum LH levels and increased frequency of pulsatile GnRH secretion 5 d after a single E2 administration. This suggested a possible coexistence of negative feedback effects at the pituitary level and stimulating effects in the hypothalamus. Because E2 commonly resulted in inhibition of pulsatile LH secretion, particularly in immature rodents (45, 46), a concomitant stimulating hypothalamic effect could be difficult to demonstrate through the study of LH secretion. Noteworthy were some possible inhibitory effects of E2 on the GnRH pulse generator that could also occur as shown through electrophysiological recording in the hypothalamus (47). A stimulating effect of E2 on GnRH output in vivo was described in female rats (48) and ewes (49). In these experiments, the mass of GnRH release increased in possible relation to the preovulatory GnRH and/or LH surge. However, these results were obtained in adult ovariectomized animals (44, 48, 49), a condition different from the present study in intact immature rats. It is possible that stimulating effects of E2 observed in vitro persist in the adult female rat but could not be observed in the conditions of the present study. We showed earlier that the amplitude of GnRH secretion by hypothalamic explants obtained around 1600 h in cycling female rats was increased in the afternoon of proestrus, presumably in relation with the sex steroid induced preovulatory surge (50). For consistency and practical reasons, all the experiments reported here were carried out starting at 1000 h and in the absence of the preoptic area. Further experiments that start at 1600 h with explants obtained from adult female rats and including the preoptic area are warranted to study the possible effects of E2 on either GnRH pulse frequency and/or amplitude in vitro. In this study, E2 increased GnRH pulse frequency within minutes after starting incubation in vitro. Such a rapid effect suggests a mechanism different from the preovulatory surge and also deserves further studies. A rapid effect of E2 on LH secretion was reported in the ovariectomized female guinea pig that was attributed to direct E2 effects on the pituitary responsiveness rather than on the GnRH output (51). Our data raises the question as to whether E2 acts directly on GnRH neurons or on other target structures in the hypothalamus to increase GnRH pulse frequency. Recently, GnRH neurons were shown to express ER␣ protein (52) and ER protein and mRNA (53). Using hypothalamic slices from GnRH-GFP transgenic mice, E2 was able to decrease the FIG. 5. Effect of a single sc injection of E2 (10 mg/kg, postnatal d 10) in female rats on GnRH IPI in vitro (n ⫽ 4 in each group, F ⫽ 21.50, df ⫽ 2). Measurement of serum LH (n ⫽ 5 in each group, F ⫽ 7.094, df ⫽ 2) as well as age at V.O. (n ⫽ 10 in each group, F ⫽ 133.2, df ⫽ 2) and age at first estrus (n ⫽ 10 in each group, F ⫽ 31.85, df ⫽ 2). The control groups were injected sc either physiological saline (saline) or vehicle (sesame oil). Data are mean ⫾ SD. *, P ⬍ 0.05. Matagne et al. • Developmental Effect of E2 on GnRH Secretion GnRH neuron firing rate (54) and increase the number of quiescent GnRH neurons (55), whereas membrane excitability was increased as well (56). Although these observations support a direct involvement of GnRH neurons in hypothalamic effects of E2, we used retrochiasmatic explants where GnRH cell bodies were virtually absent (57). Therefore, an indirect E2 effect on GnRH secretion through interneurons or glial cells could occur. Such cells have been shown to play an important role in the control of GnRH secretion throughout development (58). In addition, an E2 effect could occur in the terminal part of GnRH neurons because, using median eminence explants, an increased output of basal GnRH release was observed within 5–10 min of incubation with E2 (36). Since the onset of puberty involves an activation of hypothalamic glutamatergic inputs to GnRH neurons (59), we evaluated glutamate receptor involvement in the E2-induced decrease in GnRH IPI. As expected from the earlier demonstration implicating NMDA receptor activation in pulsatile GnRH/LH secretion (16, 23), the NMDA receptor antagonist MK-801 resulted in increased GnRH IPI in vitro. However, MK-801 did not affect E2 stimulation of an increased GnRH pulse frequency, suggesting that NMDA receptors were not primarily involved in the mechanism of E2 effects. Previous studies showed that non-NMDA receptors are involved in adult female reproductive life, because nearly half of activated GnRH neurons expressed kainate receptor subunits in the afternoon of proestrus (60). In addition, the AMPA/ kainate receptor antagonist DNQX can block the E2-induced LH surge in OVX rats (61). In the present study, E2 stimulation of GnRH pulse frequency was shown to involve specifically the kainate receptor subtype. As reported previously (24), DNQX alone had no effect on pulsatile GnRH secretion in vitro. Based on the evidence of an E2-kainate receptor interaction involved in the control of GnRH secretion, the absence of kainate receptor antagonist effect on the timing of puberty could be explained by the silent role of such receptors in the physiological absence of sex steroids in the immature animal. The implication of kainate receptor in E2 effect was further supported by hypothalamic colocalization of kainate receptor with ER (62). The preferential involvement of kainate receptors in E2 effect on GnRH secretion in vitro was consistent with the potentiating effect of E2 on kainate-evoked currents in hippocampal neurons (63) or in oxytocinergic neurons (37). The developmental disappearance of E2 effect in the female rat hypothalamus could also be linked to the developmental increase in activity of glutamatergic inputs and/or decrease of GABAergic inputs shown in the primate (64) and the rodent (10, 11, 35, 65). E2 was reported either to increase ␥-aminobutyric acid (GABA) turnover in relation with negative feedback effects (66) or to decrease GABA levels just before the E2-induced LH surge (67). In addition, kainate down-regulates GABA release in mediobasal hypothalamic explants from ovariectomized female rats treated with E2 but not in untreated animals (68). It could be hypothesized that E2 effects were involving the GABAergic pathway because they were seen only in a period of high activity of that inhibitory amino acid. Such indications of involvement of the GABAergic pathway in E2 effects with developmental changes point to the need of further studies using our in vitro paradigm. Endocrinology, June 2004, 145(6):2775–2783 2781 An important finding was that the E2 stimulatory effects on GnRH pulse frequency were only seen using hypothalamic explants obtained from female rats but not using explants obtained from male rats. Such a sex-related effect was not simply dependent on E2 because T was as effective as E2 in the female, provided that T could be aromatized into E2. Further confirmation of the key role of E2 came from experiments showing the inhibitory effect of ICI 182.780 on E2 stimulation of GnRH pulse frequency. Such an involvement of ER was not inconsistent with the rapid, possibly nongenomic effect of E2, because ICI 182.780 was shown to prevent some rapid E2 effects such as those involving NO (36). The sexual dimorphism of E2 effects could be related with the sexually divergent effects of kainate on LH secretion that was found to be inhibited in female rats and stimulated in males (69). In addition, the occurrence of E2 effects in the immature female rat could be related to the sexually dimorphic expression of ER that was reported in the rat hypothalamus before 21 d of age (70). These developmental variations in ER expression are consistent with our observation that this age period is characterized by a particular sensitivity to E2 for increase in GnRH pulse frequency. The dimorphic effects of E2 could depend also on sexual brain differentiation. If so, we postulated that the E2 effect should occur in hypothalamic explants from demasculinized male rats, whereas this effect should be absent using hypothalamic explants obtained from masculinized females. It was well established that neonatal exposure to T or E2 induced masculinization of female rats, resulting in disappearance of female sexual behavior, absence of the E2-induced LH surge (30), and the occurrence of a delayed anovulatory syndrome in adult life (19, 31). In the male, blockade of aromatase activity can induce appearance of female sexual behavior (21, 28). Therefore, we used these two strategies to investigate the possible early programming of the E2 effect on GnRH pulse frequency that we had confirmed was occurring. Such findings raised the issue of pre- or perinatal programming of sexually dimorphic events that can be different among species. For instance, in the ovine species, the timing of puberty is sexually dimorphic and is clearly affected by fetal exposure to T (71). In summary, evidence is provided in this paper that E2 can rapidly stimulate an increase in GnRH pulse frequency in the immature female hypothalamus. It is suggested that such a mechanism can contribute to some form of sexual precocity, a hypothesis which deserves further studies. Acknowledgments We thank Prof. J. Boniver for assistance of his team in papanicolaou staining of the vaginal smears. We also thank Dr. J. Bakker for her help and advice concerning the in vivo demasculinization experiments. We are grateful to Prof. J. Balthazart for helpful criticisms and constant support. Received September 19, 2003. Accepted February 19, 2004. Address all correspondence and requests for reprints to: Jean-Pierre Bourguignon, M.D., Ph.D., Division of Pediatric and Adolescent Medicine, CHU Sart-Tilman, B-4000 Liège, Belgium. E-mail: jpbourguignon@ ulg.ac.be. This work was supported by grants from the French Community of Belgium (ARC 99/04 –241), the Fonds de la Recherche Scientifique Médicale (3.4515.01), the Faculty of Medicine at the University of Liège, the 2782 Endocrinology, June 2004, 145(6):2775–2783 Belgian Study Group for Pediatric Endocrinology, and the European Commission supporting the EDEN project. Matagne et al. • Developmental Effect of E2 on GnRH Secretion 24. References 1. Pescovitz OH, Comite F, Cassorla F, Dwyer AJ, Poth MA, Sperling MA, Hench K, McNemar A, Skerda M, Loriaux DL 1984 True precocious puberty complicating congenital adrenal hyperplasia: treatment with a luteinizing hormone-releasing hormone analog. J Clin Endocrinol Metab 58:857– 861 2. Hochberg Z, Schechter J, Benderly A, Leiberman E, Rosler A 1985 Growth and pubertal development in patients with congenital adrenal hyperplasia due to 11--hydroxylase deficiency. Am J Dis Child 139:771–776 3. Kukuvitis A, Matte C, Polychronakos C 1995 Central precocious puberty following feminizing right ovarian granulosa cell tumor. Horm Res 44:268 –270 4. Pasquino AM, Tebaldi L, Cives C, Maciocci M, Boscherini B 1987 Precocious puberty in the McCune-Albright syndrome. Progression from gonadotrophinindependent to gonadotrophin-dependent puberty in a girl. Acta Paediatr Scand 76:841– 843 5. Boepple PA, Frisch LS, Wierman ME, Hoffman WH, Crowley WFJ 1992 The natural history of autonomous gonadal function, adrenarche, and central puberty in gonadotropin-independent precocious puberty. J Clin Endocrinol Metab 75:1550 –1555 6. Parent AS, Teilmann G, Juul A, Skakkebaek NE, Toppari J, Bourguignon JP 2003 The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr Rev 24:668 – 693 7. Grumbach MM, Styne DM 2003 Puberty: ontogeny, neuroendocrinology, physiology, and disorders. In: Wilson JD, Foster DW, Kronenberg HM, Larsen PR, eds. Williams’ textbook of endocrinology. Philadelphia WB Saunders; 1509 –1625 8. Ramirez VD, Sawyer CH 1965 Advancement of puberty in the female rat by estrogen. Endocrinology 76:1158 –1168 9. Bourguignon JP, Franchimont P 1984 Puberty-related increase in episodic LHRH release from rat hypothalamus in vitro. Endocrinology 114:1941–1943 10. Bourguignon JP, Gerard A, Purnelle G, Czajkowski V, Yamanaka C, Lemaitre M, Rigo JM, Moonen G, Franchimont P 1997 Duality of glutamatergic and GABAergic control of pulsatile GnRH secretion by rat hypothalamic explants: I. Effects of antisense oligodeoxynucleotides using explants including or excluding the preoptic area. J Neuroendocrinol 9:183–191 11. Bourguignon JP, Gerard A, Purnelle G, Czajkowski V, Yamanaka C, Lemaitre M, Rigo JM, Moonen G, Franchimont P 1997 Duality of glutamatergic and GABAergic control of pulsatile GnRH secretion by rat hypothalamic explants: II. Reduced NR2C- and GABAA-receptor-mediated inhibition at initiation of sexual maturation. J Neuroendocrinol 9:193–199 12. Yamanaka C, Lebrethon MC, Vandersmissen E, Gerard A, Purnelle G, Lemaitre M, Wilk S, Bourguignon JP 1999 Early prepubertal ontogeny of pulsatile gonadotropin-releasing hormone (GnRH) secretion: I. Inhibitory autofeedback control through prolyl endopeptidase degradation of GnRH. Endocrinology 140:4609 – 4615 13. Bourguignon JP, Gerard A, Alvarez GM, Purnelle G, Franchimont P 1995 Endogenous glutamate involvement in pulsatile secretion of gonadotropinreleasing hormone: evidence from effect of glutamine and developmental changes. Endocrinology 136:911–916 14. Bourguignon JP, Alvarez GM, Gerard A, Franchimont P 1994 Gonadotropin releasing hormone inhibitory autofeedback by subproducts antagonist at Nmethyl-d-aspartate receptors: a model of autocrine regulation of peptide secretion. Endocrinology 134:1589 –1592 15. Urbanski HF, Ojeda SR 1987 Activation of luteinizing hormone-releasing hormone release advances the onset of female puberty. Neuroendocrinology 46:273–276 16. Plant TM, Gay VL, Marshall GR, Arslan M 1989 Puberty in monkeys is triggered by chemical stimulation of the hypothalamus. Proc Natl Acad Sci USA 86:2506 –2510 17. Urbanski HF, Ojeda SR 1990 A role for N-methyl-d-aspartate (NMDA) receptors in the control of LH secretion and initiation of female puberty. Endocrinology 126:1774 –1776 18. Brann DW, Zamorano PL, Ping L, Mahesh VB 1993 Role of excitatory amino acid neurotransmission during puberty in the female rat. Mol Cell Neurosci 4:107–112 19. Gorski RA 1968 Influence of age on the response to paranatal administration of a low dose of androgen. Endocrinology 82:1001–1004 20. Corbier P 1985 Sexual differentiation of positive feedback: effect of hour of castration at birth on estradiol-induced luteinizing hormone secretion in immature male rats. Endocrinology 116:142–147 21. Brand T, Kroonen J, Mos J, Slob AK 1991 Adult partner preference and sexual behavior of male rats affected by perinatal endocrine manipulations. Horm Behav 25:323–341 22. Gerardin DC, Pereira OC 2002 Reproductive changes in male rats treated perinatally with an aromatase inhibitor. Pharmacol Biochem Behav 71:301–305 23. Bourguignon JP, Gerard A, Alvarez-Gonzalez ML, Franchimont P 1992 Neuroendocrine mechanism of onset of puberty. Sequential reduction in activity 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. of inhibitory and facilitatory N-methyl-d-aspartate receptors. J Clin Invest 90:1736 –1744 Bourguignon JP, Gerard A, Mathieu J, Simons J, Franchimont P 1989 Pulsatile release of gonadotropin-releasing hormone from hypothalamic explants is restrained by blockade of N-methyl-d,l-aspartate receptors. Endocrinology 125:1090 –1096 Bourguignon JP, Gerard A, Franchimont P 1989 Direct activation of gonadotropin-releasing hormone secretion through different receptors to neuroexcitatory amino acids. Neuroendocrinology 49:402– 408 Dluzen DE, Ramirez VD 1981 Presence and localization of immunoreactive luteinizing hormone-releasing hormone (LHRH) within the olfactory bulbs of adult male and female rats. Peptides 2:493– 496 Roselli CE, Klosterman SA 1998 Sexual differentiation of aromatase activity in the rat brain: effects of perinatal steroid exposure. Endocrinology 139:3193– 3201 Swaab DF, Slob AK, Houtsmuller EJ, Brand T, Zhou JN 1995 Increased number of vasopressin neurons in the suprachiasmatic nucleus (SCN) of ’bisexual’ adult male rats following perinatal treatment with the aromatase blocker ATD. Brain Res Dev Brain Res 85:273–279 Bakker J, Baum MJ, Slob AK 1996 Neonatal inhibition of brain estrogen synthesis alters adult neural Fos responses to mating and pheromonal stimulation in the male rat. Neuroscience 74:251–260 Gogan F, Beattie IA, Hery M, Laplante E, Kordon D 1980 Effect of neonatal administration of steroids or gonadectomy upon oestradiol-induced luteinizing hormone release in rats of both sexes. J Endocrinol 85:69 –74 Diaz DR, Fleming DE, Rhees RW 1995 The hormone-sensitive early postnatal periods for sexual differentiation of feminine behavior and luteinizing hormone secretion in male and female rats. Brain Res Dev Brain Res 86:227–232 Silva A, Guimaraes MA, Padmanabhan V, Lara HE 2003 Prepubertal administration of estradiol valerate disrupts cyclicity and leads to cystic ovarian morphology during adult life in the rat: role of sympathetic innervation. Endocrinology 144:4289 – 4297 Ojeda SR, Urbanski HF 1994 Puberty in the rat. In: Knobil E, Neill JD, eds. The physiology of reproduction. Vol 2. New York: Raven Press Ltd; 363– 409 Merriam GR, Wachter KW 1982 Algorithms for the study of episodic hormone secretion. Am J Physiol 243:E310 –E318 Bourguignon JP, Gerard A, Mathieu J, Mathieu A, Franchimont P 1990 Maturation of the hypothalamic control of pulsatile gonadotropin-releasing hormone secretion at onset of puberty. I. Increased activation of N-methyl-daspartate receptors. Endocrinology 127:873– 881 Prevot V, Croix D, Rialas CM, Poulain P, Fricchione GL, Stefano GB, Beauvillain JC 1999 Estradiol coupling to endothelial nitric oxide stimulates gonadotropin-releasing hormone release from rat median eminence via a membrane receptor. Endocrinology 140:652– 659 Israel JM, Poulain DA 2000 17-Oestradiol modulates in vitro electrical properties and responses to kainate of oxytocin neurones in lactating rats. J Physiol (Lond) 524:457– 470 Sisk CL, Richardson HN, Chappell PE, Levine JE 2001 In vivo gonadotropinreleasing hormone secretion in female rats during peripubertal development and on proestrus. Endocrinology 142:2929 –2936 Harris GC, Levine JE 2003 Pubertal acceleration of pulsatile gonadotropinreleasing hormone release in male rats as revealed by microdialysis. Endocrinology 144:163–171 Keen KL, Burich AJ, Mitsushima D, Kasuya E, Terasawa E 1999 Effects of pulsatile infusion of the GABA(A) receptor blocker bicuculline on the onset of puberty in female rhesus monkeys. Endocrinology 140:5257–5266 Klein KO, Baron J, Colli MJ, McDonnell DP, Cutler GBJ 1994 Estrogen levels in childhood determined by an ultrasensitive recombinant cell bioassay. J Clin Invest 94:2475–2480 Sokka TA, Huhtaniemi IT 1995 Functional maturation of the pituitary-gonadal axis in the neonatal female rat. Biol Reprod 52:1404 –1409 Andrews WW, Mizejewski GJ, Ojeda SR 1981 Development of estradiolpositive feedback on luteinizing hormone release in the female rat: a quantitative study. Endocrinology 109:1404 –1413 Levine JE, Bethea CL, Spies HG 1985 In vitro gonadotropin-releasing hormone release from hypothalamic tissues of ovariectomized estrogen-treated cynomolgus macaques. Endocrinology 116:431– 438 Andrews WW, Ojeda SR 1977 On the feedback actions of estrogen on gonadotropin and prolactin release in infantile female rats. Endocrinology 101: 1517–1523 Caligaris L, Astrada JJ, Taleisnik S 1972 Influence of age on the release of luteinizing hormone induced by oestrogen and progesterone in immature rats. J Endocrinol 55:97–103 McGarvey C, Cates PA, Brooks A, Swanson IA, Milligan SR, Coen CW, O’Byrne KT 2001 Phytoestrogens and gonadotropin-releasing hormone pulse generator activity and pituitary luteinizing hormone release in the rat. Endocrinology 142:1202–1208 Dluzen DE, Ramirez VD 1986 In vivo LH-RH output of ovariectomized rats following estrogen treatment. Neuroendocrinology 43:459 – 465 Evans NP, Dahl GE, Mauger D, Karsch FJ 1995 Estradiol induces both qualitative and quantitative changes in the pattern of gonadotropin-releasing hor- Matagne et al. • Developmental Effect of E2 on GnRH Secretion 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. mone secretion during the presurge period in the ewe. Endocrinology 136: 1603–1609 Parent AS, Lebrethon MC, Gerard A, Vandersmissen E, Bourguignon JP 2000 Leptin effects on pulsatile gonadotropin-releasing hormone secretion from the adult rat hypothalamus and interaction with cocaine and amphetamine regulated transcript peptide and neuropeptide Y. Regul Pept 92:17–24 Condon TP, Dykshoorn-Bosch MA, Kelly MJ 1988 Episodic luteinizinghormone release in the ovariectomized female guinea pig: rapid inhibition by estrogen. Biol Reprod 38:121–126 Butler JA, Sjoberg M, Coen CW 1999 Evidence for oestrogen receptor ␣-immunoreactivity in gonadotrophin-releasing hormone-expressing neurones. J Neuroendocrinol 11:331–335 Herbison AE, Pape JR 2001 New evidence for estrogen receptors in gonadotropin-releasing hormone neurons. Front Neuroendocrinol 22:292–308 Nunemaker CS, Straume M, DeFazio RA, Moenter SM 2003 Gonadotropinreleasing hormone neurons generate interacting rhythms in multiple time domains. Endocrinology 144:823– 831 Nunemaker CS, DeFazio RA, Moenter SM 2002 Estradiol-sensitive afferents modulate long-term episodic firing patterns of GnRH neurons. Endocrinology 143:2284 –2292 DeFazio RA, Moenter SM 2002 Estradiol feedback alters potassium currents and firing properties of gonadotropin-releasing hormone neurons. Mol Endocrinol 16:2255–2265 Purnelle G, Gerard A, Czajkowski V, Bourguignon JP 1997 Pulsatile secretion of gonadotropin-releasing hormone by rat hypothalamic explants without cell bodies of GnRH neurons. Neuroendocrinology 66:305–312 Ojeda SR, Ma YJ, Lee BJ, Prevot V 2000 Glia-to-neuron signaling and the neuroendocrine control of female puberty. Recent Prog Horm Res 55:197–223 Moguilevsky JA, Wuttke W 2001 Changes in the control of gonadotrophin secretion by neurotransmitters during sexual development in rats. Exp Clin Endocrinol Diabetes 109:188 –195 Eyigor O, Jennes L 2000 Kainate receptor subunit-positive gonadotropinreleasing hormone neurons express c-Fos during the steroid-induced luteinizing hormone surge in the female rat. Endocrinology 141:779 –786 Endocrinology, June 2004, 145(6):2775–2783 2783 61. Lopez FJ, Donoso AO, Negro-Vilar A 1990 Endogenous excitatory amino acid neurotransmission regulates the estradiol-induced LH surge in ovariectomized rats. Endocrinology 126:1771–1773 62. Diano S, Naftolin F, Horvath TL 1998 Kainate glutamate receptors (GluR5–7) in the rat arcuate nucleus: relationship to tanycytes, astrocytes, neurons and gonadal steroid receptors. J Neuroendocrinol 10:239 –247 63. Gu Q, Korach KS, Moss RL 1999 Rapid action of 17-estradiol on kainateinduced currents in hippocampal neurons lacking intracellular estrogen receptors. Endocrinology 140:660 – 666 64. Mitsushima D, Hei DL, Terasawa E 1994 ␥-Aminobutyric acid is an inhibitory neurotransmitter restricting the release of luteinizing hormone-releasing hormone before the onset of puberty. Proc Natl Acad Sci USA 91:395–399 65. Moguilevsky JA, Carbone S, Szwarcfarb B, Rondina D 1991 Sexual maturation modifies the GABAergic control of gonadotrophin secretion in female rats. Brain Res 563:12–16 66. Mansky T, Mestres-Ventura P, Wuttke W 1982 Involvement of GABA in the feedback action of estradiol on gonadotropin and prolactin release: hypothalamic GABA and catecholamine turnover rates. Brain Res 231:353–364 67. Jarry H, Hirsch B, Leonhardt S, Wuttke W 1992 Amino acid neurotransmitter release in the preoptic area of rats during the positive feedback actions of estradiol on LH release. Neuroendocrinology 56:133–140 68. Lasaga M, De Laurentiis A, Pampillo M, Pisera D, del Carmen DM, Theas S, Duvilanski B, Seilicovich A 1998 The effect of excitatory amino acids on GABA release from mediobasal hypothalamus of female rats. Neurosci Lett 247:119 –122 69. Pinilla L, Tena-Sempere M, Aguilar E 1998 Sexual differences in the role of kainate receptors in controlling gonadotrophin secretion in prepubertal rats. J Reprod Fertil 113:269 –273 70. Ikeda Y, Nagai A, Ikeda MA, Hayashi S 2003 Sexually dimorphic and estrogen-dependent expression of estrogen receptor  in the ventromedial hypothalamus during rat postnatal development. Endocrinology 144:5098 –5104 71. Kosut SS, Wood RI, Herbosa-Encarnacion C, Foster DL 1997 Prenatal androgens time neuroendocrine puberty in the sheep: effect of T dose. Endocrinology 138:1072–1077 Endocrinology is published monthly by The Endocrine Society (http://www.endo-society.org), the foremost professional society serving the endocrine community. Genetic Control of Puberty HORMONE RESEARCH Horm Res 2005;64(suppl 2):41–47 DOI: 10.1159/000087753 © Free Author Early Onset of Puberty: Tracking Copy – for peruse only Genetic and Environmentalsonal Factors ANY DISTRIBUTION OF THIS ARTICLE WITHOUT WRITTEN a b CONSENT FROM S. KARGER Heger Anne-Simone Parent a Gregory Rasier a Arlette Gerard Sabine AG, b BASEL IS A VIOLATION Sergio R. Ojeda b Christian Roth b Claudio Mastronardi b Heike JungOF THE COPYRIGHT. Jean-Pierre Bourguignon a Written permission to distribute the PDF will be granted Developmental Neuroendocrinology, Centre for Molecular and Cellular Neurobiology, University of Liège, against payment of a perLiège, Belgium; b Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and mission fee, which is based Science University, Beaverton, Oreg., USA on the number of accesses required. Please contact [email protected] a Key Words Gonadotropin releasing hormone Endocrine disrupting chemicals Hypothalamic hamartoma Secular trend Dichlorodiphenyltrichloroethane (DDT) Abstract Under physiological conditions, factors affecting the genetic control of hypothalamic functions are predominant in determining the individual variations in timing of pubertal onset. In pathological conditions, however, these variations can involve different genetic susceptibility and the interaction of environmental factors. The high incidence of precocious puberty in foreign children migrating to Belgium and the detection in their plasma of a long-lasting 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) residue suggest the potential role of environmental endocrine disrupting chemicals in the early onset of puberty. This hypothesis was confirmed by experimental data showing that temporary exposure of immature female rats to DDT in vivo results in early onset of puberty. We compared the gene expression profile of hypothalamic hamartoma associated or not with precocious puberty in order to identify gene networks responsible for both hamartoma-dependent sexual precocity and the onset of normal human puberty. In conclusion, © 2005 S. Karger AG, Basel 0301–0163/05/0648–0041$22.00/0 Fax +41 61 306 12 34 E-Mail [email protected] www.karger.com Accessible online at: www.karger.com/hre pathological variations in the timing of puberty may provide unique information about the interactions of either environmental conditions or genetic susceptibility with the © hypothalamic mechanism the onset of Free Author Copy –controlling for personal use only sexual maturation, as shown by examples of precocious ANY DISTRIBUTION OF THIS ARTICLE WITHOUT WRITTEN CONSENT FROM S. KARGER AG, BASEL IS A VIO puberty exposure to beendocrine Written following permission to distribute the PDF will granted againstdisrupters payment of a peror mission fee, which is b due to hypothalamic hamartoma. Copyright © 2005 S. Karger AG, Basel Introduction Puberty results from the awakening of a complex neuroendocrine machinery initiated by an unknown primary mechanism. Sexual maturation is the culmination of a complex sequence of events that leads to activation of the gonadotropic axis. The hypothalamus integrates multiple peripheral and central signals leading to the resurgence of pulsatile gonadotropin releasing hormone (GnRH) secretion which controls the secretion of luteinizing hormone and follicle stimulating hormone. Abnormally precocious sexual development has been defined as the occurrence of Tanner stage B2 before 8 years in girls and Tanner stage G2 before 9 years in boys. However, two recent studies in the United States [1, 2], reviewed by Lee et al. [3], highlighted an unexpected ad- Dr. Jean-Pierre Bourguignon Division of Paediatric and Adolescent Medicine Centre Hospitalier Universitaire Sart-Tilman BE–4000 Liège (Belgium) Tel. +32 43 667247, Fax +32 43 667246, E-Mail [email protected] vance in physiological age at the onset of breast development, thus raising the question of a possible advancement in the timing of puberty. Recently updated Belgian data indicate that menarcheal age has remained stable for the past 20 years at around 13 years of age but that the third centile for stage B2 in girls and 4 ml testicular volume in boys has decreased to 7.7 and 7.6 years, respectively [4]. In addition, early pubertal development and an increased incidence of sexual precocity have been noticed in children migrating to a number of western European countries [5]. These differences in timing of puberty seem to result from interactions of environmental factors irrespective of genetic susceptibility, since children migrating from several continents and belonging to several ethnic groups are involved [5]. Hypothalamic hamartoma is a condition frequently associated with severely precocious puberty possibly resulting from overexpression of some central genes independently of environmental factors. We have chosen two conditions associated with precocious puberty, i.e. hypothalamic hamartoma and migration after exposure to endocrine disrupting chemicals, in order to explore some of the possible environmental and genetic factors likely involved in early sexual maturation. Environmental Factors Possibly Involved in Early Onset of Puberty Environmental effects on the mechanism of pubertal onset may start during intrauterine life. Some studies have reported an earlier menarcheal age in girls with low birth weight or in utero growth retardation [6, 7]. In the general population, however, some authors found no significant correlation between birth weight and menarcheal age [8], while others reported that thin newborns entered puberty earlier [9, 10]. Nutrition is likely to play a key role in the timing of puberty and could explain, at least partially, the downward secular trend in the timing of puberty [5]. This is suggested by the direct relationship between body weight and age at onset of puberty [11, 12]. Also, girls with early menarcheal age are more likely to be obese [8]. However, the relation between fatness and menarcheal age could be either causal or consequential and may involve genetic participation. Leptin, insulin-like growth factor-I and glucose have been shown to be involved in the control of GnRH secretion, but their role in the timing of puberty remains controversial [5]. 42 Horm Res 2005;64(suppl 2):41–47 Leptin, however, appears to be a permissive factor important in physiological conditions and critical in some disorders, with an effect independent of body weight in hypothalamic amenorrhea [13]. The effects of fat mass may also interact with the effect of some endocrine disrupters that have a high affinity for lipids and are stored in fat tissue, thus creating conditions for persistence of systemic effects. Precocious Puberty in Migrating Children as a Model for Studying Environmental Factors Involved in the Onset of Puberty Following an initial report from Sweden [14], sexual precocity has been described in children migrating from developing countries, primarily through international adoption [5]. In some of these studies, cohorts of foreign adopted children were evaluated: not only was the absolute frequency of sexual precocity increased but advanced puberty was also a general feature (fig. 1) instead of precocity being a feature of a particular subset of cohorts. The differences in country of origin were unlikely to bias the findings, because in these studies the average menarcheal age was advanced in comparison with data from the foster countries as well as from the countries of origin [5]. In addition to the cohort studies of foreign adopted children, additional evidence of early pubertal timing was provided by the observation of sexual precocity in individual foreign adopted patients described as an entity in Italy [15] and in France [16] or in comparison with the whole group of patients seen for central precocious puberty in Copenhagen [17] and in Belgium [18]. In this latter country, foreign migrating children represented 28% of patients seen with central precocious puberty, accounting for an 80-fold increased risk of sexual precocity in comparison with native Belgian children [18]. The migrating children came from different ethnic and national backgrounds and were migrating either for international adoption or together with their original family and without any history of deprivation. It has been hypothesized that moving to Belgium could result in a change in exposure to endocrine disrupting chemicals when a child moves from the home country to the foster country, thus causing the occurrence of sexual precocity. Endocrine disrupting chemicals are widespread environmental substances that have been introduced by man and may influence the endocrine system in a harmful manner [19, 20]. They may play a role in disorders of human sex differentiation and in alterations to the reproductive organs and functioning. Screening for eight Parent /Rasier /Gerard /Heger /Roth / Mastronardi /Jung /Ojeda /Bourguignon Fig. 1. Average (mean or median) age at menarche in foreign adopted children compared with average age at menarche in the foster countries and the countries of origin. NCHS = National Center for Health Statistics. organochlorine pesticides in the serum of foreign migrating children with precocious puberty revealed the presence of 1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene (p,p-DDE), a persistent derivative of the pesticide DDT, while p,p-DDE levels were undetectable in the serum of native Belgian patients. DDT, although banned in the US and western Europe, is still in use in developing countries and behaves as an oestrogen agonist or androgen antagonist [21, 22]. A pathophysiological mechanism of precocious puberty in these children has been proposed [5, 18] and is schematically depicted in figure 2: DDT, like oestradiol [23, 24], is able to promote hypothalamic maturation, exerting an inhibitory effect at the pituitary level that is most effective in prepubertal individuals. This prevents the gonadal manifestation of hypothalamic effects and signs of sexual maturation. Migration may interrupt exposure to endocrine disrupters and precocious puberty might then result from withdrawal of their negative feedback effect and/or from accelerated hypothalamic maturation. A stimulatory effect of sex steroids at the hypothalamic level is suggested by our experimental data. Oestra- diol increased the frequency of pulsatile GnRH secretion from hypothalamic explants of 15-day-old female rats. This stimulatory effect was preferentially seen in immature female rats and was observed neither in older females nor in males [23]. Such sexual dimorphism, which is dependent on perinatal brain sexual differentiation, is interesting to note since precocious puberty affects girls more often than it does boys for reasons which are still unclear. Moreover, when oestradiol was administered in vivo between days 5 and 10, pulsatile GnRH secretion was accelerated, which is typical of the process of hypothalamic maturation, and precocious puberty was observed with early vaginal opening and first oestrus [23, 24]. Similarly, DDT accelerated pulsatile GnRH secretion in immature female rats and induced precocious puberty when administered in vivo [24]. DDT effects, like oestradiol effects [24, 25], are mediated by oestrogen receptors and involve the kainate subtype of glutamate receptors. Moreover, DDT also acts through the orphan dioxin receptor [24]. Precocious Puberty: Genetic and Environmental Factors Horm Res 2005;64(suppl 2):41–47 43 Fig. 2. Pathophysiological relevance of endocrine disrupting chemicals in precocious puberty observed in migrat- ing children. LH = Luteinizing hormone; FSH = follicle stimulating hormone. Genetic Factors Possibly Involved in Early Onset of Puberty Evidence for genetic regulation of puberty is provided by studies showing a correlation between the ages at which a mother and her daughter attain puberty [5, 26], as well as twin correlation studies indicating that 70–80% of the variance in pubertal timing can be explained by genetic factors [5, 26]. Population studies showing that age at puberty varies among ethnic groups also suggest a genetic control of puberty. The genetic control of the variance in pubertal timing is likely to be a complex polygenic trait [26] and those genes still remain to be discovered. Some candidate genes, such as those controlling sex steroid biosynthesis, action and metabolism, have been found to exhibit polymorphisms associated with possible variations in pubertal timing in a given population. In Japan, early menarche was linked to the A2 polymorphism of the CYP17 gene controlling androgen biosynthesis and thereby possibly accounting for increased serum oestradiol levels [27]. However, in American girls, the CYP17 alleles were not associated with early breast 44 Horm Res 2005;64(suppl 2):41–47 development. Instead, this event was strongly associated with the A4 allele of CYP3, an enzyme involved in testosterone catabolism [28]. More recently, evidence has been presented showing that familial central precocious puberty is determined by an autosomal dominant mode of transmission with incomplete penetrance affecting mostly girls [29]. Krewson et al. [30] assessed a panel of chromosome substitution strains in mice and reported that the timing of vaginal opening differed between two inbred strains. Their findings showed that chromosome 6 and 13 harbour quantitative trait loci regulating pubertal timing in mice. This lays the foundations to map these loci and establish the identities of the genes responsible. Moreover, this new tool could lead to the discovery of new genes involved in sexual maturation in humans. The central activation of puberty requires the participation of neuronal and astroglial networks regulated by upstream transcriptional factors. Some of these upstream genes have recently been identified. Oct-2, a POU domain gene originally described in cells of the immune system, transactivates transforming growth factor Parent /Rasier /Gerard /Heger /Roth / Mastronardi /Jung /Ojeda /Bourguignon (TGF)- promoter in glial cells and thus activates a gene involved in facilitating the onset of puberty. Oct-2 mRNA transcripts increase during juvenile development before puberty takes place and brain lesions inducing puberty result in the rapid and selective increase in Oct-2 transcript in TGF--containing astrocytes surrounding the lesion [31]. A role for the GPR54/KiSS-1 system recently emerged when two independent reports showed that mutations and deletions of the GPR54 gene were found in patients suffering from idiopathic hypogonadotropic hypogonadism [32, 33], and this condition has been reproduced in mice carrying a disrupted GPR54 locus [33]. In addition, recent studies have shown that GPR54 gene expression increases in the mouse hypothalamus at puberty [34], and that the expression of both the GPR54 gene and the gene encoding the KiSS precursor increase in the non-human primate hypothalamus at the time of puberty [35]. Furthermore, chronic central administration of KiSS-1 has now been shown to precociously activate the gonadotropic axis [34, 35]. One of our laboratories has compared gene expression profiles between the cortex and the hypothalamus and identified changes that are specific to the neuroendocrine brain throughout puberty in the non-human primate. These results support the concept that the onset of puberty requires concerted changes in gene transcription and intracellular signalling cascade but also activation of cell-cell communication pathways that may be critical for neuron-neuron and glial-neuron information transfer. Two genes showed a robust increase throughout puberty: TTF-1 and a novel gene called chromosome 14 open reading frame 4 (C14ORF4). TTF-1 is a homeodomain gene of the Nkx family that has been implicated in the control of female reproductive capacity [36]. C14ORF4, now named EAP1 (enhanced at puberty-1), appears to be a transcriptional regulator of genes involved in the transsynaptic control of GnRH secretion [37]. Although the involvement of these genes in precocious puberty has not yet been demonstrated, they represent interesting candidates since they are part of the gene network leading to sexual maturation. Hypothalamic Hamartoma as a Model for Studying Genetic Factors Involved in the Onset of Puberty Hamartomas are rare congenital non-neoplastic lesions containing mature brain tissue in a heterotopic location. They are almost exclusively located at the base of the hypothalamus. In most cases, they contain neurons and astroglial cells of normal aspect in addition to epen- Precocious Puberty: Genetic and Environmental Factors dymoglial-like cells. Astrocytes seem to be increased. Neuronal processes reaching adjacent structures are frequently observed [38]. Most hypothalamic hamartomas are symptomatic and are associated with precocious puberty [39] and/or gelastic seizures. Sexual precocity caused by a hypothalamic hamartoma occurs at a much earlier age than idiopathic precocious puberty of central origin [40]. The mechanism by which hypothalamic hamartomas cause precocious puberty is unknown and they represent a model of choice to identify the genes involved in the early onset of puberty and, subsequently, those involved in the physiological onset of puberty. Several mechanisms have been proposed to explain precocious puberty in hypothalamic hamartomas, including mechanical pressure, autonomous GnRH secretion, transsynaptic activation via myelinated fibres connecting the hamartoma to the hypothalamus, and secretion of glial products able to stimulate the patient’s GnRH neuronal network [41]. Some hypothalamic hamartomas do not induce sexual precocity despite a hypothalamic location similar to that of hamartomas associated with precocious puberty. This observation argues against the idea of mechanical factors underlying hypothalamic hamartoma-induced precocious puberty. Moreover, this activation of puberty occurs only if the lesion affects areas of the hypothalamus near to the GnRH neuronal network. The detection of GnRH neurons in some hypothalamic hamartomas [42] led to the hypothesis that these neurons represented neurosecretory cells able to function independently, activate endogenous GnRH secretion and induce premature sexual maturation [42, 43]. However, Jung et al. [44] reported two cases of hypothalamic hamartoma associated with precocious puberty in which no GnRH neurons were found. Instead of containing GnRH neurons, the hamartomas displayed astrocytes expressing TGF- and its erbB1 receptor. TGF- is known to mediate the facilitatory effect of astroglial cells on GnRH secretion [45]. Moreover, cells genetically engineered to produce TGF- were found to induce sexual maturation in female rats when grafted near GnRH nerve terminals or GnRH cell bodies [46]. Hypothalamic hamartomas have been found to produce several neuropeptides in addition to GnRH and TGF- [41]. Because hypothalamic hamartomas might express the same transcriptional and signalling networks required for the initiation of normal puberty, we compared the gene expression profile of a hamartoma associated with precocious puberty with three hamartomas not accompanied by advanced sexual maturation [47]. The hamartomas Horm Res 2005;64(suppl 2):41–47 45 were surgically removed due to intractable seizure activity. Total RNA was extracted, amplified, labelled and hybridized to a microarray chip containing 18,400 genes. Hierarchical cluster analysis identified a subset of genes whose expression was increased at least twofold in the hamartoma with precocious puberty compared with each of the other three hamartomas without precocious puberty. These genes encode proteins involved in three key cellular processes: transcriptional regulation, cell-cell signalling and cell adhesiveness. Thus, they may be part of biological complex relevant to the ability to induce puberty. It is interesting to note that some of these genes were first described as tumour-related genes. Similarly, microarrays of hypothalamic gene expression in the monkey identified a subset of tumour-related genes increased at onset of puberty [48]. Conclusion Pathological variations in the timing of puberty may provide unique information about the interactions of either environmental conditions or genetic susceptibility with the hypothalamic mechanism regulating the onset of sexual maturation. Normal individual variability in the timing of puberty involves familial, ethnic and gender patterns and is likely to depend on genetic control of the expression of signals or signal receptors in the hypothalamus. This physiological process is likely to be less influ- enced by environmental factors. These environmental factors may play a prominent role in situations such as the secular advancement in onset of breast development seen in some industrialized countries or the increased incidence of precocious puberty in children migrating to such countries. Another condition associated with precocious puberty is hypothalamic hamartoma containing the key transcriptional and signalling networks required to initiate the pubertal process. Hypothalamic hamartomas provide us with valuable hints towards the identification of gene networks responsible for both hamartoma-dependent sexual precocity and the onset of normal human puberty. We have mentioned the potential role of DDT in precocious puberty in migrating children, but there are several other endocrine disrupters still to be studied. Similarly, the study of hypothalamic hamartoma gene profile expression has allowed us to identify some of the potential factors involved in precocious puberty amongst several other possible candidates. Acknowledgments Anne-Simone Parent is a scientific research worker for the Fonds National de la Recherche Scientifique, Belgium. This work was supported by the Fonds de la Recherche Scientifique Médicale (grant 3.4515.01), the Belgian Study Group for Paediatric Endocrinology, and the European Commission (contract no. QLRT-200100269). References 1 Herman-Giddens ME, Slora EJ, Wasserman RC, Bourdony CJ, Bhapkar MV, Koch GG, Hasemeier CM: Secondary sexual characteristics and menses in young girls seen in office practice: A study from the Pediatric Research in Office Settings network. Pediatrics 1997;99: 505–512. 2 NHANES III: Reference Manuals and Reports (CD-ROM). Analytic and Reporting Guidelines: The Third National Health and Nutrition Examination Survey (1988–94). Hyattsville, Md., National Center for Health and Statistics, Centers for Disease Control and Prevention. 3 Lee PA, Guo SS, Kulin HE: Age of puberty: data from the United States of America. Acta Pathol Microbiol Immunol Scand 2001; 109: 81–88. 4 Hauspie R, Roelants M, Hoppenbrouwers K, Deschepper J: Available at: www.vub.ac.be/ groeicurven. 46 5 Parent AS, Teilmann G, Juul A, Skakkebaek NE, Toppari J, Bourguignon JP: The timing of normal puberty and the age limits of sexual precocity: Variations around the world, secular trends, and changes after migration. Endocr Rev 2003;24:668–693. 6 Ibánez L, Ferrer A, Marcos MV, Hierro FR, de Zegher F: Early puberty: rapid progression and reduced final height in girls with low birth weight. Pediatrics 2000;106:E72. 7 Lazar L, Pollack U, Kalter-Leibovici O, Pertzelan A, Phillip M: Persistently short children with IUGR have a distinct pubertal growth pattern. Horm Res 2002;58:85. 8 Stark O, Peckham CS, Moynihan C: Weight and age at menarche. Arch Dis Child 1989;64: 383–387. 9 Adair LS: Size at birth predicts age at menarche. Pediatrics 2001;107:E39. 10 Karlberg J: Secular trends in pubertal development. Horm Res 2002;57:19–30. Horm Res 2005;64(suppl 2):41–47 11 Frisch RE, Revelle R: Height and weight at menarche and a hypothesis of critical body weights and adolescent events. Science 1970; 169:397–399. 12 Frisch RE, Revelle R: Height and weight at menarche and a hypothesis of menarche. Arch Dis Child 1971;46:695–701. 13 Welt CK, Chan JL, Bullen J, Murphy R, Smith P, DePaoli AM, Karalis A, Mantzoros CS: Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med 2004;351: 987–997. 14 Adolfsson S, Westphal O: Early pubertal development in girls adopted from Far-Eastern countries. Pediatr Res 1981;15:82. 15 Virdis R, Street ME, Zampolli M, Radetti G, Pezzini B, Benelli M, Ghizzoni L, Volta C: Precocious puberty in girls adopted from developing countries. Arch Dis Child 1998; 78: 152– 154. Parent /Rasier /Gerard /Heger /Roth / Mastronardi /Jung /Ojeda /Bourguignon 27 Gorai I, Tanaka K, Inada M, Morinaga H, 16 Baron S, Battin J, David A, Limal JM: Puber37 Heger S, Mastronardi C, Lomniczi A, Cabrera Uchiyama Y, Kikuchi R, Chaki O, Hirahara F: té précoce chez des enfants adoptés de pays R, Roth C, Mungenast A, Jung H, Dissen GA, Estrogen-metabolizing gene polymorphisms, étrangers. Arch Pediatr 2000;7:809–816. Ojeda SR: Role of a novel gene (enhanced at but not estrogen receptor-alpha gene polymor17 Teilmann G, Main K, Skakkebaek N, Juul A: puberty, EAP-1) in the transcriptional regulaphisms, are associated with the onset of menHigh frequency of central precocious puberty tion of female reproductive function; in: Proarche in healthy postmenopausal Japanese in adopted and immigrant children in Denceedings of the Specialized Cooperative Cenwomen. J Clin Endocrinol Metab 2003; 88: mark (abstract). Horm Res 2002; 58(suppl 2): ters Program in Reproduction Research U-54 799–803. 135. Meeting, 2005. 28 Kadlubar FF, Berkowitz GS, Delongchamp 18 Krstevska-Konstantinova M, Charlier C, 38 Zuniga OF, Tanner SM, Wild WO, Mosier HD RR, Wang C, Green BL, Tang G, Lamba J, Craen M, Du Caju M, Heinrichs C, de Beaufort Jr: Hamartoma of CNS associated with precoSchuetz E, Wolff MS: The CYP3A41B variant C, Plomteux G, Bourguignon JP: Sexual precious puberty. Am J Dis Child 1983;137:127– is related to the onset of puberty, a known risk cocity after immigration from developing 133. factor for the development of breast cancer. countries to Belgium: Evidence of previous ex39 Richter RB: True hamartoma of the hypothalCancer Epidemiol Biomarkers Prev 2003; 12: posure to organochlorine pesticides. Hum Reamus associated with pubertas praecox. J Neu327–331. prod 2001;16:1020–1026. ropathol Exp Neurol 1951;10:368–383. 29 de Vries L, Kauschansky A, Shohat M, Phillip 19 Marshall E: Search for a killer: focus shifts from 40 Hibi I, Fujiwara K: Precocious puberty of ceM: Familial central precocious puberty sugfat to hormones. Science 1993;259:618–621. rebral origin: A cooperative study in Japan. gests autosomal dominant inheritance. J Clin 20 Toppari J, Larsen JC, Christiansen P, GiwercProg Exp Tumor Res 1987;30:224–238. Endocrinol Metab 2004;89:1794–1800. 41 Jung H, Parent AS, Ojeda SR: Hypothalamic man A, Grandjean P, Guillette LJ Jr, Jegou B, 30 Krewson TD, Supelak PJ, Hill AE, Singer JB, hamartoma: a paradigm/model for studying Jensen TK, Jouannet P, Keiding N, Leffers H, Lander ES, Nadeau JH, Palmert MR: Chromothe onset of puberty. Endocr Dev 2005; 8: 81– McLachlan JA, Meyer O, Muller J, Rajpert-De somes 6 and 13 harbor genes that regulate Meyts E, Scheike T, Sharpe R, Sumpter J, 93. pubertal timing in mouse chromosome subSkakkebaek NE: Male reproductive health and 42 Judge DM, Kulin HE, Page R, Santen R, stitution strains. Endocrinology 2004; 145: environmental xenoestrogens. Environ Health Trapukda S: Hypothalamic hamartoma: a 4447–4451. source of luteinizing-hormone-releasing factor Perspect 1996;104(suppl 4):741–803. 31 Ojeda SR, Hill J, Hill DF, Costa ME, Tapia V, 21 Clark EJ, Norris DO, Jones RE: Interactions of in precocious puberty. N Engl J Med 1977;296: Cornea A, Ma YJ: The Oct-2 POU domain gonadal steroids and pesticides (DDT, DDE) 7–10. gene in the neuroendocrine brain: a transcripon gonadal duct in larval tiger salamanders, 43 Mahachoklertwattana P, Kaplan SL, Grumtional regulator of mammalian puberty. EndoAmbystoma tigrinum. Gen Comp Endocrinol bach MM: The luteinizing hormone-releasing crinology 1999;140:3774–3789. hormone secreting hypothalamic hamartoma 1998;109:94–105. 32 de Roux N, Genin E, Carel JC, Matsuda F, is a congenital malformation: natural history. 22 Kelce WR, Stone CR, Laws SC, Gray LE, Chaussain JL, Milgrom E: Hypogonadotropic Clin Endocrinol Metab 1993;77:118–124. Kemppainen JA, Wilson EM: Persistent DDT hypogonadism due to loss of function of the metabolite p,p-DDE is a potent androgen re44 Jung H, Carmel P, Schwartz MS, Witkin JW, KiSS1-derived peptide receptor GPR54. Proc Bentele KH, Westphal M, Piatt JH, Costa ME, ceptor antagonist. Nature 1995;375:581–585. Natl Acad Sci USA 2003;100:10972–10976. 23 ANY Matagne V, Rasier G, Lebrethon MC, Gerard Cornea A, Ma YJ, Ojeda SR: Some hypothaDISTRIBUTION OF THIS 33 Seminara SB, Messager S, Chatzidaki EE, A, Bourguignon JP: Estradiol stimulation of lamic hamartomas contain transforming ARTICLE WITHOUT WRITTEN Thresher RR, Acierno JS, Shagoury JK, Bopulsatile gonadotropin-releasing hormone segrowth factor alpha, a puberty-inducing growth CONSENT FROM S. KARGER Abbas Y, Kuohung W, Schwinof KM, Hencretion in vitro: correlation with perinatal exfactor, but not luteinizing hormone-releasing AG, BASELtoISsex A VIOLATION drick AG, Zahn D, Dixon J, Kaiser UB, Slauposure steroids and induction of sexual hormone neurons. J Clin Endocrinol Metab OFprecocity THE COPYRIGHT. genhaupt SA, Gusella JF, O’Rahilly S, Carlton in vivo. Endocrinology 2004; 145: 1999;84:4695–4701. MB, Crowley WF Jr, Aparicio SA, Colledge 2775–2783. 45 Ojeda SR, Prevot V, Heger S, Lomniczi A, Written permission to distribWH: The GPR54 gene as a regulator of pu24 Rasier G, Matagne V, Parent AS, Gerard A, Dziedzic B, Mungenast A: Glia-to-neuron sigute the PDF will be granted berty. N Engl J Med 2003;349:1614–1627. Lebrethon MC, Bourguignon JP: Estradiol and nalling and the neuroendocrine control of feagainst payment of a per34 Navarro VM, Fernandez-Fernandez R, Casteldichlorodiphenyltrichloroethane (DDT) admale puberty. Ann Med 2003;35:244–255. mission fee, whichinis infantile based female rats: Similar lano JM, Roa J, Mayen A, Barreiro ML, Gayministration 46 Rage F, Hill DF, Sena-Esteves M, Breakefield tan F, Aguilar E, Pinilla L, Dieguez C, Tenagonadotropin-releasing horXO, Coffey RJ, Costa ME, McCann SM, Ojeda onstimulation the number ofofaccesses Sempere M: Advanced vaginal opening and mone (GnRH) secretion in vitro and sexual SR: Targeting transforming growth factor alrequired. Please contact precocious activation of the reproductive axis maturation in vivo through different receptor pha expression to discrete loci of the [email protected] by KiSS-1 peptide, the endogenous ligand of mechanisms; in Proceedings of the 87th Andocrine brain induces female sexual precocity. GPR54. J Physiol 2004;561(pt 2):379–386. nual Meeting of the Endocrine Society. San DiProc Natl Acad Sci USA 1997;94:2735–2740. 35 Shahab M, Mastronardi C, Seminara SB, ego: Endocrine Society, 2005, p 190. 47 Parent AS, Jung H, Westphal M, Ojedas SR: Crowley WF, Ojeda SR, Plant TM: Increased 25 Matagne V, Lebrethon MC, Gerard A, BourGene expression profiling of hypothalamic hypothalamic GPR54 signaling: a potential guignon JP: Kainate/estrogen receptor inhamartomas: a search for genes involved in inimechanism for initiation of puberty in privolvement in rapid estradiol effects in vitro tiating human puberty; in: Proceeding of the mates Proc Natl Acad Sci USA 2005; 102: and intracellular signaling pathways. Endocri87th Annual Meeting of the Endocrine Society. 2129–2134. nology 2005;146:2313–2323. San Diego: Endocrine Society, 2005;190. 36 Mastronardi C, Smiley G, Kuswakabe T, 26 Palmert MR, Hirschhorn JN: Genetic ap48 Roth CL, Mastronardi C, Mungenast A, Heger Kawagushi A, Cabrera R, Mungenast A, Kimuproaches to stature, pubertal timing, and other S, Jung H, Ojeda SR: Gene expression profiling ra S, Ojeda SR: Neuronal deletion of the T/ complex traits. Mol Genet Metab 2003; 80: 1– of the nonhuman primate hypothalamus at the EBP gene delaysAG, female and causes time of female puberty reveals activation of tu10. DISTRIBUTION OF THIS ARTICLE WITHOUT WRITTEN CONSENT ANY FROM S. KARGER BASELpuberty IS A VIOLATION OF THE COPYRIGHT. premature reproductive senescence. Program mor suppressor gene expression (abstract). Written permission to distribute the PDF will be granted against payment of a per mission fee, which is based on the number of accesses required. Please contact [email protected] 143.2, 2004 abstract/viewer. Washington, DC, Horm Res 2004;62(suppl 2):3. Society for Neuroscience, 2004. © Free Author Copy – for personal use only © Free Author Copy – for personal use only Precocious Puberty: Genetic and Environmental Factors Horm Res 2005;64(suppl 2):41–47 47 Molecular and Cellular Endocrinology 254–255 (2006) 187–201 Female sexual maturation and reproduction after prepubertal exposure to estrogens and endocrine disrupting chemicals: A review of rodent and human data G. Rasier a , J. Toppari b , A.-S. Parent a , J.-P. Bourguignon a,∗ a Developmental Neuroendocrinology Unit, Center for Cellular and Molecular Neurobiology, University of Liège, University Hospital Center, B36, +1, B-4000 Liège (Sart-Tilman), Belgium b Departments of Physiology and Pediatrics, University of Turku, FI-20520 Turku, Finland Abstract Natural hormones and some synthetic chemicals spread into our surrounding environment share the capacity to interact with hormone action and metabolism. Exposure to such compounds can cause a variety of developmental and reproductive detrimental abnormalities in wildlife species and, potentially, in human. Many experimental and epidemiological data have reported that exposure of the developing fetus or neonate to environmentally relevant concentrations of some among these endocrine disrupters induces morphological, biochemical and/or physiological disorders in brain and reproductive organs, by interfering with the hormone actions. The impact of such exposures on the hypothalamic–pituitary–gonadal axis and subsequent sexual maturation is the subject of the present review. We will highlight epidemiological human studies and the effects of early exposure during gestational, perinatal or postnatal life in female rodents. © 2006 Elsevier Ireland Ltd. All rights reserved. Keywords: Female puberty; Endocrine disrupters 1. Introduction Since the 1990s, the plausibility that some environmental and industrial chemicals could cause a number of disorders in hormonally regulated biological systems and, ultimately, affect harmfully the human, has preoccupied biologists, toxicologists and epidemiologists. In addition, the time of exposure during development is a clue since evidence has accumulated that disturbances of the (very) early life environment have an impact on the child and, further, adult health. Those adverse substances, which are widespread in our surrounding environment, are called “endocrine disrupting chemicals (EDCs)” or “endocrine disrupters”. They interfere with the endocrine system and thus may affect the development and/or reproduction in many animal species (Colborn et al., 1993; Marshall, 1993; Toppari et al., 1996). They consist of two groups: natural substances such as ∗ Corresponding author at: Division of Pediatric and Adolescent Medicine, University Hospital Center, B-4000 Liège (Sart-Tilman), Belgium. Tel.: +32 4 366 72 47; fax: +32 4 366 72 46. E-mail address: [email protected] (J.-P. Bourguignon). 0303-7207/$ – see front matter © 2006 Elsevier Ireland Ltd. All rights reserved. doi:10.1016/j.mce.2006.04.002 animal hormones and phytoestrogens, and man-made industrial chemicals, including pesticides, phenol derivatives, phthalates, dioxins, . . .. Many EDCs have an estrogenic activity. Mechanistic experiments indicate that these chemicals interact with the estrogen receptors (ERs) and stimulate or inhibit some sensitive cell types in a number of different ways (Ferguson et al., 2000; Gutendorf and Westendorf, 2001; Holmes et al., 2004). There are also many compounds which exhibit other effects, including antiestrogenic, androgenic or antiandrogenic. The compounds may act on the receptor level or influence the synthesis and metabolism of hormones, receptors and transcription factors. They can affect the hypothalamic–pituitary–gonadal (HPG) axis, with consequences on sexual development and functioning (Clark et al., 1998; Gray, 1998; Toppari and Skakkebaek, 1998; Takeyoshi et al., 2002; Toppari, 2002). In this review, we will briefly describe the processes of sexual differentiation and maturation in the rodent. The mechanisms of central versus peripheral puberty will be opposed and the reasons for using the immature female rodent to study EDC effects will be discussed in the light of our previous clinical observations. We will then review the data obtained in rodents and humans with different chemicals. 188 G. Rasier et al. / Molecular and Cellular Endocrinology 254–255 (2006) 187–201 Fig. 1. Schematic representation of the main pubertal events in the female. Comparison between laboratory rat (A) and human (B) based on a similar lifespan time scale. 2. Comparative sexual differentiation and maturation in female rodents and humans The reproductive system of female rodents (primarily rats and mice) shares a number of characteristics with the human. Consequently, these animals have been extensively used in biological research and are routinely employed in laboratory studies designed to elucidate the mammalian mechanisms of reproductive development and functions. The murine female puberty is a transitional process which encompasses vaginal opening (VO) and first ovulation (Fig. 1A). VO is the initial sign of the estrogenic rise that accompanies the onset of puberty and first ovulation followed by estrous cyclicity as the initial sign of a central drive of ovarian activity (Ramirez and Sawyer, 1965). The corresponding events in the human are the onset of breast development (stage B2) and menarche, respectively. In the rat, the mean age at VO varies among the strains and with raising conditions. It usually takes place around 35 days. The mean interval between VO and first estrus is 4.2 ± 1.1 days. In the laboratory rat, sexual maturation starts very early in life, when compared with the human female on a time scale determined by the lifespan (Fig. 1A and B) and the individual variations in timing of pubertal events are comparatively much less than observed in the human. The occurrence of the first ovulatory episode is an ovarian response to a massive secretory surge of the gonadotrophins (follicle-stimulating hormone and luteinizing hormone, FSH and LH). In the rodent, programming of the central mechanism of ovulation takes place between the last week of prenatal life and the first week of postnatal life (Naftolin, 1994). Early exposure to sex steroids causes disturbances in that process (Matagne et al., 2004) whereas, in the human female, there is no convincing evidence of a similar mechanism (Grumbach and Styne, 2003). 3. Central versus peripheral puberty The mechanism of onset of female puberty has been reviewed recently by Ojeda and Terasawa (2002). There are several endpoints that involve two different pathophysiologic mechanisms. In central puberty, estrogens are produced following ovarian stimulation by the HP system (Fig. 2A). In peripheral puberty, endogenous estrogens are produced in a gonadotrophinindependent manner (Fig. 2B) or they come from exogenous administrations. The study of sex steroid sensitive tissues such as uterus, vagina and breasts or anogenital distance (AGD) for estrogenic effects (e.g. VO) may provide an insight into central as well as peripheral puberty. The study of pituitary gonadotrophins and hypothalamic gonadotrophin-releasing hormone (GnRH) provides information on the central components and the possible effects of steroids and EDCs at those levels. In a previous study involving some among us, central sexual precocity was reported to occur very frequently in foreign migrating girls, as a possible consequence of early and temporary exposure to dichlorodiphenyltrichloroethane (DDT) (KrstevskaKonstantinova et al., 2001; Parent et al., 2003). As illustrated schematically in Fig. 2C and D, it was hypothesized that, during exposure to an estrogenic EDC, hypothalamic maturation could be stimulated while pituitary gonadotrophins are inhibited through a negative feedback effect. This prevents any manifestation of central maturation and only peripheral puberty can thus be observed (Fig. 2C). Migration causes withdrawal from the EDC and the consequent pituitary inhibition disappears, allowing the hypothalamic maturation to turn on the pituitary–ovarian cascade of pubertal events, i.e. central puberty (Fig. 2D). 4. Prepubertal exposure to EDCs: female study endpoints in rodents In consistency with the above observations, we were interested in delineating the central effects of sex steroid and EDC on the HP mechanism of puberty. In the rat, GnRH can be detected in the hypothalamus by the gestation day (GD) 12 and the levels of this decapeptide gradually increase until a few days after the parturition (Aubert et al., 1985). A steep rise takes place through the second suckling week, followed by a further increase that continues until puberty (Chiappa and Fink, 1977). Moore and Wray (2000) indicated that GnRH neurons in the olfactory placode can already exhibit neuroendocrine secretory properties. Indeed, embryonic GnRH neurons from nasal explants were capable of synthesizing, secreting and rapidly replenishing stores of GnRH peptide, and Wetsel et al. (1991) showed that the immature GnRH-secreting GT1-7 cell line secreted pro-GnRH. The postnatal ontogeny of frequency of pulsatile GnRH secretion in rat hypothalamic explants revealed a developmental acceleration before 21 days of age (Bourguignon and Franchimont, 1984) while others found such an increase to occur later in vivo (Sisk et al., 2001; Harris and Levine, 2003). Data from Ford and Ebling (2000) showed that GnRH transcript level increased markedly between birth and postnatal day (PND) 12 and that endogenous glutamatergic signal played a role as potential regulator during development, allowing maintenance of a sufficient level in adulthood (Gore et al., 1999). These data indicate that GnRH synthesis is not a rate-limiting factor for the onset of puberty. Such a concept is in agreement with our observation that an adult pattern of pulsatile GnRH secretion from G. Rasier et al. / Molecular and Cellular Endocrinology 254–255 (2006) 187–201 189 Fig. 2. Schematic illustration of the hypothalamic–pituitary–gonadal (HPG) axis function in different conditions: stimulation in physiological or precocious central puberty (A), inhibition in peripheral puberty due to steroids of extra-gonadal origin (B), hypothalamic stimulation and PG inhibition in the presence of an estrogenic EDC (C) and HPG stimulation after withdrawal from the EDC (D). neonatal hypothalamic explants can be obtained during intermittent stimulation by glutamate (Parent et al., 2005). Indeed, an increase in glutamatergic input to GnRH neurons plays a role in the elevated GnRH release and gene expression that occurs at the initiation of puberty (Gore et al., 1996). Then, the responsiveness of the GnRH neurons to neurotransmitter stimulations becomes enhanced, as a potent inhibitory influence of estradiol (E2) declines (Docke et al., 1981; Ojeda et al., 1986). The effects of steroids or some EDCs on such endpoints will be discussed below. In our laboratory, the developmental increase in frequency of pulsatile GnRH secretion in vitro has been shown to be particularly sensitive to sex steroids administered in vitro or in vivo around the age of 10–15 days (Matagne et al., 2004). Thus, the immature female rat provides a condition with high sensitivity of the HP unit to the inhibitory and stimulatory effects of estrogens. In the human, preliminary observations indicate that onset of puberty can be vulnerable to environmental effects on the neuroendocrine processes, culminating in the emergence of disorders in mature reproductive functions (Parent et al., 2003). The pubertal alterations can be either an advancement or a delay of maturation, maybe depending on the chemical and the conditions of the insult (age at exposure, doses, mixture effects, gender). In experimental conditions, the sensitivity to these effects can vary among species. Here, we will focus on the influence of several types of EDCs on the HPG axis after prepubertal (gestational, perinatal and/or postnatal) exposure of the female rodent in vivo. More specifically, we will address the impact on sexual maturation and the reproductive tract after such exposures, with emphasis on the comparative effects of low or high doses, prolonged or acute exposure and subcutaneous (s.c.) or oral administration. EDC impact using in vitro hypothalamic or pituitary explant and GnRH neuronal cell line models will also be discussed. 5. Effects of different EDCs on sexual maturation and reproductive functions 5.1. E2, a reference natural estrogen E2 is the main natural estrogenic hormone in the female. It is principally secreted by the ovaries and is known to exert a vast number of endocrine and metabolic functions in the mammals, notably on the HP unit during development and on the estrous cyclic activity. It was shown that the administration of ovarian steroids (E2 and progesterone) in ovariectomized rats not only influenced the release of hypothalamic GnRH but also the processing of GnRH precursor forms (Drouva et al., 1986). These effects involve a negative (inhibitory) feedback control of GnRH and the pituitary gonadotrophins which is very potent in the immature individual (Grumbach and Styne, 2003). In the mature female, a so-called positive (stimulating) feedback is also exerted by E2 and leads to the preovulatory GnRH and gonadotrophin (FSH and LH) surge (Levine, 1997; Terasawa, 2001). E2 has been usually administered postnatally starting either at birth or by PND 5–12, i.e. at the end of the critical period of sex differentiation or during the third week of life (Table 1). In all 190 G. Rasier et al. / Molecular and Cellular Endocrinology 254–255 (2006) 187–201 Table 1 Data on effects of estradiol on several hypothalamic–pituitary–ovarian outcomes Age at treatment Dose (per kg day) VO PND 1–10 10 g Advanced PND 1–21 PND 5-VO PND 10 2 mg 0.5 g 10 mg Advanced Advanced Advanced PND 12-VO PND 21–23 10 g Advanced Advanced PND 23–26 PND 25–42 PND 26-VO 5 g 0.3 g 0.5 g Advanced Advanced Advanced 1st estrus Cyclicity HP axis Irregular then persistent estrus Advanced Advanced Irregular then persistent estrus Ref. Kato et al. (2003) LH GnRH pulse frequency FSH/LH response to GnRH Advanced Uterus weight Marty et al. (1999) Ramirez and Sawyer (1965) Matagne et al. (2004) Nass et al. (1984) Ashby et al. (1997a,b), Odum et al. (1997) Korach et al. (1978) Edgren et al. (1966) Ramirez and Sawyer (1965) PND: postnatal day; VO: vaginal opening; HP: hypothalamic–pituitary. instances, VO was advanced as a possible result of either direct peripheral effects or early HPG maturation or both. The age at first estrus was usually not mentioned except in two studies. In the pioneering study of Ramirez and Sawyer (1965), injections of E2-benzoate (E2B, 0.5 g/kg day) starting from PND 5 or 26 until VO in rats caused an advancement in age at both VO and first estrus. When administered after PND 20, E2 also advanced the age at VO (Edgren et al., 1966; Ashby et al., 1997a,b; Odum et al., 1997). Early VO and first estrus were also observed in our laboratory after a single massive dose of E2 (10 mg/kg day) given on PND 10 (Matagne et al., 2004). Cycling disturbances were found after treatment during the first 10 postnatal days (Kato et al., 2003) as a possible result of disturbed sex differentiation of central nervous system. However, cycling disorders were seen as well after treatment between PND 12 and VO, suggesting another additional mechanism. Evidence of pituitary inhibition has been obtained after E2 treatment starting on PND 12 since gonadotrophin response to GnRH was diminished by 5 months of age (Nass et al., 1984). Studies using immortalized GnRHsecreting cell line GT1-7 revealed that E2 down-regulated GnRH transcript levels, indicating also a hypothalamic inhibition (Roy et al., 1999). However, E2 was found to stimulate GnRH secretion by these GT1-7 cells, an effect mediated by transforming growth factor (TGF)1 derived from astrocytes (Zwain et al., 2002). Recently, a stimulation of GnRH pulse frequency was observed using hypothalamic explants of immature female rats either incubated with E2 in vitro or after E2 administration in vivo (Matagne et al., 2004). Scarce data on pituitary function were obtained. After E2 treatment between PND 5 till VO, increased plasma LH was seen on PND 30 (Ramirez and Sawyer, 1965). Obviously, the interpretation of those data is difficult due to differences in age at treatment, dose and age at study. Korach et al. (1978) showed that uterus weight was doubled after injection of 5 g/kg day of E2 between PND 23 and 26. Other studies reported also an uterine weight increase after later treatment (Ramirez and Sawyer, 1965; Gould et al., 1998). In a single study of rats fed early (from birth to weaning) with E2 (2–4 mg/kg day), decreased uterine weights were observed (Marty et al., 1999). However, as discussed below, early treatment with other estrogenic compounds resulted in uterine weight increase. These data point to a prominent and presumably direct stimulatory peripheral effect in the case of late treatment and, possibly, after early treatment as well. Structural changes can also occur in the ovaries and peripheral estrogen sensitive organs. After 10 g/kg day of E2 was administered between PND 1 and 10, polycystic ovaries were observed on PND 80 (Kato et al., 2003). In 2001, Ikeda et al. showed that a neonatal exposure to E2B (1 mg/kg day, PND 1–5) caused disorders in ovarian development and differentiation before PND 21. Several studies in mice exposed during the same period reported that E2 affected the mammary gland development and structure in the immature and adult animals (Mori et al., 1976; Warner, 1976; Tomooka and Bern, 1982; Bern et al., 1983; DiPaolo and Jones, 2000). An in utero exposure of late fetal rats (GD 16–20) to E2B (50 g/kg day) caused a smaller AGD in the offspring at birth (Levy et al., 1995). 5.2. Two synthetic estrogens: diethylstilbestrol (DES) and ethynylestradiol (EE2) The clinical concept of EDCs has arised from the longterm adverse effects of DES. This synthetic nonsteroidal estrogenic chemical has been administered in high doses to pregnant women as an antiabortive medication to prevent miscarriage and other pregnancy complications between 1938 and 1971 in the United States (U.S.). By that year, the U.S. Food and Drug Administration issued a warning about its use after having found a relationship between an in utero exposure to this synthetic estrogen and the development of clear cell adenocarcinoma of the vagina and cervix in young women whose mothers had taken this substance while they were pregnant (Herbst and Anderson, 1990). Although DES has not been given for more than about 30 years, its effects continue to be seen. Indeed, women who were exposed to it through their mother display structural reproductive tractus anomalies and an increased infertility rate (Merino, 1991; Schrager and Potter, 2004). DES has been considered as a paradigmatic compound for estrogenic EDCs and is often used as reference to study the effects of other putative estrogenic substances. It does not bind ␣-fetoprotein, an estrogen-binding plasma protein, and can thus bind ERs in G. Rasier et al. / Molecular and Cellular Endocrinology 254–255 (2006) 187–201 191 Table 2 Data on effects of diethylstilbestrol on several hypothalamic–pituitary–ovarian outcomes Age at treatment GD 1–21 GD 1–PND 21 GD 9–16 GD 11-PND 20 PND 1–5 Dose (g/kg day) 5 6.5 VO Cyclicity HP axis Advanced Irregular Irregular FSH/LH Uterus weight Levy et al. (1995) Kubo et al. (2003) Newbold et al. (1983) Newbold et al. (1998) Haney et al. (1984), Newbold et al. (1983) 0.01 2.5 100 15 0.002 PND 12-VO PND 21–23 PND 20–22 0.2 PND 21–40 5 PND 23–26 7 Ref. Irregular Irregular then Advanced Irregular Irregular then persistent estrus or diestrus Advanced Kwon et al. (2000), Mori et al. (1976) Huseby and Thurlow (1982), McLachlan et al. (1982), Tomooka and Bern (1982), Newbold et al. (1998), Branham et al. (1988) Nass et al. (1984) Sharpe et al. (1995), Ashby et al. (1997a,b), Cagen et al. (1999), Nagao et al. (2000), Atanassova et al. (2000) Kim et al. (2002) Irregular then persistent estrus Irregular then persistent estrus Korach et al. (1978) GD: gestational day; PND: postnatal day; VO: vaginal opening; HP: hypothalamic–pituitary. the fetal tissues much more actively than endogenous estrogens (McLachlan and Newbold, 1987). As expected from the clinical observations made using DES, experimental administration of this compound often started in prenatal life though postnatal treatment was considered as well (Table 2). Irrespective of the period of treatment, VO was found to be advanced by DES when studied (Nass et al., 1984; Kim et al., 2002; Kubo et al., 2003). Disturbances in estrous cyclicity were commonly observed when DES was administered during either gestational or postnatal period or both. The animals displayed irregular cycles followed by persistent estrus or diestrus, causing reduced fertility (0.01 g/kg day) or complete sterility (100 g/kg day), depending on DES dose. Exposure during fetal life and suckling period (6.5 g/kg day) caused a decrease in FSH and LH secretion at 3 months of age, indicating a negative feedback effect on the HP axis (Kubo et al., 2003). The uterotrophic response to DES was evidenced in many studies, uterine weight being doubled even after a short period of postnatal exposure (PND 20–22 or 23–26, 0.2–7 g/kg day). Uterine abnormalities were also observed when 0.01–100 g/kg day of DES were given prenatally (McLachlan et al., 1982; Newbold et al., 1983, 1984) and after a PND 1–5 exposure to 0.01 g/kg day, resulting in permanent disorders of the reproductive ability (Branham et al., 1988; Halling and Forsberg, 1993). Some investigations focused on DES effects on the ovarian histoarchitecture. Anovulatory ovaries were observed (Döhler et al., 1984; Tarttelin and Gorski, 1988; Vancutsem and Roessler, 1997). Haney et al. (1984) reported that mice exposed in utero to 100 g/kg day displayed an enlargement of the ovarian interstitial compartments at 3 months of age. Others showed that administration of DES in mice between PND 1 and 5 affected the growth of mammary glands (Mori et al., 1976; Warner, 1976; Huseby and Thurlow, 1982; Tomooka and Bern, 1982; Bern et al., 1983; DiPaolo and Jones, 2000). When pregnant mice were fed with DES from GD 11 to GD 17, the AGD of the offspring at birth was decreased (Palanza et al., 2001). EE2 is actually the most frequently used estrogenic component of the anovulatory contraceptive pills in women. This synthetic estrogenic compound is eliminated out of the body through the urines (Bolt et al., 1973; Bolt, 1979), thus contaminating the environment via the waste water. The experimental EE2 effects were mainly tested postnatally. In a study where age at VO was assessed, an advancement was observed after 100 g/kg day, PND 21–35 (Laws et al., 2000). It was demonstrated (Odum et al., 1997) that an exposure through oral gavage was less effective than s.c. injection (2–400 g/kg day, PND 21–23). Laws et al. (2000) reported also that the number of regular cycles was reduced, pointing to peripheral and central effects. Investigations of the uterotrophic response showed an increase in uterus weight after 0.3–100 g/kg day, during PND 21–23 (Freyberger et al., 2001; Laws et al., 2000). Similar results were observed when EE2 was administered in early life, PND 1–5 (Branham et al., 1988). 5.3. Phytoestrogens Plants produce estrogen-like substances, called phytoestrogens. They are nonsteroidal EDCs naturally carried from food. There is a growing body of literature showing that these estrogens are capable of binding to ERs and exerting estrogenic responses in mammals (Martin et al., 1978; Nelson et al., 1984; Hopert et al., 1998). They include mainly the isoflavones (e.g. genistein found in soy derivatives) and the coumestanes (principally coumestrol present in several vegetables). Transresveratrol (RVT), a stilbene derivative, is a phytoalexin found in grapes, red wine, peanuts and other fruits. Little information is known about its estrogenic potential (Gehm et al., 1997). 192 G. Rasier et al. / Molecular and Cellular Endocrinology 254–255 (2006) 187–201 Table 3 Data on effects of phytoestrogens on several hypothalamic–pituitary–ovarian outcomes Age at treatment Dose (mg/kg day) EDCs VO Cyclicity GD 1–PND 21 GD 16–20 1.5 5 25 0.1 0.5 18 20 RVT Genistein Genistein Coumestrol Genistein RVT Coumestrol Genistein Coumestrol Delayed Delayed Delayed Irregular PND 1–5 3 days PND 21–23 PND 21–27 PND 22–60 Uterus weight then Prolonged estrus irregular Advanced Advanced Irregular Irregular Ref. Kubo et al. (2003) Levy et al. (1995) Gallo et al. (1999) Medlock et al. (1995) Jefferson et al. (2005) Freyberger et al. (2001) Baker et al. (1999) Gallo et al. (1999) Whitten and Naftolin (1992) GD: gestational day; PND: postnatal day; EDCs: endocrine disrupting chemicals; RVT: trans-resveratrol; VO: vaginal opening. Phytoestrogens were studied in rodents during all the periods of life till adulthood (Table 3). Discrepant effects were obtained when VO was studied depending on species and time of exposure. Administration of genistein (5 mg/kg day) during fetal life (GD 16–20) delayed the age at VO (Levy et al., 1995) while when given between PND 21 and 27, VO was advanced (Gallo et al., 1999). VO advancement was also obtained after coumestrol administration during PND 22–60 (Whitten and Naftolin, 1992). Early exposure to RVT (1500 g/kg day) during fetal and suckling periods caused a delay in age at VO (Kubo et al., 2003). Irregular cycles, i.e. increase or decrease in cycle duration, were reported in several studies (Whitten and Naftolin, 1992; Gallo et al., 1999; Freyberger et al., 2001; Jefferson et al., 2005). Coumestrol was also found to inhibit the GnRH transcript expression in GT1-7 cells (Bowe et al., 2003). McGarvey et al. (2001) showed that coumestrol profoundly inhibited the pulsatile LH secretion with concomitant reduction of the frequency of hypothalamic multiunit electrical activity volleys. In addition, the GnRH-induced pituitary LH release in vitro in rat was completely suppressed. Genistein, however, had no effects on pulsatile LH secretion. As observed for VO, contradictory results were also obtained concerning the effects on uterus. Uterine weight was increased by 25 mg/kg day of genistein given GD 16–20 (Levy et al., 1995; Gallo et al., 1999) and 20–80 mg/kg day of coumestrol given PND 21–23 (Baker et al., 1999) whereas Medlock et al. (1995) reported an initial increase and subsequent decrease in uterine weight after 100 g/kg day of coumestrol given PND 1–5. A decrease in uterine weight was caused by RVT (18, 58 or 575 mg/kg day) given on 3 consecutive days (Freyberger et al., 2001). Gallo et al. (1999) described disturbances in the distribution of ovarian follicular size after genistein. Moreover, Jefferson and Newbold (2000) reported multi-oocyte follicles in the ovaries when mice were exposed to environmentally relevant dose (50 mg/kg day, s.c.) of genistein. Levy et al. (1995) demonstrated that pregnant rats injected with 5 mg/kg day of genistein during GD 16–20 had their offspring with a smaller AGD at birth. Studies of nutritional effects on the timing of human puberty have focused on questions around obesity, fat and protein contents of the food, and there is very little information on possible effects of phytoestrogens (Berkey et al., 2000). 5.4. DDT and other insecticides Many organochlorine pesticides are extremely persistent and tend to bioaccumulate. The insecticide DDT can behave as an estrogen agonist and/or an androgen antagonist. It has been banned in the U.S. and Western European countries since the late 1960s but is still used extensively in developing countries where contamination continues via the consumption of foods (Key and Reeves, 1994; Kelce et al., 1995; Clark et al., 1998; Partsch and Sippel, 2001; Parent et al., 2003). Two DDT isomers exist, p,p - and o,p -DDT, the first one representing approximately 80% of DDT spread in the environment. Methoxychlor (MXC) was developed to replace DDT and to have a similar spectrum of intended effects while being more readily excreted. It has a much reduced tendency to accumulate in the nature compared to DDT (Kapoor et al., 1970). It stimulates the estrogenic activity presumably through the ability of some of its metabolite hydroxyphenyltrichloroethane (HPTE) to bind to intracellular ERs (Bulger et al., 1978a,b). The effects of the broad spectrum insecticide lindane, still relatively widespread in developed nations as well as in the third world, will also be discussed in this review. It can affect the endocrine system through its isomer hexachlorocyclohexane that is long persistent in the environment and tends to bioaccumulate along food chains. Data from Gray et al. (1988, 1989) reported that MXC (25–200 mg/kg day) given from weaning onwards resulted in advancement in age at VO and first estrus. Laws et al. (2000) showed that a 3-day exposure (PND 21–23) to MXC (50 mg/kg day) also caused advancement in age at VO (Table 4). Lindane (5–40 mg/kg day) given PND 21–110 or 125 was found to delay the age at VO (Cooper et al., 1989). This observation suggests that, during prolonged exposure to a compound with evidence of few or no peripheral estrogenic effects, the central inhibitory effects can be prominent. Consistent with this interpretation, Cooper et al. (1989) observed that 20–40 mg/kg day of lindane caused a reduced size of pituitary gland associated with high FSH and low LH concentrations, along with a decrease in uterine weight (Table 4) and a disruption of the ovarian cyclicity. Further about a putative central effect of pesticides, Gray et al. (1988, 1989) observed that, following administration of 200 mg/kg day of MXC, the length of estrous cycles G. Rasier et al. / Molecular and Cellular Endocrinology 254–255 (2006) 187–201 193 Table 4 Data on effects of pesticides on several hypothalamic–pituitary–ovarian outcomes Age at treatment Dose (mg/kg day) EDCs PND 21–23 PND 21–35 25 days PND 21–110 50 MXC VO Cyclicity HP axis Uterus weight Laws et al. (2000) Cooper et al. (1989) Advanced 5 10 Lindane Lindane 20 Lindane Delayed Ref. Irregular Irregular then persistent estrus or diestrus Pituitary weight FSH /LH PND: postnatal day; EDCs: endocrine disrupting chemicals; MXC: methoxychlor; VO: vaginal opening; HP: hypothalamic–pituitary. was increased until a persistent estrus was seen. A decrease in the number of regular (4–5 days) estrous cycles was also noted (Laws et al., 2000). Treatment with 10 mg/kg day of lindane (Cooper et al., 1989) was followed by periods of persistent estrus or diestrus (Table 4). Using the GnRH-secreting GT1-7 cell line, MXC was found to down-regulate the GnRH transcript levels through its metabolite HPTE (Roy et al., 1999; Gore, 2002). MXC given orally or s.c. (50 or 500 mg/kg day, PND 21–23) accounted for an increase in uterine weight (Odum et al., 1997; Laws et al., 2000). When pregnant mice (GD 11–17) were fed with o,p -DDT or MXC, a decrease of the AGD was observed in the offspring at birth (Palanza et al., 2001). Since the persistent DDT derivative p,p -DDE was found in the serum of foreign migrating children developing sexual precocity in Belgium (Krstevska-Konstantinova et al., 2001; Parent et al., 2003), we have been interested in delineating the possible effects of DDT on the HP axis. Preliminary observations (Rasier et al., 2005) indicate that o,p -DDT could have stimulatory effects on GnRH secretion similar to those of E2 with involvement of ERs and the kainate subtype of glutamate receptor as well as the orphan dioxin receptor following a mechanism described by Ohtake et al. (2003). Additional mechanisms could exist since DDT was reported recently to stimulate brain aromatase (Kuhl et al., 2005). We obtained preliminary data showing that exposure of immature female rats for 5 days to o,p DDT as well as E2 in 1000:1 concentration ratio could result in early developmental acceleration of GnRH secretion and subsequent sexual precocity (Rasier et al., 2005). This is consistent with the above-mentioned model of central precocity occurring as a consequence of exposure to and withdrawal from an EDC. High levels of p,p -DDE was found in 26 immigrant girls with precocious puberty as compared to 15 Belgian patients with the same diagnosis (Krstevska-Konstantinova et al., 2001). Only two Belgian girls had detectable serum DDE concentration, whereas the mean concentration in immigrant girls was 10 times higher than the detection limit. Three of the immigrant children with high DDE levels had been born in Belgium, suggesting trans-placental and lactational exposure, because the half-life of DDE is very long. The DDE levels correlated positively with the age of immigration and negatively with the time since immigration, suggesting that the source of contamination was in the home country (Parent et al., 2003). In the Michigan anglers cohort, exposure to DDT of fisheating mothers and their controls was measured, and the tim- ing of puberty in 151 daughters was studied (Vasiliu et al., 2004). In utero exposure to high levels of DDE was associated with an advanced age at menarche. In the North Carolina Infant Feeding study of 316 girls and 278 boys, no significant exposure–outcome associations between DDE and pubertal timing were found (Gladen et al., 2000). Pubertal delay was associated to a high endosulfan exposure in a recent Indian study where 117 boys from a highly contaminated area were compared to 90 matched control boys from uncontaminated area (Saiyed et al., 2003). Antisteroidogenic properties of endosulfan could contribute to this effect. 5.5. Bisphenol A (BPA) and phenol derivatives BPA is a most common EDC in our environment. It is used in the manufacture of polycarbonate plastics and epoxy resins, from which a variety of products are made, including reusable milk and food storage containers, baby formula bottles, interior lacquer-coating of food cans or dental sealants, indicating that humans are exposed widely to this chemical (Krishnan et al., 1993). Indeed, BPA has been detected in the human umbilical cord blood, pointing to a possible fetal contamination (Sakurai and Mori, 2000; Brock et al., 2001). This compound has been found to compete with E2 for binding to ERs (Krishnan et al., 1993; Hiroi et al., 1999). However, its affinity for those receptors has been shown to be much weaker than that of E2 (Kwon et al., 2000). As shown in Table 5, when administered (s.c.) postnatally starting either from birth or later in life, BPA (600–800 mg/ kg day, PND 21–23; 1 or 4 mg/kg day, PND 1–10) was found to advance the age at VO (Ashby and Tinwell, 1998; Kato et al., 2003). It was also shown that a fetal exposure (GD 11–17) to a low dose (2.4 g/kg day) reduced the time interval between VO and first estrus (Howdeshell et al., 1999). Early and prolonged administration (GD 6–PND 21; 1.2 mg/kg day) also accounted for disruption in estrous cyclicity (Rubin et al., 2001) while a single administration (100 mg/kg day, 25 days, orally) resulted in a decrease of the number of regular cycles (Laws et al., 2000) with subsequent persistent estrus (Ashby and Tinwell, 1998; Kato et al., 2003). Rubin et al. (2001) showed that serum LH levels decreased in adulthood, suggesting the involvement of a negative feedback effect. Concerning the reproductive tract, an uterotrophic response was observed after a 3-day exposure (PND 21–23) to 37.5–150 mg/kg day (Ashby and Tinwell, 1998; Stein- 194 G. Rasier et al. / Molecular and Cellular Endocrinology 254–255 (2006) 187–201 Table 5 Data on effects of bisphenol A on several hypothalamic–pituitary–ovarian outcomes Age at treatment Dose (per kg day) GD 6–PND 21 GD 11–17 1.2 mg 2.4 g PND 1–10 1 mg 4 mg PND 21–23 Cyclicity HP axis Irregular LH Number of days between VO and 1st estrus Advanced Uterus weight Ref. Rubin et al. (2001) Howdeshell et al. (1999) Kato et al. (2003) Irregular then persistent estrus 37.5 mg 200 mg 600 mg PND 23–25 25 days VO Advanced Irregular then persistent estrus 100 mg Steinmetz et al. (1998) Laws et al. (2000), Ashby and Odum (2004) Ashby and Tinwell (1998) Markey et al. (2001) Laws et al. (2000), Markey et al. (2001) Irregular GD: gestational day; PND: postnatal day; VO: vaginal opening; HP: hypothalamic–pituitary. metz et al., 1998), 200 mg/kg day, orally (Laws et al., 2000) or 200–800 mg/kg day (Ashby and Odum, 2004). Taken together, those data indicate stimulatory peripheral effects and inhibition of the central mechanism of ovulatory cycles. Kato et al. (2003) observed polycystic ovaries in adulthood. Markey et al. (2001) showed that when mice were exposed in utero (GD 9–20) to low, presumably environmentally relevant doses of BPA (25 or 250 g/kg day, s.c.), changes in histoarchitecture of mammary glands occurred. Very recently, Munoz-de-Toro et al. (2005) reported same disorders in adult mice when 25 or 250 ng/kg day of BPA were administered from GD 9 till PND 4. A number of alkylphenol compounds in the environment have been also reported to affect estrogenic activity in the endocrine system. Octylphenol, notably used in the manufacture of plastics, has been detected in food and water consumed by animals and people. When 100–200 mg/kg day were given orally from PND 21 until VO, an advancement in the age at VO was observed (Gray and Ostby, 1998). A 10 mg/kg day (s.c.) was found to increase uterine weight in prepubertal rats (Bicknell et al., 1995). Similar results were reported by Laws et al. (2000) with 200 mg/kg day (PND 21–35, orally), along with disruption in estrous cyclicity after 20–40 mg/kg day s.c. (Blake and Ashiru, 1997) and disorders in pituitary hormone levels after 80 mg/kg day s.c. (Blake and Bookfor, 1997). Nonylphenol, which is widely used in the production of many surfactants and plastics, has been reported to advance the age at VO after 50–100 mg/kg day, PND 21–35 (Laws et al., 2000). When given between PND 21 and 40 at the same doses, advancement in age at VO and irregular estrous cycles following an increase length of diestrus were also seen (Kim et al., 2002). An uterotrophic response was observed (Odum et al., 1997; Laws et al., 2000) after treatment with 100–200 mg/kg day s.c. during PND 20–22 (Kim et al., 2002). Thus, alkylphenols accounted to effects very comparable to those of BPA. To our knowledge there are no human studies on the association of alkylphenol or BPA exposure to timing of puberty. Assessment of exposure is difficult as compared to persistent compounds such as PCBs and DDE that can be measured years after the exposure. 5.6. Polychlorinated biphenyls (PCBs) There is paucity of information describing the effects of exposure to PCBs. They are lipophilic industrial chemicals often detected in human breast milk, serum or tissues. They can have estrogenic and antiandrogenic activities. The effects of two PCB mixtures, Aroclor 1221 (A1221) and A1254, were tested on the hypothalamic neuronal GT1-7 cells by Gore et al. (2002). A1221 increased GnRH transcript and peptide levels. A1254 had different effects, inhibiting GnRH transcription at high concentrations and elevating transcript levels at low concentrations. Moreover, it did not alter GnRH peptide levels. When pregnant female rats were exposed (GD 1–21) via food containing 40 mg/kg day of a reconstituted PCB mixture (composed according to the congener-pattern in human breast milk), Hany et al. (1999) showed that the breastfed pups exhibited elevated uterine weights on PND 21. There are already several epidemiological studies that have assessed exposure to PCBs in relation to the timing of puberty. In a Belgian study comparing children (120 girls and 80 boys) from rural and urban areas, PCB congeners 138, 153 and 180 were measured in serum, and the pubertal stage was assessed by trained physicians (Staessen et al., 2001; Den Hond et al., 2002). No association of PCB levels to pubertal development in girls was observed, whereas in boys, a significant delay of puberty was found in urban areas and in association with high PCB levels. In the North Carolina Infant Feeding Study, no association of PCB exposure to the self-reported timing of puberty (including age at menarche) among 316 girls and 278 boys were found, although there was a nonsignificant tendency to early maturation in the girls in the highest prenatal exposure group (Gladen et al., 2000). Two studies from the Great Lake area, Michigan in U.S., found no correlation of PCB exposure to self-reported timing of puberty in 327 (Blanck et al., 2000) or 151 girls (Vasiliu G. Rasier et al. / Molecular and Cellular Endocrinology 254–255 (2006) 187–201 et al., 2004). Similar results were found in a boy cohort (196 boys) from Faroe Islands, i.e. no association of PCB exposure to the timing of puberty (Mol et al., 2002). In Yucheng, 55 boys who were accidentally exposed to high PCB and polychlorinated dibenzofuran (PCDF) levels were reported to have shorter penile length than the control boys at the same age, suggesting pubertal delay (Guo et al., 2004). In summary, epidemiological studies have not revealed any association of PCB exposure with the timing of puberty in girls, whereas in boys, there are two studies suggesting a link to delayed puberty and two studies showing no effect. 5.7. Polybrominated biphenyl (PBB) Animal feed was contaminated with polybrominated biphenyl in a farm in Michigan in the 1970s causing a high exposure of thousands of people via milk and other products from contaminated cows. Perinatal exposure of children was estimated by measuring PBB in serum of mothers some years after exposure. The girls that had been exposed to high PBB levels through lactation had an earlier age at menarche and earlier pubic hair development than those who were less exposed through breastfeeding, whereas no differences were found in breast development. The girls reported their pubertal development themselves, and this may have caused more inaccuracy and variation in timing of breast development than other pubertal landmarks (Blanck et al., 2000). 5.8. Phthalates Phthalates are plasticizers and thus can contaminate environment and humans by consumption of food or drinks contained in plastic package or bottles. Ashby et al. (1997a,b) reported that when 182.6 g/kg day of butyl benzyl phthalate (BBP) was administered orally to rats from conception until weaning, VO was advanced in the offspring. Similarly, pups whose mother was exposed from the first day of gestation until birth to dibutyl phthalate DBP (12 or 50 mg/kg day, orally) had age at VO and first estrus advanced (Salazar et al., 2004). Nagao et al. (2000) conducted a study in pregnant female rats using a 500 mg/kg day oral dose of BBP. The AGD was increased in the offspring at birth. Puerto Rican epidemy of thelarche has prompted studies on several putative endocrine disrupters, including phthalates (Colon et al., 2000). In the case–control study of 41 girls with thelarche and 35 controls, two-thirds of the cases had measurable phthalate levels in serum, whereas only 14% of the controls had detectable phthalates. However, the phthalate profile in serum raised a concern about possible technical errors (or contamination), because diethyl hexyl phthalate concentrations were high as compared to other phthalates (McKee, 2004). 5.9. Dioxins Immature female rats were given single oral doses (0.3– 60 g/kg) of the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on PND 22 and equine chorionic 195 gonadotrophin (eCG) 24 h later to induce follicular development. A dose-dependently increase in ovarian weight and a decrease in number of animals ovulating were observed. Peak serum levels of FSH and LH were decreased by TCDD. In hypophysectomized immature rats treated with eCG and exogenous LH, number of rats ovulating was reduced by TCDD (10 and 60 g/kg), suggesting that TCDD alters reproductive functions via effects on the HP axis as well as through direct effects on the ovary (Li et al., 1995). Single doses (0.03–30 g/kg) of TCDD were also administered orally by gastric intubation to 22day-old rats. Peaks of FSH and LH were observed immediately after treatment and 1 day later. This dose-dependent elevation indicated that TCDD induces release of gonadotrophins. Such a stimulation was at least partially due to a direct pituitary effect since TCDD caused a release of LH in vitro from pituitary halves and primary pituitary cell cultures (Li et al., 1997). Recently, it was also demonstrated that 8 or 32 g/kg of TCDD administered to immature female rats induced a premature increase in FSH and LH in vivo, this effect being facilitated by administration of a long-acting E2 (Petroff et al., 2003). Retrospective analyses of the age at menarche in girls exposed to TCDD in Seveso 1976 found no association (Warner et al., 2004). However, it remained open whether the timing of exposure was appropriate in terms of pubertal effects. In the Yucheng rice oil accident, children were exposed to PCDF that were formed through heat-degradation of PCB contaminants in food preparation (Guo et al., 2004). As described earlier, the exposed boys had smaller penises as compared to control subjects at the same age. In the Belgian study of children from rural and two urban areas, dioxin exposure was estimated with the Calux assay that measures the total dioxin-like activity in serum (Staessen et al., 2001; Den Hond et al., 2002). Higher dioxin-like activities were measured in children from the urban suburbs than in those from the rural area. There was no correlation of the activity with the age at menarche or pubic hair development, but breast development to the adult stage was inversely correlated to dioxin-like activity, i.e. high exposure was associated with a developmental delay (Den Hond et al., 2002). In boys, there was no correlation of dioxin-like activity with landmarks of pubertal development, although testes of boys in the polluted urban areas were significantly smaller than those in the rural area (Den Hond et al., 2002). Dioxins act through the aryl hydrocarbon receptor (AhR) and have antiestrogenic effects in vitro (Wormke et al., 2003) which might contribute to the slow breast development in highly exposed girls. Estrogenic effects, however, have been reported as well through interaction of the dioxin–AhR–nuclear translocator complex with ERs (Ohtake et al., 2003). 5.10. Lead High lead levels in blood were reported to be associated to a delayed age at menarche and delayed pubic hair development in two studies that were based on the National Health and Nutrition Examination Survey in U.S. (NHANES III) (Selevan et al., 2003; Wu et al., 2003). Breast development was also found to be delayed in the study including 2186 girls (Selevan et al., 2003). 196 G. Rasier et al. / Molecular and Cellular Endocrinology 254–255 (2006) 187–201 5.11. Geographic trends High incidence of central precocious puberty was recently reported in a small region in Northwest Tuscany, Viareggio, but the cause for the difference to the neighbouring areas remains open (Massart et al., 2005). However, the regional differences may give clues to further exploration of potential causal agents. Viareggio area has many small navy yards and greenhouses that may be sources of pollutants contributing to the effect. 6. Concluding remarks During past decades, the birth rate has declined in a number of industrialized countries (Davis et al., 1998). The reason of this reduction is not really clear, but it has been suggested that chronic exposures to toxic environmental agents, that predominantly affect the reproductive system, could lead to this lower rate (Potashnik et al., 1984; Rogan et al., 1999; Mocarelli et al., 2000; Hama et al., 2001; Sakamoto et al., 2001). The time interval between exposure to such substances can be very long and early prenatal and postnatal life is probably a critical window for exposure. For instance, a 32% fall in probability of pregnancy was found in daughters of mothers with 10 g/l of p,p -DDT in blood drawn at the time of delivery, 30 years earlier (Cohn et al., 2003). Indeed, we are continuously exposed to a number of natural and artificial chemical substances which bioaccumulate in the environment. These substances, mostly showing estrogenic activity, potentially interfere with the endocrine system, altering the hormone actions through the ER (␣ and/or ) pathway (synthesis and/or receptor binding). While EDC effects on female reproduction have been a matter of concern for several decades, female pubertal development has emerged more recently as a possible endpoint. Current knowledge of exposure–outcome relationships in pubertal timing is limited to few epidemiological studies. In many of those studies, timing of pubertal stages and menarche were self-reported and the assessment of exposure indirect, both of which cause considerable variation to data. The size of the study populations varies also largely. High levels of DDE in serum of immigrant girls with central precocious puberty was found (Krstevska-Konstantinova et al., 2001) and a high perinatal exposure to DDE levels was also associated to early menarche in the so-called Michigan angler cohort (Vasiliu et al., 2004), whereas in the North Carolina Infant Feeding Study, no association was found between DDE exposure and pubertal timing (Gladen et al., 2000). A high perinatal exposure to PBB was associated to early menarche and pubic hair development, but not to timing of breast development (Blanck et al., 2000). Dioxins and PCBs do not seem to affect pubertal development in girls, but one study reported an association of PCBs to a delay in pubertal development in boys (Den Hond et al., 2002). Endosulfan exposure was also associated with slower pubertal development in boys (Saiyed et al., 2003) and lead exposure with delayed pubertal timing in girls (Selevan et al., 2003; Wu et al., 2003). The animal data tend to substantiate effects of early exposure to EDCs on HPG axis with alterations of sexual maturation and reproductive functions in female rodents. It has always been controversial to extrapolate from data that are obtained in laboratory animals in which the dose and time of chemical exposure do not always represent conditions that humans face in their habitat during a life time. However, we cannot ignore the increasing evidence coming from these studies when human populations are exposed to the same chemicals during developmental stages. When all instances of EDC exposure are taken together, both peripheral and central effects were observed. In most cases, advancement in the age at VO was reported though some EDCs such as genistein, RVT and lindane accounted for some delay. The advancement in age at VO suggests a peripheral effect occurring directly on vaginal epithelium, the acceleration being a sign of a premature estrogenic activity and the delay, an antiestrogenic effect. Uterine weight increase, which is known to be a marker of estrogenicity, was also commonly observed when studied after exposure to estrogenic EDCs. Since genistein as well as RVT can act as mixed agonists/antagonists at the ERs (Miodini et al., 1999; Bowers et al., 2000), a prominent antagonistic pathway is suggested by the delay. Little is known about the mechanism of action of HPTE, the active isomer of lindane, Cooper et al. (1989) suggesting an antiestrogenic effect. After an exposure to E2, the age at first estrus was advanced as noted for VO. This effect suggests a central stimulatory involvement, resulting from acceleration in hypothalamic maturation. Such an hypothesis was supported by the increase in GnRH pulse frequency seen after in vivo and in vitro E2 administration (Matagne et al., 2004). Irregular cyclicity followed by persistent estrus or diestrus, associated with subfertility or complete sterility was shown in most studies with all types of EDCs, indicating an additional disturbing impact on the hypothalamic functions. The interpretation of such findings is complex since it can involve disorders of the perinatally programmed central mechanism of ovulation that is highly sensitive to interactions at ERs and inhibitory effects disordering hypothalamic function later in life. The latter component is consistent with the direct action of coumestrol centrally to reduce the frequency of the hypothalamic GnRH pulse generator (McGarvey et al., 2001). In addition, Bowe et al. (2003) showed that ER was involved in the suppression of GnRH transcript expression by coumestrol in GnRH-secreting neuronal GT1-7 cells. Direct central stimulatory effects are consistent with some findings using the GT1-7 cell line, where E2 and A1221 directly stimulated GnRH gene expression, through interaction with specific receptors expressed in these cells. As effects of A1221 on GnRH gene expression were not blocked by ICI 182,780, it indicated that some but not all of its effects were mediated by the classical ER (␣ and/or ) pathway (Gore et al., 2002). TCDD appeared to stimulate premature gonadotrophin release in the gonadotrophin-primed immature rat by interacting with an E2-sensitive neural signal (Petroff et al., 2003). Nass et al. (1984) concluded that exposure to exogenous estrogen prior to puberty precipitates the decline in estrous cyclicity associated with the loss of gonadotrophin surge response presumably due to an alteration in hypothalamic GnRH release. Again evidence of both stimulatory and inhibitory central effects is provided by these observations. G. Rasier et al. / Molecular and Cellular Endocrinology 254–255 (2006) 187–201 Besides hypothalamic effects, EDC could have direct action at the pituitary gland level. It was shown that coumestrol inhibited pituitary LH pulses by reducing responsiveness to GnRH via an ER-mediated process (McGarvey et al., 2001). When EDC effects are considered, the exposure issue including age, dose and mixture effects is critical. The observations reviewed here deal with in vivo data which can be different from in vitro models commonly used to compare biopotency of EDCs. Except for DES which is known to be as or even more potent than E2, the dose-related potency ratio between E2 and other EDCs usually ranges between 1:1000 and 1:10,000. However, because differences in doses are usually associated with differences in age at treatment, duration and route of administration, comparisons are difficult. In utero and/or early postnatal administration causes generally more severe disturbances involving central effects whereas late postnatal exposure mainly cause an uterotrophic response and other peripheral disorders. Most authors reported that s.c. injections were more effective or required a lower dose to induce an effect than an oral gavage. Differences in absorption, metabolic activation and/or elimination of tested chemicals can occur following the exposure subcutaneously or orally (Klaassen and Eaton, 1991). A thorough assessment of effects of exposure to EDCs before, around and/or after birth is indispensable for a real understanding of the exposure–disorder relationships in the immature female animals and, by extension, in the young girls. We have also to remind that it is not the individual exposure to a single xenoestrogen but rather the cumulative exposure to multiple xenoestrogens that determines the intensity of the effects (Soto et al., 1994, 1997). Finally, disorders of female sexual development can be a relatively early manifestation of EDC effects that should be put in perspective as warning towards more severe and later consequences such as fertility disorders and neoplasia of estrogen-sensitive tissues. Acknowledgements This work has been supported by grants from the “Fonds de la Recherche Scientifique Médicale” (grant 3.4515.01), the Belgian Study Group for Paediatric Endocrinology and the European Commission (contract no. QLRT-2001-00269). References Ashby, J., Odum, J., Foster, J.R., 1997a. Activity of raloxifene in immature and ovariectomized rat uterotrophic assays. Regul. Toxicol. Pharmacol. 25, 226–231. Ashby, J., Tinwell, H., Lefevre, P.A., Odum, J., Paton, D., Millward, S.W., Tittensor, S., Brooks, A.N., 1997b. Normal sexual development of rats exposed to butyl benzyl phthalate from conception to weaning. Regul. Toxicol. Pharmacol. 26, 102–118. Ashby, J., Tinwell, H., 1998. Uterotrophic activity of bisphenol A in the immature rat. Environ. Health Perspect. 106, 719–720. Ashby, J., Odum, J., 2004. Gene expression changes in the immature rat uterus: effects of uterotrophic and subuterotrophic doses of bisphenol A. Toxicol. Sci. 82, 458–467. Atanassova, N., McKinnell, C., Turner, K.J., Walker, M., Fisher, J.S., Morley, M., Millar, M.R., Groome, M.P., Sharpe, R.M., 2000. Comparative effects of neonatal exposure of male rats to potent and weak (environmental) 197 estrogens on spermatogenesis at puberty and the relationship to adult testis size and fertility: evidence for stimulatory effects of low estrogens levels. Endocrinology 141, 3898–3907. Aubert, M.L., Begeot, M., Winiger, B.P., Morel, G., Sizonenko, P.C., Dubois, P.M., 1985. Ontogeny of hypothalamic luteinizing hormone-releasing hormone (GnRH) and pituitary GnRH receptors in fetal and neonatal rats. Endocrinology 116, 1565–1576. Baker, V.A., Hepburn, P.A., Kennedy, S.J., Jones, P.A., Lea, L.J., Sumpter, J.P., Ashby, J., 1999. Safety evaluation of phytosterol esters. I. Assessment of estrogenicity using a combination of in vivo and in vitro assays. Food Chem. Toxicol. 37, 13–22. Berkey, C.S., Gardner, J.D., Frazier, A.L., Colditz, G.A., 2000. Relation of childhood diet and body size to menarche and adolescent growth in girls. Am. J. Epidemiol. 152, 446–459. Bern, H.A., Mills, K.T., Jones, L.A., 1983. Critical period of neonatal estrogen exposure in occurrence of mammary gland abnormalities in adult mice. Proc. Soc. Exp. Biol. Med. 172, 239–242. Bicknell, R.J., Herbison, A.E., Sumpter, J.P., 1995. Estrogenic activity of an environmentally persistent alkylphenol in the reproductive tract but not the brain of rodents. J. Steroid Biochem. Mol. Biol. 54, 7–9. Blake, C.A., Ashiru, O.A., 1997. Disruption of rat estrous cyclicity by the environmental estrogen 4-tert-octylphenol. Proc. Soc. Exp. Biol. Med. 216, 446–451. Blake, C.A., Bookfor, F.R., 1997. Chronic administration of the environmental pollutant 4-tert-octylphenol to adult male rats interferes with the secretion of luteinizing hormone, follicle-stimulating hormone, prolactin and testosterone. Biol. Reprod. 57, 255–266. Blanck, H.M., Marcus, M., Tolbert, P.E., Rubin, C., Henderson, A.K., Hertzberg, V.S., Zhang, R.H., Cameron, L., 2000. Age at menarche and tanner stage in girls exposed in utero and postnatally to polybrominated biphenyl. Epidemiology 11, 641–647. Bolt, H.M., Kappas, H., Remmer, H., 1973. Studies on the metabolism of ethynylestradiol in vitro and in vivo: the significance of 2-hydroxylation and the formation of polar products. Xenobiotica 3, 773–785. Bolt, H.M., 1979. Metabolism of estrogens natural and synthetic. Pharmacol. Ther. 4, 155–181. Bourguignon, J.P., Franchimont, P., 1984. Age-related increase in episodic LHRH release from rat hypothalamus in vitro. Endocrinology 114, 1941–1943. Bowe, J., Li, X.F., Sugden, D., Katzenellenbogen, J.A., Katzenellenbogen, B.S., O’Byrne, K.T., 2003. The effects of the phytoestrogen and coumestrol on gonadotrophin-releasing hormone (GnRH) mRNA expression in GT1-7 GnRH neurones. J. Neuroendocrinol. 15, 105–108. Bowers, J.L., Tyulmenkov, V.V., Jernigan, S.C., Klinge, C.M., 2000. Resveratrol acts as a mixed agonist/antagonist for estrogen receptor ␣ and . Endocrinology 141, 3657–3667. Branham, W.S., Zehr, D.R., Chen, J.J., Sheehan, D.M., 1988. Uterine abnormalities in rats exposed neonatally to diethylstilbestrol, ethynylestradiol or clomiphene citrate. Toxicology 51, 201–212. Brock, J.W., Yoshimura, Y., Barr, J.R., 2001. Measurement of bisphenol A levels in human urine. J. Expos. Anal. Environ. Epidemiol. 11, 323–328. Bulger, W.H., Muccitelli, R.M., Kupfer, D., 1978a. Interactions of methoxychlor, methoxychlor base soluble contaminant and 2,2-bis(phydoxyphenyl)-1,1,1-trichloroethane with rat uterine estrogen receptor. J. Toxicol. Environ. Health 4, 881–893. Bulger, W.H., Muccitelli, R.M., Kupfer, D., 1978b. Interactions of chlorinated hydrocarbon pesticides with the 8S estrogen-binding protein in rat testes. Steroids 32, 165–177. Cagen, S.Z., Waechter Jr., J.M., Diamond, S.S., Breslin, W.J., Butala, J.H., Jekat, F.W., Joiner, R.L., Shiotsuka, R.N., Veenstra, G.E., Harris, L.R., 1999. Normal reproductive organ development in CF-1 mice following prenatal exposure to bisphenol A. Toxicol. Sci. 50, 36–44. Chiappa, S.A., Fink, G., 1977. Releasing factor and hormonal changes in the hypothalamic–pituitary–gonadotrophin and -adrenocorticotrophin systems before and after birth and puberty in male, female and androgenized female rats. J. Endocrinol. 72, 211–224. Clark, E.J., Norris, D.O., Jones, R.E., 1998. Interactions of gonadal steroids and pesticides (DDT and DDE) on gonadal duct in larval tiger 198 G. Rasier et al. / Molecular and Cellular Endocrinology 254–255 (2006) 187–201 salamanders Ambystoma tigrinum. Gen. Comp. Endocrinol. 109, 94– 105. Cohn, B.A., Cirillo, P.M., Wolff, M.S., Schwingl, P.J., Cohen, R.D., Sholtz, R.I., Ferrara, A., Christianson, R.E., van den Berg, B.J., Siiteri, P.K., 2003. DDT and DDE exposure in mothers and time to pregnancy in daughters. Lancet 361, 2205–2206. Colborn, T., vom Saal, F.S., Soto, A.M., 1993. Developmental effects of endocrine disrupting chemicals in wildlife and humans. Environ. Health Perspect. 101, 378–384. Colon, I., Caro, D., Bourdony, C.J., Rosario, O., 2000. Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. Environ. Health Perspect. 108, 895–900. Cooper, R.L., Chadwick, R.W., Rehnberg, G.L., Goldman, J.M., Booth, K.C., Hein, J.F., McElroy, W.K., 1989. Effects of lindane on hormonal control of reproductive function in the female rat. Toxicol. Appl. Pharmacol. 99, 384–394. Davis, D.L., Gottlieb, M.B., Stampnitzky, J.R., 1998. Reduced rate of male to female births in several industrial countries: a sentinel health indicator? JAMA 279, 1018–1023. Den Hond, E., Roels, H.A., Hoppenbrouwers, K., Nawrot, T., Thijs, L., Vandermeulen, C., Winneke, G., Vanderschueren, D., Staessen, J.A., 2002. Sexual maturation in relation to polychlorinated aromatic hydrocarbons: Sharpe and Skakkebaek’s hypothesis revisited. Environ. Health Perspect. 110, 771–776. DiPaolo, D., Jones, L.A., 2000. Neonatal estradiol exposure alters mouse mammary estrogen receptor alpha expression. Int. J. Oncol. 16, 935–941. Docke, F., Rohde, W., Lange, T., Geier, T., Dorner, G., 1981. Further studies on the hypothalamic desensitization to estrogen in immature female rats: evidence for a possible role in the control of puberty. Endocrinology 77, 1–12. Döhler, K.D., Coquelin, A., Davis, F., Hines, M., Shryne, J.E., Gorski, R.A., 1984. Pre- and postnatal influence of testosterone and diethylstilbestrol on differentiation of the sexually dimorphic nucleus of the preoptic area in male and female rats. Brain Res. 302, 291–295. Drouva, S.V., Gautron, J.P., Pattou, E., Laplante, E., Kordon, C., 1986. Effects of estradiol and progesterone on immunoreactive forms of hypothalamic luteinizing hormone-releasing hormone. Neuroendocrinology 43, 32–37. Edgren, R.A., Peterson, D.L., Jones, R.C., Nagra, C.L., Smith, H., Hughes, G.A., 1966. Biological effects of synthetic gonanes. Rec. Prog. Horm. Res. 22, 305–349. Ferguson, S.A., Scallet, A.C., Flynn, K.M., Meredith, J.M., Schwetz, B.A., 2000. Developmental neurotoxicity of endocrine disrupters: focus on estrogens. Neurotoxicology 21, 947–956. Ford, H., Ebling, F.J., 2000. Glutamatergic regulation of gonadotrophinreleasing hormone mRNA level during development in the mouse. J. Neuroendocrinol. 12, 1027–1033. Freyberger, A., Hartmann, E., Hildebrand, H., Krotlinger, F., 2001. Differential response of immature rat uterine tissue to ethynylestradiol and the red wine constituent resveratrol. Arch. Toxicol. 74, 709–715. Gallo, D., Cantelmo, F., Distefano, M., Ferlini, C., Zannoni, C., Riva, G.F., Morazzoni, P., Bombeardelli, E., Mancuso, S., Scambia, G., 1999. Reproductive effects of dietary soy in female Wistar rats. Food Chem. Toxicol. 37, 493–502. Gehm, B.D., McAndrews, J.M., Chien, P.Y., Jameson, J.L., 1997. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc. Natl. Acad. Sci. U.S.A. 94, 14138–14143. Gladen, B.C., Ragan, N.B., Rogan, W.J., 2000. Pubertal growth and development, and prenatal and lactational exposure to polychlorinated biphenyls and dichlorodiphenyldichloroethene. J. Pediatr. 136, 490–496. Gore, A.C., Wu, T.J., Rosenberg, J.J., Roberts, J.L., 1996. Gonadotrophinreleasing hormone and NMDA receptor gene expression and colocalization change during puberty in female rats. J. Neurosci. 16, 5281–5289. Gore, A.C., Roberts, J.L., Gibson, M.J., 1999. Mechanisms for the regulation of gonadotrophin-releasing hormone gene expression in the developing mouse. Endocrinology 140, 2280–2287. Gore, A.C., 2002. Organochlorine pesticides directly regulate gonadotrophinreleasing hormone gene expression and biosynthesis in the GT1-7 hypothalamic cell line. Mol. Cell. Endocrinol. 192, 157–170. Gore, A.C., Wu, T.J., Oung, T., Lee, J.B., Woller, M.J., 2002. A novel mechanism for endocrine-disrupting effects of polychlorinated biphenyls: direct effects on gonadotrophin-releasing hormone neurones. J. Neuroendocrinol. 14, 814–823. Gould, J.C., Leonard, L.S., Maness, S.C., Wagner, B.L., Conner, K., Zacharewski, T., Safe, S., McDonnell, D.P., Gaido, K.W., 1998. Bisphenol A interacts with the estrogen receptor ␣ in a distinct manner from estradiol. Mol. Cell. Endocrinol. 142, 203–214. Gray Jr., L.E., Ostby, J., Sigmon, R., Ferrell, J., Rehnberg, G., Linder, R., Cooper, R., Goldman, J., Laskey, J., 1988. The development of a protocol to assess reproductive effects of toxicants in the rat. Reprod. Toxicol. 2, 281–287. Gray Jr., L.E., Ostby, J., Ferrell, J., Rehnberg, G., Linder, R., Cooper, R., Goldman, J., Slott, V., Laskey, J., 1989. A dose-response analysis of methoxychlor-induced alterations of reproductive development and function in the rat. Fundam. Appl. Toxicol. 12, 92–108. Gray Jr., L.E., 1998. Tiered screening and testing strategy for xenoestrogens and antiandrogens. Toxicol. Lett. 102–103, 677–680. Gray Jr., L.E., Ostby, J., 1998. Effects of pesticides and toxic substances on behavioral and morphological reproductive development: endocrine versus nonendocrine mechanisms. Toxicol. Ind. Health 14, 159– 184. Grumbach, M.M., Styne, D.M., 2003. Puberty: ontogeny, neuroendocrinology, physiology and disorders. In: Wilson, J.D., Foster, D.W., Kronenberg, H.M., Larsen, P.R. (Eds.), William’s Textbook of Endocrinology. WB Saunders, Philadelphia, pp. 1509–1625. Guo, Y.L., Lambert, G.H., Hsu, C.C., Hsu, M.M., 2004. Yucheng: health effects of prenatal exposure to polychlorinated biphenyls and dibenzofurans. Int. Arch. Occup. Environ. Health 77, 153–158. Gutendorf, B., Westendorf, J., 2001. Comparison of an array of in vitro assays for the assessment of the estrogenic potential of natural and synthetic estrogens, phytoestrogens and xenoestrogens. Toxicology 166, 79–89. Halling, A., Forsberg, J.G., 1993. Acute and permanent growth effects in the mouse uterus after neonatal treatment with estrogens. Reprod. Toxicol. 7, 137–153. Hama, Y., Uematsu, M., Sakurai, Y., Kusano, S., 2001. Sex ratio in the offspring of male radiologists. Acad. Radiol. 8, 421–424. Haney, A.F., Newbold, R.R., McLachlan, J.A., 1984. Prenatal diethylstilbestrol exposure in the mouse: effects on ovarian histology and steroidogenesis in vitro. Biol. Reprod. 30, 471–478. Hany, J., Lilienthal, H., Sarasin, A., Roth-Harer, A., Fastabend, A., Dunemann, L., Lichtensteiger, W., Winneke, G., 1999. Developmental exposure of rats to a reconstituted PCB mixture or aroclor 1254: effects on organ weights, aromatase activity, sex hormone levels and sweet preference behavior. Toxicol. Appl. Pharmacol. 158, 231–243. Harris, G.C., Levine, J.E., 2003. Pubertal acceleration of pulsatile gonadotrophin-releasing hormone release in male rats as revealed by microdialysis. Endocrinology 144, 163–171. Herbst, A.L., Anderson, D., 1990. Clear cell adenocarcinoma of the vagina and cervix secondary to intrauterine exposure to diethylstilbestrol. Semin. Surg. Oncol. 6, 343–346. Hiroi, H., Tsutsumi, O., Momoeda, M., Takai, Y., Osuga, Y., Taketani, Y., 1999. Differential interactions of bisphenol A and 17-estradiol with estrogen receptor ␣ (ER␣) and ER. Endocr. J. 46, 773–778. Holmes, P., Rumsby, P., Harrison, P.T., 2004. Endocrine disrupters and menopausal health. J. Br. Menopause Soc. 10, 54–59. Hopert, A.C., Beyer, A., Frank, K., Strunck, E., Wunsche, W., Vollmer, G., 1998. Characterization of estrogenicity of phytoestrogens in an endometrial-derived experimental model. Environ. Health Perspect. 106, 581–586. Howdeshell, K.L., Hotchkiss, A.K., Thayer, K.A., Vandenbergh, J.G., vom Saal, F.S., 1999. Exposure to bisphenol A advances puberty. Nature 401, 763–764. Huseby, R.A., Thurlow, S., 1982. Effects of prenatal exposure of mice to “low-dose” diethylstilbestrol and the developmental adenomyosis associated with evidence of hyperprolactinemia. Am. J. Obstet. Gynecol. 144, 939–949. G. Rasier et al. / Molecular and Cellular Endocrinology 254–255 (2006) 187–201 Ikeda, Y., Nagai, A., Ikeda, M.A., Hayashi, S., 2001. Neonatal estrogen exposure inhibits steroidogenesis in the developing rat ovary. Dev. Dyn. 221, 443–453. Jefferson, W.N., Newbold, R.R., 2000. Potential endocrine-modulating effects of various phytoestrogens in the diet. Nutrition 16, 658–662. Jefferson, W.N., Padilla-Banks, E., Newbold, R.R., 2005. Adverse effects on female development and reproduction in CD-1 mice following neonatal exposure to the phytoestrogen genistein at environmentally relevant doses. Biol. Reprod. 73, 798–806. Kapoor, J.P., Metcalf, R.L., Nystrom, R.F., Sangha, G.K., 1970. Comparative metabolism of methoxychlor, methiochlor and DDT in mouse, insects and in a model ecosystem. J. Agric. Food Chem. 18, 1145–1152. Kato, H., Ota, T., Furuhashi, T., Ohta, Y., Iguchi, T., 2003. Changes in reproductive organs of female rats treated with bisphenol A during the neonatal period. Reprod. Toxicol. 17, 283–288. Kelce, W.R., Sone, C.R., Laws, S.C., Gray, L.E., Kemppainen, J.A., Wilson, E.A., 1995. Persistent DDT metabolite p,p -DDE is a potent androgen receptor antagonist. Nature 375, 581–585. Key, T., Reeves, G., 1994. Organochlorines in the environment and breast cancer. Br. Med. J. 308, 1520–1521. Kim, H.S., Shin, J.H., Moon, H.J., Kang, I.H., Kim, T.S., Kim, I.Y., Seok, J.H., Pyo, M.Y., Han, S.Y., 2002. Comparative estrogenic effects of pnonylphenol by 3-day uterotrophic assay and female pubertal onset assay. Reprod. Toxicol. 16, 259–268. Klaassen, C.D., Eaton, D.L., 1991. Principles of toxicology. In: Amdur, M.O., Doull, J., Klaassen, C.D. (Eds.), Casarett and Doull’s Toxicology, the Basic Science of Poisons. McGraw-Hill Inc., New York, pp. 12–49. Korach, K.S., Metzler, M., McLachlan, J.A., 1978. Estrogenic activity in vivo and in vitro of some diethylstilbestrol metabolites and analogs. Proc. Natl. Acad. Sci. U.S.A. 75, 468–471. Krishnan, A.V., Stathis, P., Permuth, S.F., Tokes, L., Feldman, D., 1993. Bisphenol A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 132, 2279–2286. Krstevska-Konstantinova, M., Charlier, C., Craen, M., Du Caju, M., Heinrichs, C., de Beaufort, C., Plomteux, G., Bourguignon, J.P., 2001. Sexual precocity after immigration from developing countries to Belgium: evidence of previous exposure to organochlorine pesticides. Hum. Reprod. 16, 1020–1026. Kubo, K., Arai, O., Omura, M., Watanabe, R., Ogata, R., Aou, S., 2003. Low-dose effects of bisphenol A on sexual differentiation of the brain and behavior in rats. Neurosci. Res. 45, 345–356. Kuhl, A.J., Manning, S., Brouwer, M., 2005. Brain aromatase in Japanese medaka (Oryzias latipes): molecular characterization and role in xenoestrogen-induced sex reversal. J. Steroid Biochem. Mol. Biol. 96, 67–77. Kwon, A., Stedman, D.B., Elswick, B.A., Cattley, R.C., Welsch, F., 2000. Pubertal development and reproductive functions of Crl: CDBR Sprague–Dawley rats exposed to bisphenol A during prenatal and postnatal development. Toxicol. Sci. 55, 399–406. Laws, S.C., Carey, S.A., Ferrell, J.M., Bodman, G.J., Cooper, R.L., 2000. Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats. Toxicol. Sci. 54, 154–167. Levine, J.E., 1997. New concepts of the neuroendocrine regulation of gonadotrophin surges in rats. Biol. Reprod. 56, 293–302. Levy, J.R., Faber, K.A., Ayyash, L., Hughes Jr., C.L., 1995. The effect of prenatal exposure to the phytoestrogen genistein on sexual differentiation in rats. Proc. Soc. Exp. Biol. Med. 208, 60–66. Li, X., Johnson, D.C., Rozman, K.K., 1995. Reproductive effects of 2,3,7,8tetrachlorodibenzo-p-dioxin (TCDD) in female rats: ovulation, hormonal regulation and possible mechanism(s). Toxicol. Appl. Pharmacol. 133, 321–327. Li, X., Johnson, D.C., Rozman, K.K., 1997. 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD) increases release of luteinizing hormone and folliclestimulating hormone from the pituitary of immature female rats in vivo and in vitro. Toxicol. Appl. Pharmacol. 142, 264–269. Markey, C.M., Luque, E.H., Munoz-de-Toro, M., Sonnenschein, C., Soto, A.M., 2001. In utero exposure to bisphenol A alters the development 199 and tissue organization of the mouse mammary gland. Biol. Reprod. 65, 1215–1223. Marshall, E., 1993. Search for a killer: focus shifts from fat to hormones. Science 259, 618–621. Martin, P.M., Horwitz, K.B., Ryan, D.S., McGuire, W.L., 1978. Phytoestrogen interaction with estrogen receptors in human breast cancer cells. Endocrinology 103, 1860–1897. Marty, M.S., Crissman, J.W., Carney, E.W., 1999. Evaluation of the EDSTAC female pubertal assay in CD rats using 17-estradiol, steroid biosynthesis inhibitors and a thyroid inhibitor. Toxicol. Sci. 52, 269–277. Massart, F., Seppia, P., Pardi, D., Lucchesi, S., Meossi, C., Gagliardi, L., Liguori, R., Fiore, L., Federico, G., Saggese, G., 2005. High incidence of central precocious puberty in a bounded geographic area of Northwest Tuscany: an estrogen disrupter epidemic? Gynecol. Endocrinol. 20, 92–98. Matagne, V., Rasier, G., Lebrethon, M.C., Gerard, A., Bourguignon, J.P., 2004. Estradiol stimulation of pulsatile gonadotrophin-releasing hormone secretion in vitro: correlation with perinatal exposure to sex steroids and induction of sexual precocity in vivo. Endocrinology 145, 2775–2783. McGarvey, C., Cates, P.A., Brooks, A., Swanson, I.A., Milligan, S.R., Coen, C.W., O’Byrne, K.T., 2001. Phytoestrogens and gonadotrophin-releasing hormone pulse generator activity and pituitary luteinizing hormone release in the rat. Endocrinology 142, 1202–1208. McKee, R.H., Toxicology Research Task Group, Phthalate Esters Panel American Chemistry Council, 2004. Phthalate exposure and early thelarche. Environ. Health Perspect. 112, 541–543. McLachlan, J.A., Newbold, R.R., Shah, H.C., Hogan, M.D., Dixon, R.L., 1982. Reduced fertility in female mice exposed transplacentally to diethylstilbestrol (DES). Fertil. Steril. 38, 364–371. McLachlan, J.A., Newbold, R.R., 1987. Estrogens and development. Environ. Health Perspect. 75, 25–27. Medlock, K.L., Branham, W.S., Sheehan, D.M., 1995. Effects of coumestrol and equol on the developing reproductive tract of the rat. Proc. Soc. Exp. Biol. Med. 208, 67–71. Merino, M.J., 1991. Vaginal cancer: the role of infectious and environmental factors. Am. J. Obstet. Gynecol. 165, 1255–1262. Miodini, P., Fioravanti, L., Di Fronzo, G., Cappelletti, V., 1999. The two phytoestrogens genistein and quercetin exert different effects on estrogen receptor function. Br. J. Cancer 80, 1150–1155. Mocarelli, P., Gerthoux, P.M., Ferrari, E., Patterson Jr., D.G., Kieszak, S.M., Brambilla, P., 2000. Paternal concentrations of dioxin and sex ratio of offspring. Lancet 355, 1858–1863. Mol, N.M., Sorensen, N., Weihe, P., Andersson, A.M., Jorgensen, N., Skakkebaek, N.E., Keiding, N., Grandjean, P., 2002. Spermaturia and serum hormone concentrations at the age of puberty in boys prenatally exposed to polychlorinated biphenyls. Eur. J. Endocrinol. 146, 357–363. Moore Jr., J.P., Wray, S., 2000. Luteinizing hormone-releasing hormone (LHRH) biosynthesis and secretion in embryonic LHRH. Endocrinology 141, 4486–4495. Mori, T., Bern, H.A., Mills, K.T., Young, P.N., 1976. Long-term effects of neonatal steroids exposure on mammary gland development and tumorigenesis in mice. J. Natl. Cancer Inst. 57, 1057–1062. Munoz-de-Toro, M., Markey, C.M., Wadia, P.R., Luque, E.H., Rubin, B.S., Sonnenschein, C., Soto, A.M., 2005. Perinatal exposure to bisphenol A alters peripubertal mammary gland development in mice. Endocrinology 146, 4147–4188. Naftolin, F., 1994. Brain aromatization of androgens. J. Reprod. Med. 39, 257–261. Nagao, T., Ohta, R., Marumo, H., Shindo, T., Yoshimura, S., Ono, H., 2000. Effect of butyl benzyl phthalate in Sprague–Dawley rats after gavage administeration: a two-generation reproductive study. Reprod. Toxicol. 14, 513–532. Nass, T.E., Matt, D.W., Judd, H.L., Lu, J.K.H., 1984. Prepubertal treatment with estrogen or testosterone precipitates the loss of regular estrous cyclicity and normal gonadotrophin secretion in adult female rats. Biol. Reprod. 31, 723–731. Nelson, K., Pavlik, E.J., van Nagell Jr., J.R., Hanson, M.B., Donaldson, E.S., Flanigan, R.C., 1984. Estrogenicity of coumestrol in the mouse: fluores- 200 G. Rasier et al. / Molecular and Cellular Endocrinology 254–255 (2006) 187–201 cence detection of interaction with estrogen receptors. Biochemistry 23, 2565–2572. Newbold, R.R., Bullock, B.L., McLachlan, J.A., 1983. Exposure to diethylstilbestrol during pregnancy permanent alters the ovary and oviduct. Biol. Reprod. 28, 735–744. Newbold, R.R., Hanson, R.B., Jefferson, W.N., Bullock, B.L., Haseman, J., McLachlan, J.A., 1998. Increased tumors but uncompromised fertility in the female descendants of mice exposed developmentally to diethylstilbestrol. Carcinogenesis 19, 1655–1663. Odum, J., Lefevre, P.A., Tittensor, S., Paton, D., Routledge, E.J., Beresford, N.A., Sumpter, J.P., Ashby, J., 1997. The rodent uterotrophic assay: critical protocol features, studies with nonylphenols and comparison with a yeast estrogenicity assay. Regul. Toxicol. Pharmacol. 25, 176–188. Ohtake, F., Takeyama, K.I., Matsumoto, T., Kitagawa, H., Yamamoto, Y., Nohara, K., Tohyama, C., Krust, A., Mimura, J., Chambon, P., Yanagisawa, J., Fujii-Kuriyama, Y., Kato, S., 2003. Modulation of estrogen receptor signalling by association with the activated dioxin receptor. Nature 423, 545–550. Ojeda, S.R., Urbanski, H.F., Katz, K.H., Costa, M.E., 1986. Activation of estradiol-positive feedback at puberty: estradiol sensitizes the LHRHreleasing system at two different biochemical steps. Neuroendocrinology 43, 259–265. Ojeda, S.R., Terasawa, E., 2002. Neuroendocrine regulation of puberty. Horm. Brain Behav. 75, 589–659. Palanza, P., Parmigiani, S., vom Saal, F.S., 2001. Effects of prenatal exposure to low doses of diethylstilbestrol, o,p -DDT and methoxychlor on postnatal growth and neurobehavioral development in male and female mice. Horm. Behav. 40, 252–265. Parent, A.S., Teilmann, G., Juul, A., Skakkebaek, N.E., Toppari, J., Bourguignon, J.P., 2003. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends and changes after migration. Endocr. Rev. 24, 668–693. Parent, A.S., Lebrethon, M.C., Gerard, A., Bourguignon, J.P., 2005. Factors accounting for perinatal occurrence of pulsatile gonadotrophin-releasing hormone secretion in vitro in rats. Biol. Reprod. 72, 143–149. Partsch, C.J., Sippel, W.G., 2001. Pathogenesis and epidemiology of precocious puberty. Effects of exogenous estrogens. Hum. Reprod. Update 7, 292–302. Petroff, B.K., Croutch, C.R., Hunter, D.M., Wierman, M.E., Gao, X., 2003. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) stimulates gonadotrophin secretion in the immature female Sprague–Dawley rat through a pentobarbital- and estradiol-sensitive mechanism but does not alter gonadotrophin-releasing hormone (GnRH) secretion by immortalized GnRH neurons in vitro. Biol. Reprod. 68, 2100–2106. Potashnik, G., Goldsmith, J., Insler, V., 1984. Dibromochloropropane-induced reduction of the sex ratio in man. Andrologia 16, 213–218. Ramirez, V.D., Sawyer, C.H., 1965. Advancement of puberty in the female rat by estrogen. Endocrinology 76, 1158–1168. Rasier, G., Matagne, V., Parent, A.S., Gerard, A., Lebrethon, M.C., Bourguignon, J.P., 2005. Estradiol and dichlorodiphenyltrichloroethane administration in infantile female rats: similar stimulation of gonadotrophinreleasing hormone secretion in vitro and sexual maturation in vivo through different receptor mechanisms. In: Proceedings of the 87th Annual Meeting of the Endocrine Society. San Diego: Endocrine Society, p. 190. Rogan, W.J., Gladen, B.J., Guo, Y.L.L., Hsu, C.C., 1999. Sex ratio after exposure to dioxin-like chemicals in Taiwan. Lancet 353, 206–207. Roy, D., Angelini, N.L., Belsham, D.D., 1999. Estrogen directly represses gonadotrophin-releasing hormone (GnRH) gene expression in estrogen receptor alpha (ER␣)- and ER-expressing GT1-7 GnRH neurons. Endocrinology 140, 5045–5053. Rubin, B.L., Murray, M.K., Damassa, D.A., King, J.C., Soto, A.M., 2001. Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity and plasma LH levels. Environ. Health Perspect. 109, 675–680. Saiyed, H., Dewan, A., Bhatnagar, V., Shenoy, U., Shenoy, R., Rajmohan, H., Patel, K., Kashyap, R., Kulkarni, P., Rajan, B., Lakkad, B., 2003. Effect of endosulfan on male reproductive development. Environ. Health Perspect. 111, 1958–1962. Sakamoto, M., Nakano, A., Akagi, H., 2001. Declining Minamata male birth ratio associated with increased male fetal death due to heavy methylmercury pollution. Environ. Res. 87, 92–98. Sakurai, K., Mori, C., 2000. Fetal exposure to endocrine disrupters. Nippon Rinsho 58, 2508–2513. Salazar, V., Castillo, C., Ariznavarreta, C., Campon, R., Tresguerres, J.A., 2004. Effect of oral intake of dibutyl phthalate on reproductive parameters of Long–Evans rats and prepubertal development of their offspring. Toxicology 205, 131–137. Schrager, S., Potter, B.E., 2004. Diethylstilbestrol exposure. Am. Fam. Physician 69, 2395–2400. Selevan, S.G., Rice, D.C., Hogan, K.A., Euling, S.Y., Pfahles-Hutchens, A., Bethel, J., 2003. Blood lead concentration and delayed puberty in girls. New Engl. J. Med. 348, 1527–1536. Sisk, C.L., Richardson, H.N., Chappell, P.E., Levine, J.E., 2001. In vivo gonadotrophin-releasing hormone secretion in female rats during peripubertal development and on proestrus. Endocrinology 142, 2929–2936. Soto, A.M., Chung, K.L., Sonnenschein, C., 1994. The pesticides endosulfan, toxaphene and dieldrin have estrogenic effects on human estrogensensitive cells. Environ. Health Perspect. 102, 380–383. Soto, A.M., Fernandez, M.F., Luizzi, M.F., Oles Karasko, A.S., Sonnenschein, C., 1997. Developing a marker of exposure to xenoestrogen mixtures in human serum. Environ. Health Perspect. 105, 647–654. Staessen, J.A., Nawrot, T., Hond, E.D., Thijs, L., Fagard, R., Hoppenbrouwers, K., Koppen, G., Nelen, V., Schoeters, G., Vanderschueren, D., Van Hecke, E., Verschaeve, L., Vlietinck, R., Roels, H.A., 2001. Renal function, cytogenetic measurements and sexual development in adolescents in relation to environmental pollutants: a feasibility study of biomarkers. Lancet 357, 1660–1669. Takeyoshi, M., Yamasaki, K., Sawaki, M., Nakai, M., Noda, S., Takatsuki, M., 2002. The efficacy of endocrine disruptor screening tests in detecting antiestrogenic effects downstream of receptor-ligand interactions. Toxicol. Lett. 126, 91–98. Tarttelin, M.F., Gorski, R.A., 1988. Postnatal influence of diethylstilbestrol on the differentiation of the sexually dimorphic nucleus in the rat is as effective as perinatal treatment. Brain Res. 456, 271–274. Terasawa, E., 2001. Luteinizing hormone-releasing hormone (LHRH) neurons: mechanism of pulsatile LHRH release. Vitam. Horm. 63, 91–129. Tomooka, Y., Bern, H.A., 1982. Growth of mouse mammary glands after neonatal sex hormone treatment. J. Natl. Cancer Inst. 69, 1347– 1352. Toppari, J., Larsen, J.C., Christiansen, P., Giwercman, A., Grandjean, P., Guillette Jr., L.G., Jegou, B., Jensen, T.K., Jouannet, P., Keiding, N., Leffers, H., McLachlan, J.A., Meyer, O., Muller, J., Rajpert-De meyts, E., Scheike, T., Sharpe, R., Sumpter, J., Skakkebaek, N.E., 1996. Male reproductive health and environmental xenoestrogens. Environ. Health Perspect. 104, 741–803. Toppari, J., Skakkebaek, N.E., 1998. Sexual differentiation and environmental endocrine disrupters. Bailliere’s Clin. Endocrinol. Metab. 12, 143–156. Toppari, J., 2002. Environmental endocrine disrupters and disorders of sexual differentiation. Semin. Reprod. Med. 20, 305–312. Vancutsem, P.M., Roessler, M.L., 1997. Neonatal treatment with tamoxifen causes immediate alterations of the sexually dimorphic nucleus of the preoptic area and medial preoptic area in male rats. Teratology 56, 220–228. Vasiliu, O., Muttinemi, J., Karmaus, W., 2004. In utero exposure to organochlorines and age at menarche. Hum. Reprod. 19, 1506–1512. Warner, M.R., 1976. Effect of various doses of estrogen to BALB/c Crgl neonatal female mice on mammary growth and branching at 5 weeks of age. Cell. Tissue Kinet. 9, 429–438. Warner, M., Samuels, S., Mocarelli, P., Gerthoux, P.M., Needham, L., Patterson Jr., D.G., Eskenazi, B., 2004. Serum dioxin concentrations and age at menarche. Environ. Health Perspect. 112, 1289–1292. Wetsel, W.C., Mellon, P.L., Weiner, R.I., Negro-Vilar, A., 1991. Metabolism of pro-luteinizing hormone-releasing hormone in immortalized hypothalamic neurons. Endocrinology 129, 1584–1595. Whitten, P.L., Naftolin, F., 1992. Effects of a phytoestrogen diet on estrogendependent reproductive processes in immature female rats. Steroids 57, 56–61. G. Rasier et al. / Molecular and Cellular Endocrinology 254–255 (2006) 187–201 Wormke, M., Stoner, M., Saville, B., Walker, K., Abdelrahim, M., Burghardt, R., Safe, S., 2003. The aryl hydrocarbon receptor mediates degradation of estrogen receptor alpha through activation of proteasomes. Mol. Cell. Biol. 23, 1843–1855. Wu, T., Buck, G.M., Mendola, P., 2003. Blood lead levels and sexual maturation in U.S. girls: The Third National Health and Nutrition 201 Examination Survey, 1988–1994. Environ. Health Perspect. 111, 737– 741. Zwain, I.H., Arroyo, A., Amato, P., Yen, S.S., 2002. A role for hypothalamic astrocytes in dehydroepiandrosterone and estradiol regulation of gonadotrophin-releasing hormone (GnRH) release by GnRH neurons. Neuroendocrinology 75, 375–383. BIOLOGY OF REPRODUCTION 77, 734–742 (2007) Published online before print 27 June 2007. DOI 10.1095/biolreprod.106.059303 Early Maturation of Gonadotropin-Releasing Hormone Secretion and Sexual Precocity after Exposure of Infant Female Rats to Estradiol or Dichlorodiphenyltrichloroethane1 Grégory Rasier, Anne-Simone Parent, Arlette Gérard, Marie-Christine Lebrethon, and Jean-Pierre Bourguignon2 Developmental Neuroendocrinology Unit, Centre for Cellular and Molecular Neurobiology, University of Liège, University Hospital, B-4000 Liège (Sart-Tilman), Belgium ABSTRACT INTRODUCTION An increase in the frequency of pulsatile gonadotropinreleasing hormone (GnRH) secretion in vitro and a reduction in LH response to GnRH in vivo characterize hypothalamicpituitary maturation before puberty in the female rat. In girls migrating for international adoption, sexual precocity is frequent and could implicate former exposure to the insecticide dichlorodiphenyltrichloroethane (DDT), since a long-lasting DDT derivative has been detected in the serum of such children. We aimed at studying the effects of early transient exposure to estradiol (E2) or DDT in vitro and in vivo in the infantile female rat. Using a static incubation system of hypothalamic explants from 15-day-old female rats, a concentration- and timedependent reduction in GnRH interpulse interval (IPI) was seen during incubation with E2 and DDT isomers. These effects were prevented by antagonists of alpha-amino-3-hydroxy-5-methylisoxazole-4 propionic acid (AMPA)/kainate receptors and estrogen receptor. Also, o,p 0 -DDT effects were prevented by an antagonist of the aryl hydrocarbon orphan dioxin receptor (AHR). After subcutaneous injections of E2 or o,p 0 -DDT between Postnatal Days (PNDs) 6 and 10, a decreased GnRH IPI was observed on PND 15 as an ex vivo effect. After DDT administration, serum LH levels in response to GnRH were not different from controls on PND 15, whereas they tended to be lower on PND 22. Subsequently, early vaginal opening (VO) and first estrus were observed together with a premature age-related decrease in LH response to GnRH. After prolonged exposure to E2 between PNDs 6 and 40, VO occurred at an earlier age, but first estrus was delayed. We conclude that a transient exposure to E2 or o,p 0 -DDT in early postnatal life is followed by early maturation of pulsatile GnRH secretion and, subsequently, early developmental reduction of LH response to GnRH that are possible mechanisms of the subsequent sexual precocity. The early maturation of pulsatile GnRH secretion could involve effects mediated through estrogen receptor and/or AHR as well as AMPA/kainate subtype of glutamate receptors. During the past decade, precocious puberty (PP) was reported to occur frequently in foreign girls after migration for adoption in different countries of Western Europe. Among the possible pathophysiologic mechanisms, we have hypothesized that migration could result in withdrawal from exposure to estrogenic endocrine-disrupting chemicals (EDCs) in the home country and cause sexual precocity to occur following early hypothalamic maturation caused by the EDCs [1, 2]. Those environmental substances are known to interact with the reproductive system in a harmful manner [3, 4]. The involvement of EDCs in sexual precocity in migrating girls was suggested based on the detection of p,p 0 -dichlorodiphenyldichloroethene (p,p 0 -DDE) in the serum of those patients [1]. With a half-life of several decades, p,p 0 -DDE is a persistent derivative of the insecticide dichlorodiphenyltrichloroethane (DDT), which has been banned in the United States of America and Western European countries since the late 1960s [5, 6] but is still used extensively in developing countries [2]. This EDC is known to act as an estrogen receptor (ER) agonist and/or androgen receptor antagonist, both in vitro and in vivo [7, 8]. In the above situation, because p,p 0 -DDE levels were related directly to the length of stay in the country of origin and inversely to time since immigration [2], it was thought to be a marker of previous exposure to DDT during early life. In immature animals, direct effects on peripheral tissues, such as the vaginal epithelium, were reported after exposure to estradiol (E2) or estrogenic EDCs and were consistent with peripheral sexual precocity [7–9]. In 1971, Heinrichs et al. reported that administration of 1 mg o,p 0 -DDT in neonatal female rats on Postnatal Days (PNDs) 2–4 resulted in earlier vaginal opening (VO) and first estrus and delayed anovulatory syndrome [10]. They hypothesized that exposure to DDT in early life could cause premature hypothalamic-pituitary maturation and disturb the hypothalamic control of ovulation through unknown mechanisms. Since the o,p 0 -isomer of DDT had estrogenic uterotrophic properties [11], the question arose as to whether central PP could coexist or follow peripheral PP after exposure to DDT [2, 9]. A hypothalamic effect of estrogenic substances in the female individual was supported by our previous observation that E2 preferentially stimulated gonadotropin-releasing hormone (GnRH) pulse frequency in the immature female rat hypothalamus in vitro through a mechanism dependent on the perinatal sexual differentiation. In addition, a single massive dose of E2 given on PND 10 caused early maturation of pulsatile GnRH secretion, with early VO and first estrus subsequently [12]. The aim of the present study was to investigate, both in vitro and in vivo, the effects of an early transient exposure of the immature female rat hypothalamus and pituitary gland to DDT in comparison with E2 and the mechanisms involved in such effects. Two environment, estradiol, gonadotropin-releasing hormone, hypothalamus, puberty 1 Supported by the European Commission (EDEN project, contract QLRT-2001-00269), the Léon Frédéricq Foundation, the Belgian Study Group for Pediatric Endocrinology, and grants 3.4515.01 and 3.4573.05 from the National Belgian Fund for Scientific Research. 2 Correspondence: Jean-Pierre Bourguignon, Division of Pediatric Endocrinology and Adolescent Medicine, University Hospital, B-4000 Liège (Sart-Tilman), Belgium. FAX: 32 4 366 72 46; e-mail: [email protected] Received: 5 December 2006. First decision: 6 January 2007. Accepted: 26 June 2007. Ó 2007 by the Society for the Study of Reproduction, Inc. ISSN: 0006-3363. http://www.biolreprod.org 734 735 PUBERTY AFTER EARLY EXPOSURE TO DDT FIG. 1. Experimental design to study in vivo the effects of E2 or o,p 0 -DDT treatment started in 6-day-old female rats as daily s.c. injections and maintained for 5, 10, or 35 days. The procedure is represented in relation to age with reference to the developmental reduction in GnRH IPI observed in vitro (n ¼ 6). The average ages at VO and first estrus are also represented. particular endpoints were chosen based on developmental characteristics: the frequency of pulsatile GnRH secretion by hypothalamic explants in vitro that shows a prepubertal acceleration between PNDs 10 and 25, as illustrated in Figure 1 [13, 14], and the LH secretory response to a synthetic GnRH administration in vivo that shows a prepubertal reduction until PND 36 [15, 16]. GnRH Stimulation Test and LH Assay Infantile female Wistar rats were purchased from the University of Liège. They were housed in standardized conditions with lactating dams (228C, lights on from 0630 to 1830 h, food and water ad libitum). Each litter contained 5–10 pups. The day of birth was considered PND 1. The weaning occurred on PND 21. All experiments were carried out with the approval of the Belgian Ministry of Agriculture and the Ethical Committee at the University of Liège. At PNDs 15 and 22, and at VO and first estrus, serum LH levels were measured in basal conditions (s.c. injection of vehicle or o,p 0 -DDT) and 30 min after stimulation through s.c. injection of 1 lg/kg GnRH. These conditions were used after testing different time points (15, 30, and 45 min) following GnRH at different ages (15 and 20 days and at VO) and were consistent with the conditions reported by others [16, 20]. After 2 h of clotting at room temperature, trunk blood collected from the killed animals was centrifuged (5 min at 2000 3 g). The serum was collected and stored at 208C until assayed. Serum LH levels were determined in duplicate in a volume of 100 ll using a double-antibody method and radioimmunoassay kits kindly supplied by the National Institutes of Health (Dr. A.F. Parlow, National Institute of Diabetes and Digestive & Kidney Diseases, National Hormone and Peptide Program, Torrance, CA). Rat LH-I-8 was labeled with 125I by the chloramine-T method. The hormone concentrations were expressed using the reference preparation rLH-RP-3 as a standard. The intraassay and interassay coefficients of variation were 7% and 9%, respectively. The sensitivity limit of the assay was 5 ng/ml. Hypothalamic Explant Incubation and GnRH Assay Reagents The developmental variations in GnRH pulse frequency in vitro were studied using hypothalamic explants obtained in female rats on PNDs 1, 5, 10, 15, 20, 25, 30, and 50. For the in vitro study of hypothalamic explants, 15-dayold animals were used. After decapitation, the hypothalamus was rapidly dissected. The limits to obtain the retrochiasmatic hypothalamus were the caudal margin of the optic chiasm, the caudal margin of the mammillary bodies, and the lateral hypothalamic sulci [14]. Each explant was transferred into an individual chamber in a static incubator, as described in detail previously [12, 14]. Each chamber contained 500 ll minimum essential medium (MEM) supplemented with glucose, magnesium, glycine, and bacitracin to achieve final concentrations of 25 3 103, 103, 108, and 2 3 105 M, respectively. The explants were incubated in an atmosphere of 95% O2/5% CO2 for a total period varying between 4 and 6 h. The incubation medium was collected and renewed every 7.5 min and was kept frozen until assayed. The GnRH release in the incubation medium of hypothalamic explants was measured in duplicate using a radioimmunoassay method with intraassay and interassay coefficients of variation of 14% and 18%, respectively [17, 18]. The highly specific CR11-B81 anti-GnRH antiserum (final dilution 1:80 000) was kindly provided by Dr. V. D. Ramirez (Urbana, IL) [19]. The data below the limit of detection (5 pg/7.5-min fraction) were assigned that value. The MEM was purchased from Life Technologies Invitrogen Corp. (Merelbeke, Belgium). E2 (17b-estradiol or 3,17b-dihydroxy-1,3,5(10)-estratriene); the two DDT isomers, o,p 0 -DDT (2,4 0 -DDT) and p,p 0 -DDT (4,4’DDT); and p,p 0 -DDE (4,4 0 -DDE) were purchased from Sigma-Aldrich (Bornem, Belgium). P,p 0 -DDT represents approximately 80% of the insecticide still commonly used in developing countries. O,p 0 -DDT is an equally active isomer of the insecticide that accounts for 15%–20% of technical grade DDT. In endocrine studies, o,p 0 -DDT has been particularly studied due to its prominent estrogenic property and relatively less toxic activity. P,p 0 -DDE is a long-lasting derivative of p,p 0 -DDT, with a half-life of several years. The aamino-3-hydroxy-5-methylisoxazole-4 propionic acid (AMPA)/kainate subtype of glutamate receptor antagonist DNQX (6,7-dinitroquinoxaline-2,3-dione) and the ER antagonist ICI 182 780 (7a,17b-[9[(4,4,5,5,5-pentafluoropentyl)sulfinyl]nonyl]-1,3,5(10)-estratriene-3,17b-diol) were purchased from Tocris Fisher Bioblock Scientific (Illkirch, France), whereas the aryl hydrocarbon orphan dioxin receptor (AHR) antagonist a-naphtoflavone (7,8-benzoflavone) was purchased from Sigma-Aldrich. In all experiments, the steroid and insecticides were dissolved initially in absolute ethanol (Labonord, Templenars, Belgium) and, subsequently, in the incubation medium or sesame oil (Calbiochem VWR International, Leuven, Belgium) for in vitro or in vivo studies, respectively, to MATERIALS AND METHODS Animals 736 RASIER ET AL. serum LH levels. When the treatment period was PNDs 6–40, there were 10 rats followed in each condition to study VO and estrous cyclicity. Statistical Analysis FIG. 2. Effects of E2, DDT isomers, and p,p 0 -DDE in vitro on the frequency of pulsatile GnRH secretion from hypothalamic explants obtained in 15-day-old female rats. The data are calculated in relation to time (two or three consecutive 2-h periods) of incubation in vitro. a: P , 0.05 versus control; b: P , 0.05 versus data obtained during the initial 2-h period. achieve a final ethanol concentration of 0.01% or 1%. The antagonists were directly diluted in the incubation medium. Study Protocols In vitro experiments. The in vitro effects of E2 or DDT on the frequency of pulsatile GnRH secretion were studied. The compounds (steroid, DDT isomers, and antagonists) were used for a whole 4- or 6-h experimental incubation period. A concentration-response study was carried out with explants incubated with 109 to 107 M of E2 and 106 to 104 M of o,p 0 -DDT, p,p 0 -DDT, or p,p 0 DDE. The effects of antagonists were studied in the presence of maximal effective concentrations of E2 and o,p 0 -DDT. Those antagonists were chosen because they were shown to prevent E2 effects on GnRH secretion in our hypothalamic explant conditions [12, 21], and it was our hypothesis that DDT effects, if any, could be mediated through mechanisms similar to E2 effects. The antagonist DNQX (106 M) was used to study the involvement of the AMPA/kainate subtype of glutamate receptors. The implication of ER was studied using the antagonist ICI 182 780 (107 M). To investigate the implication of AHR, the antagonist a-naphtoflavone (107 M) was used. The concentration of these three antagonists was selected based on previous data from our laboratory and other studies [12, 17, 21–23]. It was shown previously that when used alone, the AMPA/kainate subtype of glutamate receptor and ER antagonists did not affect pulsatile GnRH secretion [12], and the absence of effects of the different antagonists when used alone was double checked in this study. In vivo experiments. The procedures are schematically summarized in Figure 1. The animals received a daily s.c. administration of steroid or insecticide for 5, 10, or 35 days (E2: 0.01, 0.1, or 1 mg/kg/day for PNDs 6–10 and 0.01 mg/kg/day for PNDs 6–15 and PND 6–40; o,p 0 -DDT: 10 or 100 mg/ kg/day for PNDs 6–10 and 10 mg/kg/day for PNDs 6–15). The dose of E2 and o,p 0 -DDT was adjusted for increasing body weight of rats. The chemicals dissolved in absolute ethanol were diluted in 50 ll sesame oil for s.c. injection, as described in other studies [24, 25]. When the treatment period was PNDs 6– 10, 20 rats were studied in each treated group in comparison with 20 controls injected with vehicle alone. On PND 15, 10 rats from each group were killed to study the pulsatile GnRH secretion in vitro and serum LH levels. In each group, the 10 remaining animals were then examined daily for imperforation of the vaginal membrane to determine age at VO. Thereafter, vaginal smears were taken every day in the afternoon until PND 60. Slides of vaginal smears were colored using the Papanicolaou method to detect the occurrence of estrous cyclicity and to follow cycling. The age at first estrus was considered when vaginal smears contained primary cornified cells after the first proestrous phase, which is characterized by both stratified and cornified cells [26]. In subsequent experiments to study LH response to GnRH on PNDs 15 and 22, and at the time of VO and first estrus, seven animals were killed in each group at each age. When the treatment period was PNDs 6–15, there were five rats in each group that were killed on PND 15 to study the GnRH pulse frequency and When pulsatile GnRH secretion was studied, the peaks were detected using the PULSAR program for PC [27]. The cutoff criteria for peak detection were determined empirically and were G1 ¼ 2.5 and G2 ¼ 2.0. Peak splitting parameter was set at 2.7, and intraassay coefficient of variation was used as B coefficient [28]. The GnRH interpulse interval (IPI) was calculated as the time interval between two consecutive peaks. The IPI was calculated during different time periods of incubation (1–2 h and 3–4 h or 5–6 h). Depending on the normal or nonnormal distribution of IPI data in the different study periods, comparisons were made using the paired Student t-test with P , 0.05 as the threshold for significance (GraphPad Prism software for PC) or the Wilcoxon matched pairs test, respectively. In several instances, all the explants in a group showed a similar IPI value. In this case, SD was null and could not be represented. When comparisons were made between steroid and/or insecticide effects on LH levels and age at VO or first estrus in different conditions, raw data were pooled and analyzed by the one-way ANOVA test when normally distributed, followed by a multiple-comparison Newman-Keuls post-hoc test when the threshold for significance of differences (P , 0.05) was reached. When data were not normally distributed, the Kruskal-Wallis test was used, followed by a multiple-comparison Dunn post-hoc test. For the experiment run PNDs 6–40, an unpaired t-test was employed. All results are expressed as mean 6 SD. RESULTS In Vitro Treatments In control conditions of hypothalamic explant incubation in vitro (Fig. 1), the GnRH IPI showed a reduction between PNDs 10 and 25, confirming our data in the male [13]. When hypothalamic explants obtained at 15 days were incubated in control conditions (Fig. 2), the GnRH IPI did not change with time (1–2 h: 60.4 6 1.7 min; 3–4 h: 59.6 6 1.8 min; and 5–6 h: 60.0 6 0.0 min). During a 4-h continuous incubation with 107 M of E2, the GnRH IPI was reduced significantly after 1– 2 h (49.0 6 3.9 min) and further after 3–4 h (45.4 6 1.7 min). This effect was dependent on E2 concentration and incubation time: with 108 M E2, the GnRH IPI was unchanged after 1–2 h and decreased significantly after 3–4 h; with 109 M E2, a significant reduction occurred after 5–6 h only (52.5 6 0.0 min). The two active isomers of DDT also caused a concentration- and time-dependent reduction in GnRH IPI that was significant after 3–4 h using 105 M of both isomers (o,p 0 DDT: 50.4 6 5.7 min; p,p 0 -DDT: 52.5 6 0.0 min). At a 104 M concentration, both isomers resulted in an earlier effect that was also greater after 3–4 h (o,p 0 -DDT: 45.0 6 0.0 min; p,p 0 DDT: 52.5 6 0.0 min). When used at 106 M, p,p 0 -DDT had no effect during a 6-h incubation, and o,p 0 -DDT showed a significant effect only after 5–6 h of incubation (52.5 6 0.0 min). No effect could be obtained using p,p 0 -DDE at similar concentrations. The significant reduction of GnRH IPI caused by 107 M E2 or 104 M o,p 0 -DDT after 3–4 h of incubation in vitro (Fig. 3A) was totally prevented when the AMPA/kainate subtype of glutamate receptors was antagonized by coincubation with DNQX (Fig. 3B). Likewise, the effects of E2 and o,p 0 -DDT were totally prevented in the presence of the ER antagonist ICI 182 780 (Fig. 3C). When a-naphtoflavone was used to antagonize the AHR, the significant decrease in GnRH IPI caused by o,p 0 -DDT was not observed any more, whereas the E2 effect was attenuated but remained significant (Fig. 3D). In Vivo Treatments As shown in Figure 4A, after 5 days of treatment with 0.01, 0.1, and 1 mg/kg E2 (PNDs 6–10), the age at VO (controls: PUBERTY AFTER EARLY EXPOSURE TO DDT 737 FIG. 3. Effects of 106 M DNQX, an antagonist of the AMPA/kainate subtype of glutamate receptors (B), 107 M of ICI 182 780, an ER antagonist (C), and 107 M a-naphtoflavone, an AHR antagonist (D) on the GnRH IPI during incubation of hypothalamic explants obtained in 15-day-old female rats in the presence of 107 M E2 or 104 M o,p 0 -DDT (A) in vitro. A representative profile of pulsatile GnRH secretion is shown in each condition, and the mean (6 SD) IPI observed during 3–4 h of incubation are given. *P , 0.05 treatment versus control conditions. FIG. 4. Effects of E2 or o,p 0 -DDT injected s.c. in female rats for PNDs 6–10 or PNDs 6–40 on the ages at VO and first estrus (A) and the interval between VO and first estrus (B). *P , 0.05 versus vehicle (sesame oil). 738 RASIER ET AL. TABLE 1. Mean 6 SD (n ¼ 10) of estrous cycle length (interval between two consecutive estrus) observed until PND 60. Treatment PND 6–10 Vehicle E2 o,p’-DDT PND 6–40 Vehicle E2 Dose (mg/kg) — 0.01 0.10 1.00 10.00 100.00 — 0.01 Estrous cycle length (days) 4.7 5.2 5.5 4.6 5.3 5.5 6 6 6 6 6 6 1.4 1.6 1.8 1.5 2.0 1.4 4.8 6 1.2 4.9 6 1.8 30.1 6 0.6 days) was significantly earlier (23.0 6 0.7, 22.7 6 1.3, and 24.6 6 0.5 days, respectively). The VO was also earlier after 10 and 100 mg/kg o,p 0 -DDT (22.6 6 0.5 and 24.6 6 0.7 days, respectively). The first estrus was observed on PND 31.9 6 0.7 in controls and occurred significantly earlier after 0.01 and 0.1 mg/kg of E2 (27.2 6 0.7 and 27.5 6 1.1 days), as well as after 10 mg/kg o,p 0 -DDT (26.4 6 1.5 days). After 1 mg/kg E2 or 100 mg/kg o,p 0 -DDT, the age at first estrus did not change. When the time interval between VO and first estrus (Fig. 4B) was calculated (controls: 1.8 6 0.9 days), a significant dose-dependent increase was observed after 0.1 and 1 mg/kg E2 or 100 mg/kg o,p 0 -DDT. No differences in estrus cycle length were observed until PND 60 (Table 1). As shown in Figure 5A, after five daily s.c. injections of 0.01, 0.1, and 1 mg/kg E2 (PNDs 6–10), the GnRH IPI studied ex vivo on PND 15 (controls: 60.0 6 0.0 min) was significantly reduced (54.4 6 3.3, 52.5 6 0.0, and 47.0 6 3.4 min, respectively). A reduction of GnRH IPI was also seen after treatment with 10 and 100 mg/kg/day o,p 0 -DDT, which was only significant with 100 mg/kg (55.0 6 3.6 min). When 0.01 mg/kg E2 or 10 mg/kg o,p 0 -DDT was administered for a FIG. 5. Effects of E2 or o,p 0 -DDT injected s.c. in female rats for PNDs 6–10 or PNDs 6–15 on the GnRH IPI (A) and serum LH concentrations (B) studied ex vivo at 15 days of age. *P , 0.05 versus vehicle (sesame oil). FIG. 6. Effects of treatment of female rats with o,p 0 -DDT (10 mg/kg/day) or sesame oil for PNDs 6–10 on serum LH levels studied 30 min after subcutaneous injection of 1 lg/kg GnRH at four age points: PND 15, PND 22, the day of VO, and the day of first estrus. The data are mean 6 SD of LH levels and age in seven rats studied in each group. *P , 0.05 versus vehicle (sesame oil). longer period of 10 days (PNDs 6–15), the GnRH IPI ex vivo was significantly reduced on PND 15 as well. As shown in Figure 5B, the serum LH level on PND 15 (controls: 41.1 6 19.9 ng/ml) was significantly decreased after 0.01, 0.1, and 1 mg/kg E2 between PNDs 6 and 10 (18.9 6 12.7, 23.7 6 13.8, and 9.7 6 3.0 ng/ml, respectively) and after 10 and 100 mg/kg o,p 0 -DDT (22.7 6 18.5 and 15.7 6 6.0 ng/ ml, respectively). However, the serum LH level also decreased with age after sesame oil (control) administration (Fig. 6): 48.2 6 46.7 ng/ml on PND 15, 25.8 6 19.3 on PND 22, 16.5 6 13.7 on PND 30.6 6 1.5 (at VO), and 10.5 6 7.3 on PND 35.0 PUBERTY AFTER EARLY EXPOSURE TO DDT 6 1.2 (at first estrus). When the LH response to GnRH was studied after vehicle or 10 mg/kg o,p 0 -DDT given for PNDs 6– 10, the LH response was not affected on PND 15 and showed some but not significant reduction on PND 22, whereas it dropped significantly in the next days, at the time of early VO and first estrus. An extended period of daily s.c. administration of 0.01 mg/ kg E2 for PNDs 6–40 (Fig. 4A) caused a significantly earlier age at VO (22.1 6 1.0 vs. 31.8 6 1.0 days in controls), whereas the age at first estrus was significantly delayed (47.1 6 0.8 vs. 35.4 6 1.7 days in controls), and the interval between VO and first estrus was markedly increased (20.6 6 1.2 vs. 3.6 6 2.2 days in controls). The first estrus was observed after a permanent estrus lasting until a few days after the end of treatment. Then, no differences in estrous cycle length were observed until PND 60 (Table 1). After daily s.c. administration of 10 mg/kg o,p 0 -DDT for PNDs 6–40, the animals showed altered health status with reduced activity and feeding. On PND 40, their weight was significantly decreased to 111.3 6 8.3 g (130.0 6 11.5 g after E2 and 149.0 6 9.9 g in controls). In such conditions, it was no longer possible to separate direct o,p 0 -DDT effects on sexual maturation and reproduction from indirect effects through disordered nutritional status. DISCUSSION The hypothalamic explant paradigm used in this study provided an opportunity to observe pulsatile GnRH secretion in vitro as the result of GnRH neuron function in its original surrounding neuronoglial apparatus, which regulates GnRH secretion [29]. Moreover, the developmental changes in frequency of pulsatile GnRH secretion retained in this model [13] made possible the study of interaction with maturational processes, although the critical age period for the developmental increase in GnRH pulse frequency was earlier in vitro [14] than in vivo [30, 31]. Such a difference could involve suppression of inhibitory extrahypothalamic inputs when explants are deafferented from the rest of the brain. However, the critical period of the second and third postnatal weeks in our conditions is consistent with neuroendocrine maturation preceding the peripheral changes of sexual maturation (VO, testicular growth). Since we incubated retrochiasmatic hypothalami containing prominently axons and terminals of GnRHsecreting neurons [32], we tend to interpret our observations as the effects of presynaptic regulation by the surrounding neurons and glial cells. Other in vitro paradigms involving GnRH neurons, such as GnRH-secreting neuronal cell lines [33–35], primary cultures of hypothalamic neurons [36–38], or hypothalamic slices from transgenic mice carrying reporter genes linked to the GnRH promoter [39] could enable one to study directly the regulatory mechanisms at the GnRH neuron level. The present study was designed to test experimentally the hypothesis that early and transient exposure to pesticide, as seen in internationally adopted children, could influence hypothalamic-pituitary maturation and account for some central mechanism in the sexual precocity occurring frequently in such conditions. Since p,p 0 -DDE, which was detected in the serum of those children, was thought to result from previous exposure to DDT, this EDC was used for in vivo treatment. After we observed that o,p 0 -DDT and p,p 0 -DDT were almost equally effective on GnRH pulse frequency in vitro, the o,p 0 DDT isomer was preferred for in vivo investigations based on its greater estrogenicity and lower toxicity than p,p 0 -DDT. In addition, o,p 0 -DDT was the isomer used in former studies on 739 the neuroendocrine control of reproduction [10, 11, 40–42]. The doses that we used for in vivo studies and the E2:o,p 0 -DDT concentration ratio were based on our in vitro data reported in the present study and were comparable with those used in other studies in rodents [43, 44]. The 10 and 100 mg/kg doses were in the same range as the amounts given by others either neonatally [10] or around the time of weaning [11]. After early postnatal administration, lower doses appeared to have no effects on age at VO and gonadotropin secretion [41]. It was not possible in this study to measure the concentrations of DDT isomers and derivatives in serum and tissues. The quantitative relevance of our conditions of exposure to DDT when compared to the exposure of migrating girls was difficult to assess, since the only available information was p,p 0 -DDE concentrations measured in serum several years later. After early DDT treatment in neonatal rats for 3 days, p,p 0 -DDE measured in adipose tissue 4–5 mo later was not different from controls, suggesting clearance of the insecticide and its residues after that long period [10]. After 7 days of daily oral intake of p,p 0 -DDT in a daily dose equivalent to 106 mg/kg in 5-wk-old rats, serum p,p 0 -DDE levels attained a mean level of 0.66 mg/l [45]. Such a serum concentration was about 20 times higher than the serum concentrations found in migrating children [1]. We, however, observed significant neuroendocrine effects using a 10-times-lower DDT dose that would presumably result in lower serum DDT levels. Further comparison would require measurement of the different DDT isomers and residues at different time points after stopping DDT treatment in the animals. The interpretation of doses and exposure is even more complex, since migrating children are likely to be exposed to various EDCs both in the original and foster countries. It has been reported that when chemicals are used in mixtures, combination effect could require lower concentrations than expected based on simply additive effects [46]. Moreover, when animals undergo low-dose exposure, the dose-effect relationship is not linear with comparatively greater effects of low versus high doses. Although these aspects have not been investigated in the present study, they could be important for the pathophysiologic relevance of our findings. The age window of PNDs 6–10 could be consistent with early postnatal period in human infants. A 5-day period of treatment was relatively short for the lifespan but significant with respect to the short time period between birth and sexual maturation in the rat. The use of female rats aged 15 days to study GnRH IPI was based on our previous data showing that GnRH secretion in vitro was maximally affected by E2 in such conditions [12]. With hypothalamic explants from younger females (5 days), GnRH secretion was also found to be responsive to E2, but such age falls in the critical window of the brain sexual differentiation, causing possible interferences with programming of estrus cyclicity. This conclusion was drawn by Heinrichs et al., who found early VO and delayed persistent estrus to occur after DDT treatment for PNDs 2–4 [10]. Discrepant observations were made when o,p 0 -DDT treatment was started at 3 wk of age for several weeks: Gellert et al. found VO to occur earlier [11], whereas Wrenn et al. found no change in age at VO that was hastened only when treatment was given before the age of 3 wk [40]. In the present study, treatment during the second week of postnatal life was a compromise to possibly affect sexual maturation without interfering with the sexually differentiated mechanism of ovulation. However, such interferences probably did occur using the highest E2 and DDT concentrations, since they did not result in early first estrus as opposed to lower doses. Alternatively, toxic effects could have occurred, although the nonsignificantly affected growth in those short treatment 740 RASIER ET AL. conditions did not support such an hypothesis. Three periods were chosen for in vivo exposure based on the attempt to mimic the either temporary or persisting exposure of children either migrating from or staying in developing countries. In the case of temporary exposure, two different lengths were studied (until PND 10 or 15) in order to investigate whether duration could influence the effect. This was confirmed since, after exposure for 10 instead of 5 days, the lowest dose of DDT became significantly effective in reducing the GnRH IPI, and the lowest dose of E2 became more effective. As many other EDCs, the DDT isomers were shown to exhibit both estrogenic and antiandrogenic properties, whereas p,p 0 -DDE retained only antiandrogenic activity [7, 8]. Because the clinical observation was made in girls [1], and E2 was found to preferentially influence GnRH secretion in the female rat hypothalamus [12], female rats were used in the present study. In our experimental conditions, it was shown previously that both E2 and testosterone could accelerate GnRH pulse frequency, the effect of androgens being aromatase dependent and ultimately mediated through estrogens [12]. Therefore, we hypothesized that the estrogenic activity of DDT was also involved in the pathogenesis of sexual precocity [1, 2, 9]. This hypothesis was consistent with our previous observation of sexual precocity after a single massive administration of E2 on PND 10 [12], although the use of lower doses for a longer time period needed to be investigated. For all these reasons, E2 was used as a positive control in this work to provide a comparison basis with DDT effects in vitro and in vivo. Direct incubation of hypothalamic explants with E2 or DDT isomers resulted in a concentration- and time-dependent increase in GnRH pulse frequency. The 1:1000 potency ratio of E2:DDT found in our conditions was consistent with other studies [47]. P,p 0 -DDE had no effect, which is in agreement with the absence of estrogenlike effects reported in other conditions [48]. Although supraphysiologic concentrations of E 2 were required for an effect within 1–2 h, lower concentrations became effective after few hours of incubation. Such a delay could be explained by the slow diffusion of reagents into the explant, a hypothesis consistent with the observation that greater concentrations of compounds like excitatory amino acids are needed in explant paradigms compared with neuronal culture systems [49]. Another explanation could be the latency before the possibly genomic mechanisms involved in E2 effects became effective. Then E2 effects on GnRH secretion could have a rapid, presumably nongenomic component, as illustrated by Matagne et al. [21] in our paradigm, together with a slow genomic component. In this case, the target would be other cells than GnRH neurons, since GnRH cell bodies are absent from the studied retrochiasmatic explants [32]. Herbison [50] and, more recently, Herbison and Pape [51] have also reported that E2 exerts complex effects on the GnRH neuronal function, including long-term or genomic effects through binding to ERa and/or ERb subtypes. In our system, the acceleration of pulsatile GnRH secretion caused by E2 was prevented by ICI 182 780, an a/b ER antagonist, as well as by DNQX, an antagonist of the AMPA/kainate subtype of glutamate receptors, confirming our previous observations [12]. The involvement of AMPA/kainate subtypes of glutamate receptors in E2 stimulation of GnRH pulse frequency was further supported by the hypothalamic colocalization of those receptors together with ER [52]. Since the effects of o,p 0 -DDT were also prevented by ICI 182 780 and DNQX, this EDC appeared to involve the same receptors as E2. However, the receptor pathway involved in o,p 0 -DDT effects could be partly different, with a participation of the orphan dioxin AHR, as indicated by the preferential reduction of o,p 0 -DDT effects by the antagonist a-naphtoflavone. The investigation of the insecticide effect through this pathway was justified, since Ohtake et al. [23] reported a few years ago that dioxins can mimic the effect of estrogens via a mechanism that involves the activation of ER by the transcriptionally active AHR-aryl hydrocarbon nuclear translocator complex. Further studies could delineate the relative contribution of the a- and bisoforms of ER and the AMPA and kainate subtypes of glutamate receptors. After E2 administration in immature rodents, an inhibition of LH secretion was commonly observed [53, 54] and impeded the use of variations in LH secretion to investigate indirectly hypothalamic effects. In addition, there is physiologically a developmental reduction in serum LH concentrations between PND 15 and VO, both basally and in response to GnRH [15, 16], so that decreased LH levels could result from either negative feedback effects or accelerated maturation or both. Therefore, hypothalamic-pituitary maturation was assessed through evaluation of GnRH secretion during explant incubation and study of LH response to GnRH after steroid or EDC administration in vivo. We elected to study GnRH secretion at 15 days using explants from female rats based on our previous studies showing that the frequency of pulsatile GnRH secretion in vitro was maximally stimulated by E2 in such conditions and through a mechanism dependent on perinatal brain sexual differentiation [12]. The exposure of infantile female rats to E2 or o,p 0 -DDT for 5 or 10 days was followed by a dosedependent increase in GnRH pulse frequency and a decrease in serum LH levels on PND 15, suggesting a stimulation of hypothalamic maturation and a negative feedback inhibition or an early maturation of the pituitary secretion. A negative feedback component at the hypothalamic and/or pituitary level was supported by the reduction in the postcastration rise of serum LH levels that was reported after treatment of mature or neonatal rats with o,p 0 -DDT [11, 41]. However, no change in LH secretion basally and in response to GnRH was found in another study 6 wk after o,p 0 -DDT treatment between PNDs 1 and 10 [42]. The unchanged LH response to GnRH on PNDs 15 and 22 suggests that the result of the combined inhibitory and stimulatory effects at those stages is a steady state. Then, early VO could result from either a peripheral effect of E2 or DDT or early pituitary-ovarian activity or both. A central component at the time of VO is suggested by the brisk reduction in LH response to GnRH that was observed in the treated animals. Subsequently, early first estrus possibly confirmed premature activity of the hypothalamic-pituitaryovarian axis. Such a pathophysiologic mechanism could be consistent with an involvement of DDT in the sexual precocity occurring after migration in internationally adopted children [1, 2, 9]. In a recent Danish study of such children, it was shown that developmental changes in pituitary-ovarian hormone levels were observable before onset of puberty and supported a hypothalamic-pituitary mechanism of early puberty [55]. Since our report of an association between sexual precocity and the detection of p,p 0 -DDE in the serum of migrating girls [1], early menarche was found to occur after prenatal or postnatal exposure to DDE and/or DDT [56, 57]. However, others did not observe changes in menarcheal age after prenatal or postnatal exposure to DDE [58, 59], and postnatal treatment of female monkeys with methoxychlor resulted in delayed nipple development and menarche [60]. Further studies are warranted to clarify the possible role of EDC nature and parameters of exposure (age, dose, duration) in those discrepant effects. In rodents, discrepant observations were made as well, since pesticides such as methoxychlor and lindane resulted, respectively, in precocity and delay in the age at VO, but both PUBERTY AFTER EARLY EXPOSURE TO DDT insecticides caused disturbances of estrous cyclicity [61–63], and decreased serum LH levels were reported after lindane administration [61]. The GnRH neuron itself could be targeted by EDCs, since the phytoestrogen coumestrol caused inhibitory effects on GnRH transcript expression in GT1–7 GnRHsecreting neuronal cells through the b subtype of ER [64]. When E2 was injected for PND 6–40, early VO followed by permanent estrus was observed. After E2 treatment was stopped, first estrus appeared at a markedly delayed age. This could indicate a peripheral stimulatory effect of the steroid together with a central inhibition during exposure. A slight anorexigenic effect of E2 was observed, consistent with studies previously reported by Ramirez and Sawyer [65] and by Ramirez [66], whereas o,p 0 -DDT caused a dramatic decrease in body weight, suggesting a possible toxic effect of the insecticide [45]. In summary, evidence that DDT could influence the infantile female hypothalamic pituitary maturation was provided through early developmental acceleration of the GnRH secretion in vitro and early reduction of LH response to GnRH in vivo. It was also demonstrated that this chemical caused a precocious onset of puberty in vivo when immature individuals were transiently exposed to DDT. Further studies will aim to delineate its mechanism of action and address whether the GnRH neurons or other cell structures are primary targets. 13. 14. 15. 16. 17. 18. 19. 20. ACKNOWLEDGMENT 21. We thank Pr. J. Boniver (Department of Anatomy and Pathology) for the assistance of his lab in Papanicolaou staining. 22. REFERENCES 1. Krstevska-Konstantinova M, Charlier C, Craen M, Du Caju M, Heinrichs C, de Beaufort C, Plomteux G, Bourguignon JP. Sexual precocity after immigration from developing countries to Belgium: evidence of previous exposure to organochlorine pesticides. Hum Reprod 2001; 16:1020–1026. 2. Parent AS, Teilmann G, Juul A, Skakkebaek NE, Toppari J, Bourguignon JP. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr Rev 2003; 24:668–693. 3. Marshall E. Search for a killer: focus shifts from fat to hormones. Science 1993; 259:618–621. 4. Toppari J, Larsen JC, Christiansen P, Giwercman A, Grandjean P, Guillette LJ, Jégou B, Jensen TK, Jouannet P, Keiding N, Leffers H, McLachlan JA, et al. Male reproductive health and environmental xenoestrogens. Environ Health Perspect 1996; 104:741–803. 5. Key T, Reeves G. Organochlorines in the environment and breast cancer. Br Med J 1994; 308:1520–1521. 6. Partsch CJ, Sippel WG. Pathogenesis and epidemiology of precocious puberty. Effects of exogenous estrogens. Hum Reprod Update 2001; 7: 292–302. 7. Clark EJ, Norris DO, Jones RE. Interactions of gonadal steroids and pesticides (DDT and DDE) on gonadal duct in larval tiger salamanders Ambystoma tigrinum. Gen Comp Endocr 1998; 109:94–105. 8. Kelce WR, Stone CR, Laws SC, Gray LE, Kemppainen JA, Wilson EM. Persistent DDT metabolite p,p’-DDE is a potent androgen receptor antagonist. Nature 1995; 375:581–585. 9. Rasier G, Toppari J, Parent AS, Bourguignon JP. Female sexual maturation and reproduction after prepubertal exposure to estrogens and endocrine disrupting chemicals: a review of rodent and human data. Mol Cel Endocrinol 2006; 254–255:187–201. 10. Heinrichs WL, Gellert RJ, Bakke JL, Lawrence NL. DDT administered to neonatal rats induces persistent estrus syndrome. Science 1971; 173:642– 643. 11. Gellert RJ, Heinrichs WL, Swerdloff RS. DDT homologues: estrogen-like effects on the vagina, uterus and pituitary of the rat. Endocrinology 1972; 91:1095–1100. 12. Matagne V, Rasier G, Lebrethon MC, Gérard A, Bourguignon JP. Estradiol stimulation of pulsatile gonadotropin-releasing hormone secretion in vitro: correlation with perinatal exposure to sex steroids and 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 741 induction of sexual precocity in vivo. Endocrinology 2004; 145:2775– 2783. Yamanaka C, Lebrethon MC, Vandersmissen E, Gérard A, Purnelle G, Lemaitre M, Wilk S, Bourguignon JP. Early prepubertal ontogeny of pulsatile gonadotropin-releasing hormone (GnRH) secretion: I. inhibitory autofeedbak control through prolyl endopeptidase degradation of GnRH. Endocrinology 1999; 140:4609–4615. Bourguignon JP, Franchimont P. Puberty-related increase in episodic LHRH release from rat hypothalamus in vitro. Endocrinology 1984; 114: 1941–1943. Ojeda SR, Jameson HE, McCann SM. Developmental changes in pituitary responsiveness to luteinizing hormone-releasing hormone (LHRH) in the female rat: ovarian-adrenal influence during the infantile period. Endocrinology 1977; 100:440–451. Ramalev JA. Pituitary gonadotropin-releasing hormone responsiveness in the prepubertal period: effect of delayed puberty onset. Neuroendocrinology 1982; 34:387–394. Bourguignon JP, Gérard A, Franchimont P. Direct activation of gonadotropin-releasing hormone secretion through different receptors to neuroexcitatory amino acids. Neuroendocrinology 1989; 49:402–408. Bourguignon JP, Gérard A, Mathieu J, Simons J, Franchimont P. Pulsatile release of gonadotropin-releasing hormone from hypothalamic explants is restrained by blockade of N-methyl-D-aspartate receptors. Endocrinology 1989; 125:1090–1096. Dluzen DE, Ramirez VD. Presence and localization of immunoreactive luteinizing hormone-releasing hormone within the olfactory bulbs of adult male and female rats. Peptides 1981; 2:493–496. Tena-Sempere M, Barreiro ML, Aguilar E, Pinilla L. Mechanisms for altered reproductive function in female rats following neonatal administration of raloxifene. Eur J Endocrinol 2004; 150:397–403. Matagne V, Lebrethon MC, Gérard A, Bourguignon JP. Kainate/estrogen receptor involvement in rapid estradiol effects in vitro and intracellular signaling. Endocrinology 2005; 146:2313–2323. Bourguignon JP, Gérard A, Alvarez-Gonzalez ML, Franchimont P. Neuroendocrine mechanism of onset of puberty. Sequential reduction in activity of inhibitory and facilitatory N-methyl-D-aspartate receptors. J Clin Invest 1992; 90:1736–1744. Ohtake F, Takeyama K, Matsumoto T, Kitagawa H, Yamamoto Y, Nohara K, Tohyama C, Krust A, Mimura J, Chambon P, Yanagisawa J, FujiiKuriyama Y, et al. Modulation of estrogen receptor signaling by association with the activated dioxin receptor. Nature 2003; 423:545–550. Diaz DR, Fleming DE, Rhees RW. The hormone-sensitive early postnatal periods for sexual differentiation of feminine behavior and luteinizing hormone secretion in male and female rats. Brain Res Dev Brain Res 1995; 86:227–232. Gogan F, Beattie IA, Hery M, Laplante E, Kordon D. Effect of neonatal administration of steroids or gonadectomy upon estradiol-induced luteinizing hormone release in rats of both sexes. J Endocrinol 1980; 85:69–74. Ojeda SR, Urbanski HF. Puberty in the rat. In: Knobil E, Neil JD (eds.), The Physiology of Reproduction, vol. 2. New York: Raven Press Ltd; 1994:363–409. Merriam GR, Wachter KW. Algorithms for the study of episodic hormone secretion. Am J Phys 1982; 243:310–318. Bourguignon JP, Gérard A, Mathieu J, Mathieu A, Franchimont P. Maturation of the hypothalamic control of pulsatile gonadotropin-releasing hormone secretion at onset of puberty. Increased activation of N-methylD-aspartate receptors. Endocrinology 1990; 127:873–881. DePaolo LV, Negro-Vilar A. Neonatal monosodium glutamate treatment alters the response of median eminence luteinizing hormone-releasing hormone nerve terminals to potassium and prostaglandin E2. Endocrinology 1982; 110:835–841. Harris GC, Levine JE. Pubertal acceleration of pulsatile gonadotropinreleasing hormone release in male rats as revealed by microdialysis. Endocrinology 2003; 144:163–171. Sisk CL, Richardson HN, Chappell PE, Levine JE. In vivo gonadotropinreleasing hormone secretion in female rats during peripubertal development and on proestrus. Endocrinology 2001; 142:2929–2936. Purnelle G, Gérard A, Czajkowski V, Bourguignon JP. Pulsatile secretion of gonadotropin-releasing hormone by rat hypothalamic explants without cell bodies of GnRH neurons. Neuroendocrinology 1997; 66:305–312. Erratum in: Neuroendocrinology 1998; 67:57. Mellon PL, Windle JJ, Goldsmith PC, Padula CA, Roberts JL, Weiner RI. Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 1990; 5:1–10. 742 RASIER ET AL. 34. Radovick S, Wray S, Lee E, Nicols DK, Nakayama Y, Weintraub BD, Westphal H, Cutler GB Jr, Wondisford PE. Migratory arrest of gonadotropin-releasing hormone neurons in transgenic mice. Proc Natl Acad Sci U S A 1991; 88:3402–3406. 35. Salvi R, Castillo E, Voirol MJ, Glauser M, Rey JP, Gaillard RC, Vollenweider P, Pralong FP. Gonadotropin-releasing hormone-expressing neurons immortalized conditionally are activated by insulin: implication of the mitogen-activated protein kinase pathway. Endocrinology 2006; 127: 816–826. 36. Funabashi T, Daikoku S, Shinohara K, Kimura F. Pulsatile gonadotropinreleasing hormone (GnRH) secretion is an inherent function of GnRH neurons, as revealed by the culture of medial olfactory placode obtained from embryonic rats. Neuroendocrinology 2000; 71:138–144. 37. Krsmanovic LZ, Martinez-Fuentes AJ, Arora KK, Mores N, Navarro CE, Chen HC, Stojilkovic SS, Catt KJ. Autocrine regulation of gonadotropinreleasing hormone secretion in cultured hypothalamic neurons. Endocrinology 1999; 140:1423–1431. 38. Melrose P, Gross L. Steroid effects on the secretory modalities of gonadotropin-releasing hormone release. Endocrinology 1987; 121:190– 199. 39. Kato M, Ui-Tei K, Watanabe M, Sakuma Y. Characterization of voltagegated calcium currents in gonadotropin-releasing hormone neurons tagged with green fluorescent protein in rats. Endocrinology 2003; 144:5118– 5125. 40. Wrenn TR, Weyant JR, Fries GF, Bitman J. Effects of several dietary levels of o,p’-DDT on reproduction and lactation in the rat. Bull Environ Contam Tox 1971; 6:471–480. 41. Gellert RJ, Heinrichs WL, Swerdloff RS. Effects of neonatally administered DDT homologs on reproductive function in male and female rats. Neuroendocrinology 1974; 16:84–94. 42. Faber KA, Basham K, Hughes CL Jr. The effect of neonatal exposure to DES and o,p’-DDT on pituitary responsiveness to GnRH in adult castrated rats. Reprod Toxicol 1991; 5:363–369. 43. Desaulniers D, Cooke GM, Leingartner K, Soumano K, Cole J, Yang J, Wade M, Yagminas A. Effects of postnatal exposure to a mixture of polychlorinated biphenyls, p,p’-dichlorodiphenyltrichloroethane, and p,p’dichlorodiphenyldichloroethene in prepubertal and adult female SpragueDawley rats. Int J Toxicol 2005; 24:111–127. 44. Mussi P, Ciana P, Raviscioni M, Villa R, Regondi S, Agradi E, Maggi A, Di Lorenzo D. Activation of brain estrogen receptors in mice lactating from mothers exposed to DDT. Br Res Bull 2005; 65:241–247. 45. Tomiyama N, Watanabe M, Takeda M, Harada T, Kobayashi H. A comparative study on the reliability of toxicokinetic parameters for predicting hepatotoxicity of DDT in rats receiving a single or repeated administration. J Toxicol Sci 2003; 28:403–413. 46. Rajapakse N, Silva E, Scholze M, Kortenkamp A. Deviation from additivity with estrogenic mixtures containing 4-nonylphenol and 4-tertoctylphenol detected in the E-SCREEN assay. Environ Sci Technol 2004; 38:6343–6352. 47. Diel P, Olff S, Schmidt S, Michna H. Effects of the environmental estrogens bisphenol A, o,p’-DDT, p-tert-octylphenol, and coumestrol on apoptosis induction, cell proliferation, and the expression of estrogen sensitive molecular parameters in the human breast cancer cell line MCF7. J Steroid Biochem Mol Biol 2002; 80:61–70. 48. Bulger WH, Muccitelli RM, Kupfer D. Interactions of chlorinated 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. hydrocarbon pesticides with the 8S estrogen–binding protein in rat testes. Steroids 1978; 32:165–177. Matagne V, Lebrethon MC, Gérard A, Bourguignon JP. In vitro paradigms for the study of GnRH neuron function and estrogen effects. Ann N Y Acad Sci 2003; 1007:129–142. Herbison AE. Multimodal influence of estrogen upon gonadotropinreleasing hormone neurons. Endocr Rev 1998; 19:302–330. Herbison AE, Pape JR. New evidence for estrogen receptors in gonadotropin-releasing hormone neurons. Front Neuroendocrin 2001; 22:292–308. Diano S, Naftolin F, Horvath TL. Kainate glutamate receptors (GluR5–7) in the rat arcuate nucleus: relationship to tanycytes, astrocytes, neurons and gonadal steroid receptors. J Neuroendocrinol 1998; 10:239–247. Andrews WW, Ojeda SR. On the feedback actions of estrogen on gonadotropin and prolactin release in infantile female rats. Endocrinology 1977; 101:1517–1523. Caligaris L, Astrada JJ, Taleisnik S. Influence of age on the release of luteinizing hormone induced by estrogen and progesterone in immature rats. J Endocrinol 1972; 55:97–103. Teilmann G, Pedersen CB, Skakkebaek NE, Jensen TK. Increased risk of precocious puberty in internationally adopted children in Denmark. Pediatrics 2006; 118:391–399. Vasiliu O, Muttinemi J, Kamaus W. In utero exposure to organochlorines and age at menarche. Hum Reprod 2004; 19:1506–1512. Ouyang F, Perry MJ, Venners SA, Cheng C, Wang B, Yang F, Fang Z, Zang T, Wang L, Xu X, Wang X. Serum DDT, age at menarche and abnormal menstrual cycle length. Occup Environ Med 2005; 62:878–884. Gladen BC, Ragan NB, Rogan WJ. Pubertal growth and development, and lactational exposure to polychlorinated biphenyls and dichlorodiphenyldichloroethane. J Pediatr 2000; 136:490–496. Denham M, Schell LM, Deane G, Gallo MV, Ravenscroft J, DeCaprio AP. Relationship of lead, mercury, mirex, dichlorodiphenyldichlroethylene, hexachlorobenzene and polychlorinated biphenyls to timing of menarche among Akwesasne Mohawk girls. Pediatrics 2005; 115:127–134. Golub MS, Hogrefe CE, Germann SL, Lasley BL, Natarajan K, Tarantal AF. Effects of exogenous estrogenic agents on pubertal growth and reproductive system maturation in female rhesus monkeys. Toxicol Sci 2003; 74:103–113. Cooper RL, Chadwick RW, Rehnberg GL, Goldman JM, Booth KC, Hein JF, McElroy WK. Effects of lindane on hormonal control of reproductive function in the female rat. Toxicol Appl Pharm 1989; 99:384–394. Gray LE Jr, Ostby J, Ferrell J, Rehnberg G, Linder R, Cooper R, Goldman J, Slott V, Lashey J. A dose-response analysis of methoxychlor-induced alterations of reproductive development and function in the rat. Fundam Appl Toxicol 1989; 12:92–108. Laws SC, Carey SA, Ferrell JM, Bodman GJ, Cooper RL. Estrogenic activity of octylphenol, nonylphenol, bisphenol A, and methoxychlor in rats. Toxicol Sci 2000; 54:154–167. Bowe J, Li XF, Sugden D, Katzenellenbogen JA, Katzenellenbogen BS, O’Byrne KT. The effects of the phytoestrogen, coumestrol, on gonadotropin-releasing hormone (GnRH) mRNA expression in GT1–7 GnRH neurones. J Neuroendocrinol 2003; 15:105–108. Ramirez VD, Sawyer CH. Advancement of puberty in the female rat by estrogen. Endocrinology 1965; 76:1158–1168. Ramirez I. Estradiol-induced changes in lipoprotein lipase, eating, and body weight in rats. Am J Phys 1981; 240:533–538. BIOLOGY OF REPRODUCTION 77, 734–742 (2007) Published online before print 27 June 2007. DOI 10.1095/biolreprod.106.059303 Early Maturation of Gonadotropin-Releasing Hormone Secretion and Sexual Precocity after Exposure of Infant Female Rats to Estradiol or Dichlorodiphenyltrichloroethane1 Grégory Rasier, Anne-Simone Parent, Arlette Gérard, Marie-Christine Lebrethon, and Jean-Pierre Bourguignon2 Developmental Neuroendocrinology Unit, Centre for Cellular and Molecular Neurobiology, University of Liège, University Hospital, B-4000 Liège (Sart-Tilman), Belgium ABSTRACT INTRODUCTION An increase in the frequency of pulsatile gonadotropinreleasing hormone (GnRH) secretion in vitro and a reduction in LH response to GnRH in vivo characterize hypothalamicpituitary maturation before puberty in the female rat. In girls migrating for international adoption, sexual precocity is frequent and could implicate former exposure to the insecticide dichlorodiphenyltrichloroethane (DDT), since a long-lasting DDT derivative has been detected in the serum of such children. We aimed at studying the effects of early transient exposure to estradiol (E2) or DDT in vitro and in vivo in the infantile female rat. Using a static incubation system of hypothalamic explants from 15-day-old female rats, a concentration- and timedependent reduction in GnRH interpulse interval (IPI) was seen during incubation with E2 and DDT isomers. These effects were prevented by antagonists of alpha-amino-3-hydroxy-5-methylisoxazole-4 propionic acid (AMPA)/kainate receptors and estrogen receptor. Also, o,p 0 -DDT effects were prevented by an antagonist of the aryl hydrocarbon orphan dioxin receptor (AHR). After subcutaneous injections of E2 or o,p 0 -DDT between Postnatal Days (PNDs) 6 and 10, a decreased GnRH IPI was observed on PND 15 as an ex vivo effect. After DDT administration, serum LH levels in response to GnRH were not different from controls on PND 15, whereas they tended to be lower on PND 22. Subsequently, early vaginal opening (VO) and first estrus were observed together with a premature age-related decrease in LH response to GnRH. After prolonged exposure to E2 between PNDs 6 and 40, VO occurred at an earlier age, but first estrus was delayed. We conclude that a transient exposure to E2 or o,p 0 -DDT in early postnatal life is followed by early maturation of pulsatile GnRH secretion and, subsequently, early developmental reduction of LH response to GnRH that are possible mechanisms of the subsequent sexual precocity. The early maturation of pulsatile GnRH secretion could involve effects mediated through estrogen receptor and/or AHR as well as AMPA/kainate subtype of glutamate receptors. During the past decade, precocious puberty (PP) was reported to occur frequently in foreign girls after migration for adoption in different countries of Western Europe. Among the possible pathophysiologic mechanisms, we have hypothesized that migration could result in withdrawal from exposure to estrogenic endocrine-disrupting chemicals (EDCs) in the home country and cause sexual precocity to occur following early hypothalamic maturation caused by the EDCs [1, 2]. Those environmental substances are known to interact with the reproductive system in a harmful manner [3, 4]. The involvement of EDCs in sexual precocity in migrating girls was suggested based on the detection of p,p 0 -dichlorodiphenyldichloroethene (p,p 0 -DDE) in the serum of those patients [1]. With a half-life of several decades, p,p 0 -DDE is a persistent derivative of the insecticide dichlorodiphenyltrichloroethane (DDT), which has been banned in the United States of America and Western European countries since the late 1960s [5, 6] but is still used extensively in developing countries [2]. This EDC is known to act as an estrogen receptor (ER) agonist and/or androgen receptor antagonist, both in vitro and in vivo [7, 8]. In the above situation, because p,p 0 -DDE levels were related directly to the length of stay in the country of origin and inversely to time since immigration [2], it was thought to be a marker of previous exposure to DDT during early life. In immature animals, direct effects on peripheral tissues, such as the vaginal epithelium, were reported after exposure to estradiol (E2) or estrogenic EDCs and were consistent with peripheral sexual precocity [7–9]. In 1971, Heinrichs et al. reported that administration of 1 mg o,p 0 -DDT in neonatal female rats on Postnatal Days (PNDs) 2–4 resulted in earlier vaginal opening (VO) and first estrus and delayed anovulatory syndrome [10]. They hypothesized that exposure to DDT in early life could cause premature hypothalamic-pituitary maturation and disturb the hypothalamic control of ovulation through unknown mechanisms. Since the o,p 0 -isomer of DDT had estrogenic uterotrophic properties [11], the question arose as to whether central PP could coexist or follow peripheral PP after exposure to DDT [2, 9]. A hypothalamic effect of estrogenic substances in the female individual was supported by our previous observation that E2 preferentially stimulated gonadotropin-releasing hormone (GnRH) pulse frequency in the immature female rat hypothalamus in vitro through a mechanism dependent on the perinatal sexual differentiation. In addition, a single massive dose of E2 given on PND 10 caused early maturation of pulsatile GnRH secretion, with early VO and first estrus subsequently [12]. The aim of the present study was to investigate, both in vitro and in vivo, the effects of an early transient exposure of the immature female rat hypothalamus and pituitary gland to DDT in comparison with E2 and the mechanisms involved in such effects. Two environment, estradiol, gonadotropin-releasing hormone, hypothalamus, puberty 1 Supported by the European Commission (EDEN project, contract QLRT-2001-00269), the Léon Frédéricq Foundation, the Belgian Study Group for Pediatric Endocrinology, and grants 3.4515.01 and 3.4573.05 from the National Belgian Fund for Scientific Research. 2 Correspondence: Jean-Pierre Bourguignon, Division of Pediatric Endocrinology and Adolescent Medicine, University Hospital, B-4000 Liège (Sart-Tilman), Belgium. FAX: 32 4 366 72 46; e-mail: [email protected] Received: 5 December 2006. First decision: 6 January 2007. Accepted: 26 June 2007. Ó 2007 by the Society for the Study of Reproduction, Inc. ISSN: 0006-3363. http://www.biolreprod.org 734 735 PUBERTY AFTER EARLY EXPOSURE TO DDT FIG. 1. Experimental design to study in vivo the effects of E2 or o,p 0 -DDT treatment started in 6-day-old female rats as daily s.c. injections and maintained for 5, 10, or 35 days. The procedure is represented in relation to age with reference to the developmental reduction in GnRH IPI observed in vitro (n ¼ 6). The average ages at VO and first estrus are also represented. particular endpoints were chosen based on developmental characteristics: the frequency of pulsatile GnRH secretion by hypothalamic explants in vitro that shows a prepubertal acceleration between PNDs 10 and 25, as illustrated in Figure 1 [13, 14], and the LH secretory response to a synthetic GnRH administration in vivo that shows a prepubertal reduction until PND 36 [15, 16]. GnRH Stimulation Test and LH Assay Infantile female Wistar rats were purchased from the University of Liège. They were housed in standardized conditions with lactating dams (228C, lights on from 0630 to 1830 h, food and water ad libitum). Each litter contained 5–10 pups. The day of birth was considered PND 1. The weaning occurred on PND 21. All experiments were carried out with the approval of the Belgian Ministry of Agriculture and the Ethical Committee at the University of Liège. At PNDs 15 and 22, and at VO and first estrus, serum LH levels were measured in basal conditions (s.c. injection of vehicle or o,p 0 -DDT) and 30 min after stimulation through s.c. injection of 1 lg/kg GnRH. These conditions were used after testing different time points (15, 30, and 45 min) following GnRH at different ages (15 and 20 days and at VO) and were consistent with the conditions reported by others [16, 20]. After 2 h of clotting at room temperature, trunk blood collected from the killed animals was centrifuged (5 min at 2000 3 g). The serum was collected and stored at 208C until assayed. Serum LH levels were determined in duplicate in a volume of 100 ll using a double-antibody method and radioimmunoassay kits kindly supplied by the National Institutes of Health (Dr. A.F. Parlow, National Institute of Diabetes and Digestive & Kidney Diseases, National Hormone and Peptide Program, Torrance, CA). Rat LH-I-8 was labeled with 125I by the chloramine-T method. The hormone concentrations were expressed using the reference preparation rLH-RP-3 as a standard. The intraassay and interassay coefficients of variation were 7% and 9%, respectively. The sensitivity limit of the assay was 5 ng/ml. Hypothalamic Explant Incubation and GnRH Assay Reagents The developmental variations in GnRH pulse frequency in vitro were studied using hypothalamic explants obtained in female rats on PNDs 1, 5, 10, 15, 20, 25, 30, and 50. For the in vitro study of hypothalamic explants, 15-dayold animals were used. After decapitation, the hypothalamus was rapidly dissected. The limits to obtain the retrochiasmatic hypothalamus were the caudal margin of the optic chiasm, the caudal margin of the mammillary bodies, and the lateral hypothalamic sulci [14]. Each explant was transferred into an individual chamber in a static incubator, as described in detail previously [12, 14]. Each chamber contained 500 ll minimum essential medium (MEM) supplemented with glucose, magnesium, glycine, and bacitracin to achieve final concentrations of 25 3 103, 103, 108, and 2 3 105 M, respectively. The explants were incubated in an atmosphere of 95% O2/5% CO2 for a total period varying between 4 and 6 h. The incubation medium was collected and renewed every 7.5 min and was kept frozen until assayed. The GnRH release in the incubation medium of hypothalamic explants was measured in duplicate using a radioimmunoassay method with intraassay and interassay coefficients of variation of 14% and 18%, respectively [17, 18]. The highly specific CR11-B81 anti-GnRH antiserum (final dilution 1:80 000) was kindly provided by Dr. V. D. Ramirez (Urbana, IL) [19]. The data below the limit of detection (5 pg/7.5-min fraction) were assigned that value. The MEM was purchased from Life Technologies Invitrogen Corp. (Merelbeke, Belgium). E2 (17b-estradiol or 3,17b-dihydroxy-1,3,5(10)-estratriene); the two DDT isomers, o,p 0 -DDT (2,4 0 -DDT) and p,p 0 -DDT (4,4’DDT); and p,p 0 -DDE (4,4 0 -DDE) were purchased from Sigma-Aldrich (Bornem, Belgium). P,p 0 -DDT represents approximately 80% of the insecticide still commonly used in developing countries. O,p 0 -DDT is an equally active isomer of the insecticide that accounts for 15%–20% of technical grade DDT. In endocrine studies, o,p 0 -DDT has been particularly studied due to its prominent estrogenic property and relatively less toxic activity. P,p 0 -DDE is a long-lasting derivative of p,p 0 -DDT, with a half-life of several years. The aamino-3-hydroxy-5-methylisoxazole-4 propionic acid (AMPA)/kainate subtype of glutamate receptor antagonist DNQX (6,7-dinitroquinoxaline-2,3-dione) and the ER antagonist ICI 182 780 (7a,17b-[9[(4,4,5,5,5-pentafluoropentyl)sulfinyl]nonyl]-1,3,5(10)-estratriene-3,17b-diol) were purchased from Tocris Fisher Bioblock Scientific (Illkirch, France), whereas the aryl hydrocarbon orphan dioxin receptor (AHR) antagonist a-naphtoflavone (7,8-benzoflavone) was purchased from Sigma-Aldrich. In all experiments, the steroid and insecticides were dissolved initially in absolute ethanol (Labonord, Templenars, Belgium) and, subsequently, in the incubation medium or sesame oil (Calbiochem VWR International, Leuven, Belgium) for in vitro or in vivo studies, respectively, to MATERIALS AND METHODS Animals 736 RASIER ET AL. serum LH levels. When the treatment period was PNDs 6–40, there were 10 rats followed in each condition to study VO and estrous cyclicity. Statistical Analysis FIG. 2. Effects of E2, DDT isomers, and p,p 0 -DDE in vitro on the frequency of pulsatile GnRH secretion from hypothalamic explants obtained in 15-day-old female rats. The data are calculated in relation to time (two or three consecutive 2-h periods) of incubation in vitro. a: P , 0.05 versus control; b: P , 0.05 versus data obtained during the initial 2-h period. achieve a final ethanol concentration of 0.01% or 1%. The antagonists were directly diluted in the incubation medium. Study Protocols In vitro experiments. The in vitro effects of E2 or DDT on the frequency of pulsatile GnRH secretion were studied. The compounds (steroid, DDT isomers, and antagonists) were used for a whole 4- or 6-h experimental incubation period. A concentration-response study was carried out with explants incubated with 109 to 107 M of E2 and 106 to 104 M of o,p 0 -DDT, p,p 0 -DDT, or p,p 0 DDE. The effects of antagonists were studied in the presence of maximal effective concentrations of E2 and o,p 0 -DDT. Those antagonists were chosen because they were shown to prevent E2 effects on GnRH secretion in our hypothalamic explant conditions [12, 21], and it was our hypothesis that DDT effects, if any, could be mediated through mechanisms similar to E2 effects. The antagonist DNQX (106 M) was used to study the involvement of the AMPA/kainate subtype of glutamate receptors. The implication of ER was studied using the antagonist ICI 182 780 (107 M). To investigate the implication of AHR, the antagonist a-naphtoflavone (107 M) was used. The concentration of these three antagonists was selected based on previous data from our laboratory and other studies [12, 17, 21–23]. It was shown previously that when used alone, the AMPA/kainate subtype of glutamate receptor and ER antagonists did not affect pulsatile GnRH secretion [12], and the absence of effects of the different antagonists when used alone was double checked in this study. In vivo experiments. The procedures are schematically summarized in Figure 1. The animals received a daily s.c. administration of steroid or insecticide for 5, 10, or 35 days (E2: 0.01, 0.1, or 1 mg/kg/day for PNDs 6–10 and 0.01 mg/kg/day for PNDs 6–15 and PND 6–40; o,p 0 -DDT: 10 or 100 mg/ kg/day for PNDs 6–10 and 10 mg/kg/day for PNDs 6–15). The dose of E2 and o,p 0 -DDT was adjusted for increasing body weight of rats. The chemicals dissolved in absolute ethanol were diluted in 50 ll sesame oil for s.c. injection, as described in other studies [24, 25]. When the treatment period was PNDs 6– 10, 20 rats were studied in each treated group in comparison with 20 controls injected with vehicle alone. On PND 15, 10 rats from each group were killed to study the pulsatile GnRH secretion in vitro and serum LH levels. In each group, the 10 remaining animals were then examined daily for imperforation of the vaginal membrane to determine age at VO. Thereafter, vaginal smears were taken every day in the afternoon until PND 60. Slides of vaginal smears were colored using the Papanicolaou method to detect the occurrence of estrous cyclicity and to follow cycling. The age at first estrus was considered when vaginal smears contained primary cornified cells after the first proestrous phase, which is characterized by both stratified and cornified cells [26]. In subsequent experiments to study LH response to GnRH on PNDs 15 and 22, and at the time of VO and first estrus, seven animals were killed in each group at each age. When the treatment period was PNDs 6–15, there were five rats in each group that were killed on PND 15 to study the GnRH pulse frequency and When pulsatile GnRH secretion was studied, the peaks were detected using the PULSAR program for PC [27]. The cutoff criteria for peak detection were determined empirically and were G1 ¼ 2.5 and G2 ¼ 2.0. Peak splitting parameter was set at 2.7, and intraassay coefficient of variation was used as B coefficient [28]. The GnRH interpulse interval (IPI) was calculated as the time interval between two consecutive peaks. The IPI was calculated during different time periods of incubation (1–2 h and 3–4 h or 5–6 h). Depending on the normal or nonnormal distribution of IPI data in the different study periods, comparisons were made using the paired Student t-test with P , 0.05 as the threshold for significance (GraphPad Prism software for PC) or the Wilcoxon matched pairs test, respectively. In several instances, all the explants in a group showed a similar IPI value. In this case, SD was null and could not be represented. When comparisons were made between steroid and/or insecticide effects on LH levels and age at VO or first estrus in different conditions, raw data were pooled and analyzed by the one-way ANOVA test when normally distributed, followed by a multiple-comparison Newman-Keuls post-hoc test when the threshold for significance of differences (P , 0.05) was reached. When data were not normally distributed, the Kruskal-Wallis test was used, followed by a multiple-comparison Dunn post-hoc test. For the experiment run PNDs 6–40, an unpaired t-test was employed. All results are expressed as mean 6 SD. RESULTS In Vitro Treatments In control conditions of hypothalamic explant incubation in vitro (Fig. 1), the GnRH IPI showed a reduction between PNDs 10 and 25, confirming our data in the male [13]. When hypothalamic explants obtained at 15 days were incubated in control conditions (Fig. 2), the GnRH IPI did not change with time (1–2 h: 60.4 6 1.7 min; 3–4 h: 59.6 6 1.8 min; and 5–6 h: 60.0 6 0.0 min). During a 4-h continuous incubation with 107 M of E2, the GnRH IPI was reduced significantly after 1– 2 h (49.0 6 3.9 min) and further after 3–4 h (45.4 6 1.7 min). This effect was dependent on E2 concentration and incubation time: with 108 M E2, the GnRH IPI was unchanged after 1–2 h and decreased significantly after 3–4 h; with 109 M E2, a significant reduction occurred after 5–6 h only (52.5 6 0.0 min). The two active isomers of DDT also caused a concentration- and time-dependent reduction in GnRH IPI that was significant after 3–4 h using 105 M of both isomers (o,p 0 DDT: 50.4 6 5.7 min; p,p 0 -DDT: 52.5 6 0.0 min). At a 104 M concentration, both isomers resulted in an earlier effect that was also greater after 3–4 h (o,p 0 -DDT: 45.0 6 0.0 min; p,p 0 DDT: 52.5 6 0.0 min). When used at 106 M, p,p 0 -DDT had no effect during a 6-h incubation, and o,p 0 -DDT showed a significant effect only after 5–6 h of incubation (52.5 6 0.0 min). No effect could be obtained using p,p 0 -DDE at similar concentrations. The significant reduction of GnRH IPI caused by 107 M E2 or 104 M o,p 0 -DDT after 3–4 h of incubation in vitro (Fig. 3A) was totally prevented when the AMPA/kainate subtype of glutamate receptors was antagonized by coincubation with DNQX (Fig. 3B). Likewise, the effects of E2 and o,p 0 -DDT were totally prevented in the presence of the ER antagonist ICI 182 780 (Fig. 3C). When a-naphtoflavone was used to antagonize the AHR, the significant decrease in GnRH IPI caused by o,p 0 -DDT was not observed any more, whereas the E2 effect was attenuated but remained significant (Fig. 3D). In Vivo Treatments As shown in Figure 4A, after 5 days of treatment with 0.01, 0.1, and 1 mg/kg E2 (PNDs 6–10), the age at VO (controls: PUBERTY AFTER EARLY EXPOSURE TO DDT 737 FIG. 3. Effects of 106 M DNQX, an antagonist of the AMPA/kainate subtype of glutamate receptors (B), 107 M of ICI 182 780, an ER antagonist (C), and 107 M a-naphtoflavone, an AHR antagonist (D) on the GnRH IPI during incubation of hypothalamic explants obtained in 15-day-old female rats in the presence of 107 M E2 or 104 M o,p 0 -DDT (A) in vitro. A representative profile of pulsatile GnRH secretion is shown in each condition, and the mean (6 SD) IPI observed during 3–4 h of incubation are given. *P , 0.05 treatment versus control conditions. FIG. 4. Effects of E2 or o,p 0 -DDT injected s.c. in female rats for PNDs 6–10 or PNDs 6–40 on the ages at VO and first estrus (A) and the interval between VO and first estrus (B). *P , 0.05 versus vehicle (sesame oil). 738 RASIER ET AL. TABLE 1. Mean 6 SD (n ¼ 10) of estrous cycle length (interval between two consecutive estrus) observed until PND 60. Treatment PND 6–10 Vehicle E2 o,p’-DDT PND 6–40 Vehicle E2 Dose (mg/kg) — 0.01 0.10 1.00 10.00 100.00 — 0.01 Estrous cycle length (days) 4.7 5.2 5.5 4.6 5.3 5.5 6 6 6 6 6 6 1.4 1.6 1.8 1.5 2.0 1.4 4.8 6 1.2 4.9 6 1.8 30.1 6 0.6 days) was significantly earlier (23.0 6 0.7, 22.7 6 1.3, and 24.6 6 0.5 days, respectively). The VO was also earlier after 10 and 100 mg/kg o,p 0 -DDT (22.6 6 0.5 and 24.6 6 0.7 days, respectively). The first estrus was observed on PND 31.9 6 0.7 in controls and occurred significantly earlier after 0.01 and 0.1 mg/kg of E2 (27.2 6 0.7 and 27.5 6 1.1 days), as well as after 10 mg/kg o,p 0 -DDT (26.4 6 1.5 days). After 1 mg/kg E2 or 100 mg/kg o,p 0 -DDT, the age at first estrus did not change. When the time interval between VO and first estrus (Fig. 4B) was calculated (controls: 1.8 6 0.9 days), a significant dose-dependent increase was observed after 0.1 and 1 mg/kg E2 or 100 mg/kg o,p 0 -DDT. No differences in estrus cycle length were observed until PND 60 (Table 1). As shown in Figure 5A, after five daily s.c. injections of 0.01, 0.1, and 1 mg/kg E2 (PNDs 6–10), the GnRH IPI studied ex vivo on PND 15 (controls: 60.0 6 0.0 min) was significantly reduced (54.4 6 3.3, 52.5 6 0.0, and 47.0 6 3.4 min, respectively). A reduction of GnRH IPI was also seen after treatment with 10 and 100 mg/kg/day o,p 0 -DDT, which was only significant with 100 mg/kg (55.0 6 3.6 min). When 0.01 mg/kg E2 or 10 mg/kg o,p 0 -DDT was administered for a FIG. 5. Effects of E2 or o,p 0 -DDT injected s.c. in female rats for PNDs 6–10 or PNDs 6–15 on the GnRH IPI (A) and serum LH concentrations (B) studied ex vivo at 15 days of age. *P , 0.05 versus vehicle (sesame oil). FIG. 6. Effects of treatment of female rats with o,p 0 -DDT (10 mg/kg/day) or sesame oil for PNDs 6–10 on serum LH levels studied 30 min after subcutaneous injection of 1 lg/kg GnRH at four age points: PND 15, PND 22, the day of VO, and the day of first estrus. The data are mean 6 SD of LH levels and age in seven rats studied in each group. *P , 0.05 versus vehicle (sesame oil). longer period of 10 days (PNDs 6–15), the GnRH IPI ex vivo was significantly reduced on PND 15 as well. As shown in Figure 5B, the serum LH level on PND 15 (controls: 41.1 6 19.9 ng/ml) was significantly decreased after 0.01, 0.1, and 1 mg/kg E2 between PNDs 6 and 10 (18.9 6 12.7, 23.7 6 13.8, and 9.7 6 3.0 ng/ml, respectively) and after 10 and 100 mg/kg o,p 0 -DDT (22.7 6 18.5 and 15.7 6 6.0 ng/ ml, respectively). However, the serum LH level also decreased with age after sesame oil (control) administration (Fig. 6): 48.2 6 46.7 ng/ml on PND 15, 25.8 6 19.3 on PND 22, 16.5 6 13.7 on PND 30.6 6 1.5 (at VO), and 10.5 6 7.3 on PND 35.0 PUBERTY AFTER EARLY EXPOSURE TO DDT 6 1.2 (at first estrus). When the LH response to GnRH was studied after vehicle or 10 mg/kg o,p 0 -DDT given for PNDs 6– 10, the LH response was not affected on PND 15 and showed some but not significant reduction on PND 22, whereas it dropped significantly in the next days, at the time of early VO and first estrus. An extended period of daily s.c. administration of 0.01 mg/ kg E2 for PNDs 6–40 (Fig. 4A) caused a significantly earlier age at VO (22.1 6 1.0 vs. 31.8 6 1.0 days in controls), whereas the age at first estrus was significantly delayed (47.1 6 0.8 vs. 35.4 6 1.7 days in controls), and the interval between VO and first estrus was markedly increased (20.6 6 1.2 vs. 3.6 6 2.2 days in controls). The first estrus was observed after a permanent estrus lasting until a few days after the end of treatment. Then, no differences in estrous cycle length were observed until PND 60 (Table 1). After daily s.c. administration of 10 mg/kg o,p 0 -DDT for PNDs 6–40, the animals showed altered health status with reduced activity and feeding. On PND 40, their weight was significantly decreased to 111.3 6 8.3 g (130.0 6 11.5 g after E2 and 149.0 6 9.9 g in controls). In such conditions, it was no longer possible to separate direct o,p 0 -DDT effects on sexual maturation and reproduction from indirect effects through disordered nutritional status. DISCUSSION The hypothalamic explant paradigm used in this study provided an opportunity to observe pulsatile GnRH secretion in vitro as the result of GnRH neuron function in its original surrounding neuronoglial apparatus, which regulates GnRH secretion [29]. Moreover, the developmental changes in frequency of pulsatile GnRH secretion retained in this model [13] made possible the study of interaction with maturational processes, although the critical age period for the developmental increase in GnRH pulse frequency was earlier in vitro [14] than in vivo [30, 31]. Such a difference could involve suppression of inhibitory extrahypothalamic inputs when explants are deafferented from the rest of the brain. However, the critical period of the second and third postnatal weeks in our conditions is consistent with neuroendocrine maturation preceding the peripheral changes of sexual maturation (VO, testicular growth). Since we incubated retrochiasmatic hypothalami containing prominently axons and terminals of GnRHsecreting neurons [32], we tend to interpret our observations as the effects of presynaptic regulation by the surrounding neurons and glial cells. Other in vitro paradigms involving GnRH neurons, such as GnRH-secreting neuronal cell lines [33–35], primary cultures of hypothalamic neurons [36–38], or hypothalamic slices from transgenic mice carrying reporter genes linked to the GnRH promoter [39] could enable one to study directly the regulatory mechanisms at the GnRH neuron level. The present study was designed to test experimentally the hypothesis that early and transient exposure to pesticide, as seen in internationally adopted children, could influence hypothalamic-pituitary maturation and account for some central mechanism in the sexual precocity occurring frequently in such conditions. Since p,p 0 -DDE, which was detected in the serum of those children, was thought to result from previous exposure to DDT, this EDC was used for in vivo treatment. After we observed that o,p 0 -DDT and p,p 0 -DDT were almost equally effective on GnRH pulse frequency in vitro, the o,p 0 DDT isomer was preferred for in vivo investigations based on its greater estrogenicity and lower toxicity than p,p 0 -DDT. In addition, o,p 0 -DDT was the isomer used in former studies on 739 the neuroendocrine control of reproduction [10, 11, 40–42]. The doses that we used for in vivo studies and the E2:o,p 0 -DDT concentration ratio were based on our in vitro data reported in the present study and were comparable with those used in other studies in rodents [43, 44]. The 10 and 100 mg/kg doses were in the same range as the amounts given by others either neonatally [10] or around the time of weaning [11]. After early postnatal administration, lower doses appeared to have no effects on age at VO and gonadotropin secretion [41]. It was not possible in this study to measure the concentrations of DDT isomers and derivatives in serum and tissues. The quantitative relevance of our conditions of exposure to DDT when compared to the exposure of migrating girls was difficult to assess, since the only available information was p,p 0 -DDE concentrations measured in serum several years later. After early DDT treatment in neonatal rats for 3 days, p,p 0 -DDE measured in adipose tissue 4–5 mo later was not different from controls, suggesting clearance of the insecticide and its residues after that long period [10]. After 7 days of daily oral intake of p,p 0 -DDT in a daily dose equivalent to 106 mg/kg in 5-wk-old rats, serum p,p 0 -DDE levels attained a mean level of 0.66 mg/l [45]. Such a serum concentration was about 20 times higher than the serum concentrations found in migrating children [1]. We, however, observed significant neuroendocrine effects using a 10-times-lower DDT dose that would presumably result in lower serum DDT levels. Further comparison would require measurement of the different DDT isomers and residues at different time points after stopping DDT treatment in the animals. The interpretation of doses and exposure is even more complex, since migrating children are likely to be exposed to various EDCs both in the original and foster countries. It has been reported that when chemicals are used in mixtures, combination effect could require lower concentrations than expected based on simply additive effects [46]. Moreover, when animals undergo low-dose exposure, the dose-effect relationship is not linear with comparatively greater effects of low versus high doses. Although these aspects have not been investigated in the present study, they could be important for the pathophysiologic relevance of our findings. The age window of PNDs 6–10 could be consistent with early postnatal period in human infants. A 5-day period of treatment was relatively short for the lifespan but significant with respect to the short time period between birth and sexual maturation in the rat. The use of female rats aged 15 days to study GnRH IPI was based on our previous data showing that GnRH secretion in vitro was maximally affected by E2 in such conditions [12]. With hypothalamic explants from younger females (5 days), GnRH secretion was also found to be responsive to E2, but such age falls in the critical window of the brain sexual differentiation, causing possible interferences with programming of estrus cyclicity. This conclusion was drawn by Heinrichs et al., who found early VO and delayed persistent estrus to occur after DDT treatment for PNDs 2–4 [10]. Discrepant observations were made when o,p 0 -DDT treatment was started at 3 wk of age for several weeks: Gellert et al. found VO to occur earlier [11], whereas Wrenn et al. found no change in age at VO that was hastened only when treatment was given before the age of 3 wk [40]. In the present study, treatment during the second week of postnatal life was a compromise to possibly affect sexual maturation without interfering with the sexually differentiated mechanism of ovulation. However, such interferences probably did occur using the highest E2 and DDT concentrations, since they did not result in early first estrus as opposed to lower doses. Alternatively, toxic effects could have occurred, although the nonsignificantly affected growth in those short treatment 740 RASIER ET AL. conditions did not support such an hypothesis. Three periods were chosen for in vivo exposure based on the attempt to mimic the either temporary or persisting exposure of children either migrating from or staying in developing countries. In the case of temporary exposure, two different lengths were studied (until PND 10 or 15) in order to investigate whether duration could influence the effect. This was confirmed since, after exposure for 10 instead of 5 days, the lowest dose of DDT became significantly effective in reducing the GnRH IPI, and the lowest dose of E2 became more effective. As many other EDCs, the DDT isomers were shown to exhibit both estrogenic and antiandrogenic properties, whereas p,p 0 -DDE retained only antiandrogenic activity [7, 8]. Because the clinical observation was made in girls [1], and E2 was found to preferentially influence GnRH secretion in the female rat hypothalamus [12], female rats were used in the present study. In our experimental conditions, it was shown previously that both E2 and testosterone could accelerate GnRH pulse frequency, the effect of androgens being aromatase dependent and ultimately mediated through estrogens [12]. Therefore, we hypothesized that the estrogenic activity of DDT was also involved in the pathogenesis of sexual precocity [1, 2, 9]. This hypothesis was consistent with our previous observation of sexual precocity after a single massive administration of E2 on PND 10 [12], although the use of lower doses for a longer time period needed to be investigated. For all these reasons, E2 was used as a positive control in this work to provide a comparison basis with DDT effects in vitro and in vivo. Direct incubation of hypothalamic explants with E2 or DDT isomers resulted in a concentration- and time-dependent increase in GnRH pulse frequency. The 1:1000 potency ratio of E2:DDT found in our conditions was consistent with other studies [47]. P,p 0 -DDE had no effect, which is in agreement with the absence of estrogenlike effects reported in other conditions [48]. Although supraphysiologic concentrations of E 2 were required for an effect within 1–2 h, lower concentrations became effective after few hours of incubation. Such a delay could be explained by the slow diffusion of reagents into the explant, a hypothesis consistent with the observation that greater concentrations of compounds like excitatory amino acids are needed in explant paradigms compared with neuronal culture systems [49]. Another explanation could be the latency before the possibly genomic mechanisms involved in E2 effects became effective. Then E2 effects on GnRH secretion could have a rapid, presumably nongenomic component, as illustrated by Matagne et al. [21] in our paradigm, together with a slow genomic component. In this case, the target would be other cells than GnRH neurons, since GnRH cell bodies are absent from the studied retrochiasmatic explants [32]. Herbison [50] and, more recently, Herbison and Pape [51] have also reported that E2 exerts complex effects on the GnRH neuronal function, including long-term or genomic effects through binding to ERa and/or ERb subtypes. In our system, the acceleration of pulsatile GnRH secretion caused by E2 was prevented by ICI 182 780, an a/b ER antagonist, as well as by DNQX, an antagonist of the AMPA/kainate subtype of glutamate receptors, confirming our previous observations [12]. The involvement of AMPA/kainate subtypes of glutamate receptors in E2 stimulation of GnRH pulse frequency was further supported by the hypothalamic colocalization of those receptors together with ER [52]. Since the effects of o,p 0 -DDT were also prevented by ICI 182 780 and DNQX, this EDC appeared to involve the same receptors as E2. However, the receptor pathway involved in o,p 0 -DDT effects could be partly different, with a participation of the orphan dioxin AHR, as indicated by the preferential reduction of o,p 0 -DDT effects by the antagonist a-naphtoflavone. The investigation of the insecticide effect through this pathway was justified, since Ohtake et al. [23] reported a few years ago that dioxins can mimic the effect of estrogens via a mechanism that involves the activation of ER by the transcriptionally active AHR-aryl hydrocarbon nuclear translocator complex. Further studies could delineate the relative contribution of the a- and bisoforms of ER and the AMPA and kainate subtypes of glutamate receptors. After E2 administration in immature rodents, an inhibition of LH secretion was commonly observed [53, 54] and impeded the use of variations in LH secretion to investigate indirectly hypothalamic effects. In addition, there is physiologically a developmental reduction in serum LH concentrations between PND 15 and VO, both basally and in response to GnRH [15, 16], so that decreased LH levels could result from either negative feedback effects or accelerated maturation or both. Therefore, hypothalamic-pituitary maturation was assessed through evaluation of GnRH secretion during explant incubation and study of LH response to GnRH after steroid or EDC administration in vivo. We elected to study GnRH secretion at 15 days using explants from female rats based on our previous studies showing that the frequency of pulsatile GnRH secretion in vitro was maximally stimulated by E2 in such conditions and through a mechanism dependent on perinatal brain sexual differentiation [12]. The exposure of infantile female rats to E2 or o,p 0 -DDT for 5 or 10 days was followed by a dosedependent increase in GnRH pulse frequency and a decrease in serum LH levels on PND 15, suggesting a stimulation of hypothalamic maturation and a negative feedback inhibition or an early maturation of the pituitary secretion. A negative feedback component at the hypothalamic and/or pituitary level was supported by the reduction in the postcastration rise of serum LH levels that was reported after treatment of mature or neonatal rats with o,p 0 -DDT [11, 41]. However, no change in LH secretion basally and in response to GnRH was found in another study 6 wk after o,p 0 -DDT treatment between PNDs 1 and 10 [42]. The unchanged LH response to GnRH on PNDs 15 and 22 suggests that the result of the combined inhibitory and stimulatory effects at those stages is a steady state. Then, early VO could result from either a peripheral effect of E2 or DDT or early pituitary-ovarian activity or both. A central component at the time of VO is suggested by the brisk reduction in LH response to GnRH that was observed in the treated animals. Subsequently, early first estrus possibly confirmed premature activity of the hypothalamic-pituitaryovarian axis. Such a pathophysiologic mechanism could be consistent with an involvement of DDT in the sexual precocity occurring after migration in internationally adopted children [1, 2, 9]. In a recent Danish study of such children, it was shown that developmental changes in pituitary-ovarian hormone levels were observable before onset of puberty and supported a hypothalamic-pituitary mechanism of early puberty [55]. Since our report of an association between sexual precocity and the detection of p,p 0 -DDE in the serum of migrating girls [1], early menarche was found to occur after prenatal or postnatal exposure to DDE and/or DDT [56, 57]. However, others did not observe changes in menarcheal age after prenatal or postnatal exposure to DDE [58, 59], and postnatal treatment of female monkeys with methoxychlor resulted in delayed nipple development and menarche [60]. Further studies are warranted to clarify the possible role of EDC nature and parameters of exposure (age, dose, duration) in those discrepant effects. In rodents, discrepant observations were made as well, since pesticides such as methoxychlor and lindane resulted, respectively, in precocity and delay in the age at VO, but both PUBERTY AFTER EARLY EXPOSURE TO DDT insecticides caused disturbances of estrous cyclicity [61–63], and decreased serum LH levels were reported after lindane administration [61]. The GnRH neuron itself could be targeted by EDCs, since the phytoestrogen coumestrol caused inhibitory effects on GnRH transcript expression in GT1–7 GnRHsecreting neuronal cells through the b subtype of ER [64]. When E2 was injected for PND 6–40, early VO followed by permanent estrus was observed. After E2 treatment was stopped, first estrus appeared at a markedly delayed age. This could indicate a peripheral stimulatory effect of the steroid together with a central inhibition during exposure. A slight anorexigenic effect of E2 was observed, consistent with studies previously reported by Ramirez and Sawyer [65] and by Ramirez [66], whereas o,p 0 -DDT caused a dramatic decrease in body weight, suggesting a possible toxic effect of the insecticide [45]. In summary, evidence that DDT could influence the infantile female hypothalamic pituitary maturation was provided through early developmental acceleration of the GnRH secretion in vitro and early reduction of LH response to GnRH in vivo. It was also demonstrated that this chemical caused a precocious onset of puberty in vivo when immature individuals were transiently exposed to DDT. Further studies will aim to delineate its mechanism of action and address whether the GnRH neurons or other cell structures are primary targets. 13. 14. 15. 16. 17. 18. 19. 20. ACKNOWLEDGMENT 21. We thank Pr. J. Boniver (Department of Anatomy and Pathology) for the assistance of his lab in Papanicolaou staining. 22. REFERENCES 1. Krstevska-Konstantinova M, Charlier C, Craen M, Du Caju M, Heinrichs C, de Beaufort C, Plomteux G, Bourguignon JP. Sexual precocity after immigration from developing countries to Belgium: evidence of previous exposure to organochlorine pesticides. Hum Reprod 2001; 16:1020–1026. 2. Parent AS, Teilmann G, Juul A, Skakkebaek NE, Toppari J, Bourguignon JP. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr Rev 2003; 24:668–693. 3. Marshall E. Search for a killer: focus shifts from fat to hormones. Science 1993; 259:618–621. 4. Toppari J, Larsen JC, Christiansen P, Giwercman A, Grandjean P, Guillette LJ, Jégou B, Jensen TK, Jouannet P, Keiding N, Leffers H, McLachlan JA, et al. Male reproductive health and environmental xenoestrogens. Environ Health Perspect 1996; 104:741–803. 5. Key T, Reeves G. Organochlorines in the environment and breast cancer. Br Med J 1994; 308:1520–1521. 6. Partsch CJ, Sippel WG. Pathogenesis and epidemiology of precocious puberty. Effects of exogenous estrogens. Hum Reprod Update 2001; 7: 292–302. 7. Clark EJ, Norris DO, Jones RE. Interactions of gonadal steroids and pesticides (DDT and DDE) on gonadal duct in larval tiger salamanders Ambystoma tigrinum. Gen Comp Endocr 1998; 109:94–105. 8. Kelce WR, Stone CR, Laws SC, Gray LE, Kemppainen JA, Wilson EM. Persistent DDT metabolite p,p’-DDE is a potent androgen receptor antagonist. Nature 1995; 375:581–585. 9. Rasier G, Toppari J, Parent AS, Bourguignon JP. Female sexual maturation and reproduction after prepubertal exposure to estrogens and endocrine disrupting chemicals: a review of rodent and human data. Mol Cel Endocrinol 2006; 254–255:187–201. 10. Heinrichs WL, Gellert RJ, Bakke JL, Lawrence NL. DDT administered to neonatal rats induces persistent estrus syndrome. Science 1971; 173:642– 643. 11. Gellert RJ, Heinrichs WL, Swerdloff RS. DDT homologues: estrogen-like effects on the vagina, uterus and pituitary of the rat. Endocrinology 1972; 91:1095–1100. 12. Matagne V, Rasier G, Lebrethon MC, Gérard A, Bourguignon JP. Estradiol stimulation of pulsatile gonadotropin-releasing hormone secretion in vitro: correlation with perinatal exposure to sex steroids and 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 741 induction of sexual precocity in vivo. Endocrinology 2004; 145:2775– 2783. Yamanaka C, Lebrethon MC, Vandersmissen E, Gérard A, Purnelle G, Lemaitre M, Wilk S, Bourguignon JP. Early prepubertal ontogeny of pulsatile gonadotropin-releasing hormone (GnRH) secretion: I. inhibitory autofeedbak control through prolyl endopeptidase degradation of GnRH. Endocrinology 1999; 140:4609–4615. Bourguignon JP, Franchimont P. Puberty-related increase in episodic LHRH release from rat hypothalamus in vitro. Endocrinology 1984; 114: 1941–1943. Ojeda SR, Jameson HE, McCann SM. Developmental changes in pituitary responsiveness to luteinizing hormone-releasing hormone (LHRH) in the female rat: ovarian-adrenal influence during the infantile period. Endocrinology 1977; 100:440–451. Ramalev JA. Pituitary gonadotropin-releasing hormone responsiveness in the prepubertal period: effect of delayed puberty onset. Neuroendocrinology 1982; 34:387–394. Bourguignon JP, Gérard A, Franchimont P. Direct activation of gonadotropin-releasing hormone secretion through different receptors to neuroexcitatory amino acids. Neuroendocrinology 1989; 49:402–408. Bourguignon JP, Gérard A, Mathieu J, Simons J, Franchimont P. Pulsatile release of gonadotropin-releasing hormone from hypothalamic explants is restrained by blockade of N-methyl-D-aspartate receptors. Endocrinology 1989; 125:1090–1096. Dluzen DE, Ramirez VD. Presence and localization of immunoreactive luteinizing hormone-releasing hormone within the olfactory bulbs of adult male and female rats. Peptides 1981; 2:493–496. Tena-Sempere M, Barreiro ML, Aguilar E, Pinilla L. Mechanisms for altered reproductive function in female rats following neonatal administration of raloxifene. Eur J Endocrinol 2004; 150:397–403. Matagne V, Lebrethon MC, Gérard A, Bourguignon JP. Kainate/estrogen receptor involvement in rapid estradiol effects in vitro and intracellular signaling. Endocrinology 2005; 146:2313–2323. Bourguignon JP, Gérard A, Alvarez-Gonzalez ML, Franchimont P. Neuroendocrine mechanism of onset of puberty. Sequential reduction in activity of inhibitory and facilitatory N-methyl-D-aspartate receptors. J Clin Invest 1992; 90:1736–1744. Ohtake F, Takeyama K, Matsumoto T, Kitagawa H, Yamamoto Y, Nohara K, Tohyama C, Krust A, Mimura J, Chambon P, Yanagisawa J, FujiiKuriyama Y, et al. Modulation of estrogen receptor signaling by association with the activated dioxin receptor. Nature 2003; 423:545–550. Diaz DR, Fleming DE, Rhees RW. The hormone-sensitive early postnatal periods for sexual differentiation of feminine behavior and luteinizing hormone secretion in male and female rats. Brain Res Dev Brain Res 1995; 86:227–232. Gogan F, Beattie IA, Hery M, Laplante E, Kordon D. Effect of neonatal administration of steroids or gonadectomy upon estradiol-induced luteinizing hormone release in rats of both sexes. J Endocrinol 1980; 85:69–74. Ojeda SR, Urbanski HF. Puberty in the rat. In: Knobil E, Neil JD (eds.), The Physiology of Reproduction, vol. 2. New York: Raven Press Ltd; 1994:363–409. Merriam GR, Wachter KW. Algorithms for the study of episodic hormone secretion. Am J Phys 1982; 243:310–318. Bourguignon JP, Gérard A, Mathieu J, Mathieu A, Franchimont P. Maturation of the hypothalamic control of pulsatile gonadotropin-releasing hormone secretion at onset of puberty. Increased activation of N-methylD-aspartate receptors. Endocrinology 1990; 127:873–881. DePaolo LV, Negro-Vilar A. Neonatal monosodium glutamate treatment alters the response of median eminence luteinizing hormone-releasing hormone nerve terminals to potassium and prostaglandin E2. Endocrinology 1982; 110:835–841. Harris GC, Levine JE. Pubertal acceleration of pulsatile gonadotropinreleasing hormone release in male rats as revealed by microdialysis. Endocrinology 2003; 144:163–171. Sisk CL, Richardson HN, Chappell PE, Levine JE. In vivo gonadotropinreleasing hormone secretion in female rats during peripubertal development and on proestrus. Endocrinology 2001; 142:2929–2936. Purnelle G, Gérard A, Czajkowski V, Bourguignon JP. Pulsatile secretion of gonadotropin-releasing hormone by rat hypothalamic explants without cell bodies of GnRH neurons. Neuroendocrinology 1997; 66:305–312. Erratum in: Neuroendocrinology 1998; 67:57. Mellon PL, Windle JJ, Goldsmith PC, Padula CA, Roberts JL, Weiner RI. Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 1990; 5:1–10. 742 RASIER ET AL. 34. Radovick S, Wray S, Lee E, Nicols DK, Nakayama Y, Weintraub BD, Westphal H, Cutler GB Jr, Wondisford PE. Migratory arrest of gonadotropin-releasing hormone neurons in transgenic mice. Proc Natl Acad Sci U S A 1991; 88:3402–3406. 35. Salvi R, Castillo E, Voirol MJ, Glauser M, Rey JP, Gaillard RC, Vollenweider P, Pralong FP. Gonadotropin-releasing hormone-expressing neurons immortalized conditionally are activated by insulin: implication of the mitogen-activated protein kinase pathway. Endocrinology 2006; 127: 816–826. 36. Funabashi T, Daikoku S, Shinohara K, Kimura F. Pulsatile gonadotropinreleasing hormone (GnRH) secretion is an inherent function of GnRH neurons, as revealed by the culture of medial olfactory placode obtained from embryonic rats. Neuroendocrinology 2000; 71:138–144. 37. Krsmanovic LZ, Martinez-Fuentes AJ, Arora KK, Mores N, Navarro CE, Chen HC, Stojilkovic SS, Catt KJ. Autocrine regulation of gonadotropinreleasing hormone secretion in cultured hypothalamic neurons. Endocrinology 1999; 140:1423–1431. 38. Melrose P, Gross L. Steroid effects on the secretory modalities of gonadotropin-releasing hormone release. Endocrinology 1987; 121:190– 199. 39. Kato M, Ui-Tei K, Watanabe M, Sakuma Y. Characterization of voltagegated calcium currents in gonadotropin-releasing hormone neurons tagged with green fluorescent protein in rats. Endocrinology 2003; 144:5118– 5125. 40. Wrenn TR, Weyant JR, Fries GF, Bitman J. Effects of several dietary levels of o,p’-DDT on reproduction and lactation in the rat. Bull Environ Contam Tox 1971; 6:471–480. 41. Gellert RJ, Heinrichs WL, Swerdloff RS. Effects of neonatally administered DDT homologs on reproductive function in male and female rats. Neuroendocrinology 1974; 16:84–94. 42. Faber KA, Basham K, Hughes CL Jr. The effect of neonatal exposure to DES and o,p’-DDT on pituitary responsiveness to GnRH in adult castrated rats. Reprod Toxicol 1991; 5:363–369. 43. Desaulniers D, Cooke GM, Leingartner K, Soumano K, Cole J, Yang J, Wade M, Yagminas A. Effects of postnatal exposure to a mixture of polychlorinated biphenyls, p,p’-dichlorodiphenyltrichloroethane, and p,p’dichlorodiphenyldichloroethene in prepubertal and adult female SpragueDawley rats. Int J Toxicol 2005; 24:111–127. 44. Mussi P, Ciana P, Raviscioni M, Villa R, Regondi S, Agradi E, Maggi A, Di Lorenzo D. Activation of brain estrogen receptors in mice lactating from mothers exposed to DDT. Br Res Bull 2005; 65:241–247. 45. Tomiyama N, Watanabe M, Takeda M, Harada T, Kobayashi H. A comparative study on the reliability of toxicokinetic parameters for predicting hepatotoxicity of DDT in rats receiving a single or repeated administration. J Toxicol Sci 2003; 28:403–413. 46. Rajapakse N, Silva E, Scholze M, Kortenkamp A. Deviation from additivity with estrogenic mixtures containing 4-nonylphenol and 4-tertoctylphenol detected in the E-SCREEN assay. Environ Sci Technol 2004; 38:6343–6352. 47. Diel P, Olff S, Schmidt S, Michna H. Effects of the environmental estrogens bisphenol A, o,p’-DDT, p-tert-octylphenol, and coumestrol on apoptosis induction, cell proliferation, and the expression of estrogen sensitive molecular parameters in the human breast cancer cell line MCF7. J Steroid Biochem Mol Biol 2002; 80:61–70. 48. Bulger WH, Muccitelli RM, Kupfer D. Interactions of chlorinated 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. hydrocarbon pesticides with the 8S estrogen–binding protein in rat testes. Steroids 1978; 32:165–177. Matagne V, Lebrethon MC, Gérard A, Bourguignon JP. In vitro paradigms for the study of GnRH neuron function and estrogen effects. Ann N Y Acad Sci 2003; 1007:129–142. Herbison AE. Multimodal influence of estrogen upon gonadotropinreleasing hormone neurons. Endocr Rev 1998; 19:302–330. Herbison AE, Pape JR. New evidence for estrogen receptors in gonadotropin-releasing hormone neurons. Front Neuroendocrin 2001; 22:292–308. Diano S, Naftolin F, Horvath TL. Kainate glutamate receptors (GluR5–7) in the rat arcuate nucleus: relationship to tanycytes, astrocytes, neurons and gonadal steroid receptors. J Neuroendocrinol 1998; 10:239–247. Andrews WW, Ojeda SR. On the feedback actions of estrogen on gonadotropin and prolactin release in infantile female rats. Endocrinology 1977; 101:1517–1523. Caligaris L, Astrada JJ, Taleisnik S. Influence of age on the release of luteinizing hormone induced by estrogen and progesterone in immature rats. J Endocrinol 1972; 55:97–103. Teilmann G, Pedersen CB, Skakkebaek NE, Jensen TK. Increased risk of precocious puberty in internationally adopted children in Denmark. Pediatrics 2006; 118:391–399. Vasiliu O, Muttinemi J, Kamaus W. In utero exposure to organochlorines and age at menarche. Hum Reprod 2004; 19:1506–1512. Ouyang F, Perry MJ, Venners SA, Cheng C, Wang B, Yang F, Fang Z, Zang T, Wang L, Xu X, Wang X. Serum DDT, age at menarche and abnormal menstrual cycle length. Occup Environ Med 2005; 62:878–884. Gladen BC, Ragan NB, Rogan WJ. Pubertal growth and development, and lactational exposure to polychlorinated biphenyls and dichlorodiphenyldichloroethane. J Pediatr 2000; 136:490–496. Denham M, Schell LM, Deane G, Gallo MV, Ravenscroft J, DeCaprio AP. Relationship of lead, mercury, mirex, dichlorodiphenyldichlroethylene, hexachlorobenzene and polychlorinated biphenyls to timing of menarche among Akwesasne Mohawk girls. Pediatrics 2005; 115:127–134. Golub MS, Hogrefe CE, Germann SL, Lasley BL, Natarajan K, Tarantal AF. Effects of exogenous estrogenic agents on pubertal growth and reproductive system maturation in female rhesus monkeys. Toxicol Sci 2003; 74:103–113. Cooper RL, Chadwick RW, Rehnberg GL, Goldman JM, Booth KC, Hein JF, McElroy WK. Effects of lindane on hormonal control of reproductive function in the female rat. Toxicol Appl Pharm 1989; 99:384–394. Gray LE Jr, Ostby J, Ferrell J, Rehnberg G, Linder R, Cooper R, Goldman J, Slott V, Lashey J. A dose-response analysis of methoxychlor-induced alterations of reproductive development and function in the rat. Fundam Appl Toxicol 1989; 12:92–108. Laws SC, Carey SA, Ferrell JM, Bodman GJ, Cooper RL. Estrogenic activity of octylphenol, nonylphenol, bisphenol A, and methoxychlor in rats. Toxicol Sci 2000; 54:154–167. Bowe J, Li XF, Sugden D, Katzenellenbogen JA, Katzenellenbogen BS, O’Byrne KT. The effects of the phytoestrogen, coumestrol, on gonadotropin-releasing hormone (GnRH) mRNA expression in GT1–7 GnRH neurones. J Neuroendocrinol 2003; 15:105–108. Ramirez VD, Sawyer CH. Advancement of puberty in the female rat by estrogen. Endocrinology 1965; 76:1158–1168. Ramirez I. Estradiol-induced changes in lipoprotein lipase, eating, and body weight in rats. Am J Phys 1981; 240:533–538. Oxytocin Facilitates Female Sexual Maturation through a Glia-to-Neuron Signaling Pathway Anne-Simone Parent, Grégory Rasier, Valérie Matagne, Alejandro Lomniczi, Marie-Christine Lebrethon, Arlette Gérard, Sergio R. Ojeda and Jean-Pierre Bourguignon Endocrinology 2008 149:1358-1365 originally published online Nov 26, 2007; , doi: 10.1210/en.2007-1054 To subscribe to Endocrinology or any of the other journals published by The Endocrine Society please go to: http://endo.endojournals.org//subscriptions/ Copyright © The Endocrine Society. All rights reserved. Print ISSN: 0021-972X. Online 0013-7227/08/$15.00/0 Printed in U.S.A. Endocrinology 149(3):1358 –1365 Copyright © 2008 by The Endocrine Society doi: 10.1210/en.2007-1054 Oxytocin Facilitates Female Sexual Maturation through a Glia-to-Neuron Signaling Pathway Anne-Simone Parent, Grégory Rasier, Valérie Matagne, Alejandro Lomniczi, Marie-Christine Lebrethon, Arlette Gérard, Sergio R. Ojeda, and Jean-Pierre Bourguignon Developmental Neuroendocrinology Unit (A.-S.P., G.R., M.-C.L., A.G., J.-P.B.), University of Liège, 4000 Liège, Belgium; and Division of Neuroscience (V.M., A.L., S.R.O.), Oregon National Primate Research Center, Beaverton, Oregon 97006 It has been earlier proposed that oxytocin could play a facilitatory role in the preovulatory LH surge in both rats and humans. We here provide evidence that oxytocin also facilitates sexual maturation in female rats. The administration of an oxytocin antagonist for 6 d to immature female rats decreased GnRH pulse frequency ex vivo and delayed the age at vaginal opening and first estrus. The in vitro reduction in GnRH pulse frequency required chronic blockade of oxytocin receptors, because it was not acutely observed after a single injection of the antagonist. Hypothalamic explants exposed to the antagonist in vitro showed a reduced GnRH pulse frequency and failed to respond to oxytocin with GnRH release. O XYTOCIN PLAYS a crucial role in reproduction. The peptide plays a pivotal role in parturition and lactation in many species (1) and acts centrally to influence maternal and mating behavior in rodents (2– 4). In addition to this involvement in reproductive behavior, oxytocin has been shown to stimulate GnRH secretion from medial basal hypothalamic explants of adult male rats (5) and of cycling female rats on the afternoon of proestrus (6). Using hypothalamic explants from male rats, one of our laboratories recently showed that neonatal pulsatile GnRH secretion in vitro is facilitated by oxytocin and that this stimulatory effect is mimicked by prostaglandin E2 (PGE2) (7). Sexual maturation involves an acceleration of pulsatile GnRH secretion (8 –10). This activation is elicited by neuronal as well as astroglial factors produced by cells functionally connected to GnRH neurons (11). The neuronal networks involved in the transsynaptic regulation of GnRH secretion mainly comprise neurons that use excitatory and inhibitory amino acids for neurotransmission in addition to the newly discovered kisspeptin-GPR54 signaling system (12, 13). However, additional neuronal systems that either stimulate or inhibit GnRH secretion have been described, including noradrenergic, dopaminergic, and opiatergic neurons (14). More recently, oxytocin neurons have been involved in the facilitatory control of GnRH secretion (5–7). The recent findings that oxytocin stimulates GnRH secretion in prepubertal male rats (7) and that administration of an oxytocin antag- First Published Online November 26, 2007 Abbreviations: AACOCF3, Arachidonylfluoromethyl ketone; OTR, oxytocin receptor; PGE2, prostaglandin E2; PLA2, phospholipase A2. Endocrinology is published monthly by The Endocrine Society (http:// www.endo-society.org), the foremost professional society serving the endocrine community. Prostaglandin E2 (PGE2) mimicked the stimulatory effect of oxytocin on GnRH pulse frequency, and inhibition of PG synthesis blocked the effect of oxytocin, suggesting that oxytocin accelerates pulsatile GnRH release via PGE2. The source of PGE2 appears to be astrocytes, because oxytocin stimulates PGE2 release from cultured hypothalamic astrocytes. Moreover, astrocytes express oxytocin receptors, whereas GnRH neurons do not. These results suggest that oxytocin facilitates female sexual development and that this effect is mediated by a mechanism involving glial production of PGE2. (Endocrinology 149: 1358 –1365, 2008) onist blunted the preovulatory LH peak in women (15) prompted us to study the role of oxytocin in female puberty. Thus, we aimed at studying in vivo the possible delaying effects of an oxytocin antagonist on female sexual maturation and used an explant paradigm to define in vitro the mechanism underlying this effect. In particular, we aimed at determining whether PGE2 mediates the facilitatory effect of oxytocin on pulsatile GnRH secretion, a pathway suggested by the ability of oxytocin to stimulate PGE2 release from the rat hypothalamus (5), and the effectiveness of PGE2 to stimulate GnRH release (16) via PGE2 receptors expressed in GnRH neurons (17). Materials and Methods Animals Female Wistar rats used for in vivo studies and in vitro experiments to measure pulsatile GnRH release were housed in temperature- and light-controlled conditions and were given ad libitum access to water and standard rat pellets. The prepubertal animals were housed with their mothers until weaning at 3 wk of age. Except on d 1 when rats were used irrespective of gender, only female rats were used. The day of birth was considered as postnatal d 1. Two-day-old female rats of the Sprague Dawley strain purchased from Charles River Laboratories (Wilmington, MA) were used for RNA extraction and preparation of astrocyte cultures. For comparative purposes, RNA was also extracted from the hypothalamus of 2-d-old female mice (FVB/NTAC strain; Taconic, Hudson, NY). The use of rats and mice was approved by the University of Liege and the Oregon National Primate Research Center Animal Care and Use Committees in accordance with the National Institutes of Health guidelines for the use of animals in research. Incubation of hypothalamic explants and GnRH RIA The animals were decapitated between 1000 and 1100 h, and tissue fragments that included the preoptic region and the medial basal hypothalamus were rapidly dissected and transferred into a static incubator. In each experiment, 12–15 explants were studied individually for 1358 Parent et al. • Oxytocin and Female Sexual Maturation 4 – 6 h through collection and renewal of the incubation medium (0.5 ml) every 7.5 min. This procedure has been described in detail in previous publications (7, 10, 18). The incubation medium was phenol red-free MEM (Life Technologies, Inc., Invitrogen Corp., Merelbeke, Belgium) supplemented with glycine (10 nm), magnesium (1 mm), and glucose (25 mm). The incubation medium was supplemented with 20 m bacitracin, an inhibitor of GnRH degradation by endopeptidases. The medium samples were frozen until the GnRH RIA was performed. GnRH was measured in duplicate samples using a highly sensitive RIA (18, 19) and an antiserum (20) generously provided by Dr. Y. F. Chen and V. D. Ramirez (Urbana, IL). The intra- and interassay coefficients of variation were 14 and 18%, respectively (18, 19). Values below the limit of detection of the assay (5 pg/7.5 min) were assigned that value. Endocrinology, March 2008, 149(3):1358 –1365 1359 designed using the Primer Select software (DNASTAR Inc., Madison, WI) and were as follows: mouse OTR (XM_144956.6) sense 5⬘-TTCTACGGGCCCGACCTGCTGTGT-3⬘ and antisense 5⬘-CTGTGCGGATTTTGGCCTTGGAGA-3⬘, rat OTR (NM_012871.2) sense 5⬘-TTCTATGGGCCCGACCTGCTGTGT-3⬘ and antisense 5⬘-CCGTGCGGATTTTGGCCTTGGAGA-3⬘, mouse cyclophilin (NM_008907) sense 5⬘-GGCAAATGCTGGACCAAACACAA-3⬘ and antisense 5⬘-GGTAAAATGCCCGCAAGTCAAAAG-3⬘, and rat cyclophilin (M19533) sense 5⬘-CTTTGCAGACGCCGCTGTCTCTTTTCGCCG-3⬘ and antisense 5⬘-GCATTTGCCATGGACAAGATGCCAGGA-3⬘. PCR products were resolved on a 2% agarose gels and visualized by ethidium bromide staining. Both rat and mouse OTR primers amplify a 505-bp PCR product. Combined immunohistochemistry-in situ hybridization Cell culture Astrocytes were isolated from the hypothalamus of 1- to 2-d-old rats and cultured as described previously (21, 22). After a growth period of 8 –10 d in 75-cm3 culture flasks containing DMEM-F12 medium supplemented with 10% calf serum, the astrocytes were isolated from contaminant cells by overnight shaking at 250 rpm and were replated on 10-cm3 dishes for RT-PCR or 12-well plates for PGE2 release experiments. After reaching 90% confluence, the medium was replaced with a serum-free, astrocyte-defined medium consisting of DMEM devoid of phenol red, supplemented with 2 mm l-glutamine, 15 mm HEPES, 5 g/ml insulin, and 100 m putrescine. The cells were used 2 d later for RT-PCR or PGE2 release experiments. For RT-PCR, the cells were snapfrozen on dry ice before extraction of total RNA. To assess the effect of oxytocin on PGE2 release, the cells were incubated for 16 h with oxytocin acetate (10⫺8 m; Sigma Chemical Co., St. Louis, MO). TGF␣ (100 ng/ml; PreproTech Inc., Rocky Hill, NJ) was used as a positive control. After stimulation, the medium was collected and stored at ⫺85 C before PGE2 assay. The immortalized GnRH-producing cells GT1-7 (kindly provided by Dr. R. Weiner, University of California, San Francisco, CA) were cultured in 10-cm dishes in DMEM containing 10% fetal calf serum. After reaching 70 – 80% confluence, the cells were washed with PBS and frozen on dry ice before RNA extraction. Measurement of PGE2 release PGE2 released from astrocytes in response to TGF␣ or oxytocin was measured by RIA as described previously (23). RNA extraction and RT-PCR Total RNA from rat and mouse hypothalami was prepared by the acid phenol-extraction method. Tissues were homogenized (100 mg/ml) in Tri Reagent (Molecular Research Center, Cincinnati, OH), and the aqueous and organic phases were separated by the addition of 0.1 vol bromochloropropane (Sigma) followed by centrifugation at 4 C. One volume of isopropanol was added to the aqueous phase, and RNA was precipitated by overnight incubation at ⫺20 C. Samples were centrifugated at 14,500 ⫻ g for 15 min at 4 C. The pellets were washed in 70% ethanol and then air dried for 5 min. The RNA pellets were then resuspended in diethylpyrocarbonate-treated H2O, and the suspension was incubated with DNA-free DNase I (two units per reaction) from Ambion (Austin, TX) for 30 min at 37 C. RNA concentrations were determined spectrophotometrically, and RNA integrity was verified on denaturing agarose gels. RT2-PCR was used to detect oxytocin receptor (OTR) mRNA in cultured hypothalamic astrocytes, GT1-7 cells, and hypothalami obtained from 2-dold female rats and mice. Five hundred nanograms of total RNA were reverse transcribed using Omniscript RT Kit (QIAGEN, Valencia, CA) according to the manufacturer’s instructions. PCR was performed in a volume of 25 l containing 1 l RT product, 2.5 l 10⫻ buffer (HotStar Taq Polymerase Kit; QIAGEN), 1 l 10 mm dNTPs (HotStar Taq Polymerase Kit; QIAGEN), 0.15 l HotSar Taq Polymerase (QIAGEN), and 0.5 l OTR primers (50 m) or 0.5 l of a set of primers (50 m) that amplify cyclophilin mRNA, a constitutively expressed mRNA. After an initial incubation at 95 C for 15 min, the samples were amplified for 35 cycles consisting of 30 sec at 94 C (denaturing), 30 sec at 64 C (annealing), and 1 min at 72 C (extension) and then incubated 10 min at 72 C (final extension). The primers were To determine whether OTR mRNA is expressed in GnRH neurons of the rat hypothalamus, we used a combined immunohistochemistry-in situ hybridization procedure described earlier in detail (17, 24). GnRH neurons were stained with a monoclonal antibody to GnRH (25) diluted 1:3000, and the reaction was developed to a brown color with 3,3⬘diaminobenzidine. After completing the GnRH immunohistochemical procedure, the sections were mounted on glass slides and dried overnight under vacuum before hybridization with a [35S]UTP-labeled rat (r)OTR cRNA probe described below. After an overnight hybridization at 55 C, the slides were washed and processed for cRNA detection. After a final dehydration step in graded alcohols, the slides were dipped in NTB-2 emulsion and were exposed to the emulsion for 3 wk at 4 C. At this time, the slides were developed, counterstained with 0.1% methyl green, quickly dehydrated, dried, and coverslipped for microscopic examination. All reagents used for the immunohistochemical procedure were prepared in diethylpyrocarbonate-treated water. The OTR cRNA probe used was prepared by in vitro transcription of a cDNA template cloned into the pGEM-T vector (Promega, Madison, WI) and that derived from the 505-bp PCR product described above. Study protocols Effect of an oxytocin antagonist on sexual maturation. From d 15–20 of age, 16 immature female rats received a daily ip injection of 200 g/kg of an oxytocin antagonist, des-Gly-NH2d(CH2)2[d-Tyr2, Thr4]vasotocin (10⫺7 m), generously provided by Dr. Maurice Manning, Medical University of Ohio, Toledo, OH. This antagonist is selective for the OTR with respect to vasopressin receptors, in particular the closely related vasopressin receptor V1a (26). Such selectivity allowed us to consider the effect of the antagonist as specifically due to functional disruption of the intended target. The antagonist was diluted in saline. The control group consisted of 16 immature female rats receiving an ip injection of the saline vehicle from d 15–20 at 0800 h. On d 20, 2 h after the last injection, eight of the oxytocin antagonist-treated rats and eight of the control rats were killed, and the hypothalamus was dissected and incubated for 4 h either in regular medium or in the presence of oxytocin (10⫺8 m). The other half of the control and oxytocin antagonist-treated groups were inspected daily from d 20 on for vaginal opening. Subsequently, vaginal lavages were obtained daily for 6 wk to determine the age at first estrus (27), and the cells were visualized after staining using the Papanicolaou method. The second experiment followed the same protocol, except that the rats were injected daily between d 10 and 20 of age to determine whether an earlier neutralization of oxytocin actions was more effective to delay sexual maturation. To determine whether the effect of the oxytocin antagonist administration in vivo on GnRH pulse frequency in vitro resulted from an acute effect of the last dose injected or a chronic effect of the 6-d treatment, a group of 16 20-d-old female rats received only one injection of oxytocin antagonist or saline at 0800 h and were killed 2 h later. The hypothalami were dissected and incubated as above. Dose dependency of oxytocin stimulatory effect on pulsatile GnRH secretion in vitro. Because the above in vitro paradigm allowed us earlier to detect an increase in frequency of pulsatile GnRH secretion between 10 and 25 d of age in male rats (8), the present studies were performed using explants of an intermediate age (15 d). Pulsatile GnRH secretion was evaluated after exposing the explants to 10⫺10, 10⫺9, 10⫺8, or 10⫺7 m oxytocin for 1360 Endocrinology, March 2008, 149(3):1358 –1365 Parent et al. • Oxytocin and Female Sexual Maturation 4 h (four explants per concentration) in comparison with eight explants incubated under control conditions. Effect of oxytocin on GnRH pulse frequency in vitro. Pulsatile GnRH secretion was studied for 4 h, starting at 1000 h, using explants obtained from 1-, 5-, 15-, and 50-d-old female rats. The 50-d-old rats were used irrespective of the phase of the estrous cycle. In a previous study, we showed that changes in pulsatile GnRH secretion related to the phase of the estrous cycle were detected only when the experiments were started around 1600 h (28). The explants were incubated with saline vehicle, oxytocin alone, or a combination of oxytocin and the oxytocin antagonist (n ⫽ 5 for each condition), as outlined above. Oxytocin-PGE2 interactions in vitro. Pulsatile GnRH secretion was studied for 4 h using explants obtained from 1- and 15-d-old female rats. Pulsatile GnRH secretion was studied under control conditions, in the presence of oxytocin (10⫺8 m) or PGE2 (10⫺6 m) or in the presence of arachidonylfluoromethyl ketone (AACOCF3, 25 m; Biomol Research Laboratories, Plymouth Meeting, PA), a blocker of phospholipase A2 (PLA2) that results in inhibition of PGE2 synthesis. This inhibitor was used alone or together with oxytocin (10⫺8 m). Statistical analysis Pulses of GnRH secretion were identified using the Pulsar program, as described previously (29). The individual interpulse interval as well as the mean ⫾ sem interpulse interval was calculated. In several instances, all the interpulse intervals were equal, thus accounting for an sem equal to zero. The effect of the different agents on GnRH pulse amplitude and frequency was analyzed by one-way ANOVA followed by the StudentNewman-Keuls test. The effect of the oxytocin antagonist on the age at vaginal opening and first estrus was analyzed by unpaired t test. The threshold for significant difference was P ⬍ 0.05. Results Effect of an oxytocin antagonist on female sexual maturation In rats treated with an oxytocin antagonist for 6 d (d 15–20), vaginal opening was delayed compared with rats injected with the vehicle (35 ⫾ 0 vs. 33 ⫾ 0 d, P ⬍ 0.0001; Fig. 1A). The age at first estrus, which defines the age of first ovulation, was not affected (Fig. 1B). When treatment with the oxytocin antagonist started earlier (d 10 instead of 15), both vaginal opening and the age at first estrus were significantly delayed (P ⬍ 0.0001; Fig. 1, C and D). In vitro study of GnRH pulse frequency under control conditions using hypothalamic explants from female rats at 5, 10, 15, 20, 25, and 30 d of age showed a decrease of GnRH interpulse interval between d 10 and 20 (Fig. 1E). When the hypothalamic explants of the rats treated in vivo with the oxytocin antagonist were studied in vitro on d 20, the GnRH interpulse interval was significantly increased with respect to explants obtained from vehicle-treated animals (51 ⫾ 3 vs. 44 ⫾ 3 min, respectively, P ⬍ 0.001; Figs. 1E and 2, A and B). This increase resulted from the chronic administration of the FIG. 1. Effect of in vivo administration of an oxytocin antagonist on the onset of puberty in female rats and on pulsatile hypothalamic GnRH release. A, Age at vaginal opening in vehicle-treated rats and rats treated with an oxytocin antagonist from postnatal d 15–20. B, Age at first estrus of the same animals. Bars are means, and vertical lines are SEM. Each group represents the mean of seven to 10 animals. C, Age at vaginal opening in female rats treated with the oxytocin antagonist or vehicle from postnatal d 10 –20. D, Age at first estrus of the same animals. Bars are means, and vertical lines are SEM. Each group represents the mean of seven to 10 animals. E, GnRH interpulse interval during female rat development using hypothalamic explants from 5-, 10-, 15-, 20-, 25-, and 30-d-old rats as well as hypothalamic explants of 20-d-old rats incubated in vitro after a 6-d treatment (d 15–20) with an oxytocin antagonist. Bars represent the mean ⫾ SEM of four to five explants for each age. *, P ⬍ 0.001 vs. vehicle-treated group; &&, P ⬍ 0.001 vs. preceding age; &, P ⬍ 0.05 vs. preceding age. Parent et al. • Oxytocin and Female Sexual Maturation FIG. 2. Representative profiles of GnRH secretion from hypothalamic explants of 20-d-old female rats. The rats received a daily injection of vehicle (A and D) or 200 g/kg of an oxytocin antagonist (B and E) from d 15–20 or only one injection of oxytocin antagonist on d 20 (C). The explants were incubated with 10⫺8 M oxytocin (D and E) or without the hormone (A–C). Each group consists of five explants. antagonist because the GnRH interpulse interval was not affected by a single in vivo administration of the antagonist on d 20 (45 ⫾ 0 min; Fig. 2C). Exposure of the explants from rats injected with the vehicle to oxytocin in vitro resulted in a significant reduction in GnRH interpulse interval (40 ⫾ 4 vs. 44 ⫾ 3 min, P ⬍ 0.01; Fig. 2, A and D). This was consistent with our previous data showing a facilitatory effect of oxytocin on pulsatile GnRH secretion from male hypothalami (7). Administration of the oxytocin antagonist for 5 d in vivo did not affect this in vitro effect of oxytocin (48 ⫾ 4 vs. 51 ⫾ 3 min, P ⬍ 0.05; Fig. 2, B and E), likely due to displacement of decreasing antagonist concentrations by an excess of oxytocin from common binding sites. Dose dependency and ontogeny of oxytocin and oxytocin antagonist effect on pulsatile GnRH secretion in vitro Incubation of hypothalamic explants from 15-d-old female rats with oxytocin resulted in a dose-dependent reduction in GnRH interpulse interval, which was significant at concentrations of 10⫺9 to 10⫺7 m (Fig. 3). When explants from 1-, 5-, and 15-d-old rats were examined, the mean GnRH interpulse interval was significantly (P ⬍ 0.001) reduced by incubation with 10⫺8 m oxytocin (Fig. 4). Conversely, with the exception of d 5, GnRH pulse frequency was significantly decreased by addition of the oxytocin antagonist to the incubation medium, in the absence of exogenous oxytocin. This effect is consistent with previous results obtained using explants from male rats (7). Control hypothalami showed a GnRH interpulse interval that decreased gradually throughout sexual maturation, reaching minimal values at 50 d of age (Fig. 4). At this time, neither oxytocin nor the antagonist was any longer effective in altering pulsatile GnRH release. When explants from 5-d-old rats were incubated simultaneously with oxytocin and its antagonist, the effect of oxytocin on GnRH interpulse interval was totally inhibited (Fig. 4). Oxytocin-PGE2 interactions in vitro Because oxytocin has been shown to induce PGE2 release from medial basal hypothalamic explants (5), we hypothe- Endocrinology, March 2008, 149(3):1358 –1365 1361 FIG. 3. Effects of increasing oxytocin concentrations on the GnRH interpulse interval (mean ⫾ SEM) of hypothalamic explants from 15d-old female rats (n ⫽ 4 explants per group). NS, Not significantly different from vehicle-treated group. sized that PGE2 might mediate the stimulatory effect of oxytocin on pulsatile GnRH secretion. As shown in Fig. 5, both oxytocin and PGE2 were able to significantly decrease GnRH interpulse interval at the two ages studied (1 and 15 d). AACOCF3, an inhibitor of PLA2, was more effective in blocking the effect of oxytocin on d 1 than on d 15. When used alone AACOCF3 had no effect. Study of OTR expression in GnRH neurons The actions of oxytocin are mediated by activation of G protein-coupled receptors (30). To determine whether GnRH neurons express the OTR gene, we examined the preoptic region of two immature 28-d-old female rats. GnRH neurons were identified by immunohistochemistry and OTR mRNA by in situ hybridization. In agreement with earlier findings (31), OTR transcripts were expressed at low abundance in cells scattered throughout the suprachiasmatic region. However, they were not detected in GnRH neurons. Instead, FIG. 4. Effect of an oxytocin antagonist on GnRH interpulse interval and on the increase in GnRH pulse frequency elicited by oxytocin during postnatal development of the female rat hypothalamus. Hypothalamic explants from 1-, 5-, 15-, and 50-d-old rats were used. Bars represent means (n ⫽ 4), and vertical lines are SEM. A group of hypothalamic explants from 5-d-old rats was incubated in presence of both oxytocin and oxytocin antagonist. *, P ⬍ 0.001 vs. group incubated with vehicle alone; §, P ⬍ 0.001 vs. group treated with oxytocin alone. 1362 Endocrinology, March 2008, 149(3):1358 –1365 Parent et al. • Oxytocin and Female Sexual Maturation FIG. 5. Effects of PGE2 on GnRH pulse frequency and of an inhibitor of PLA2 synthesis (AACOCF3) on the increase in GnRH pulse frequency elicited by oxytocin on hypothalamic explants from 1- and 15-d-old female rats (n ⫽ 4 per group). Bars are means, and vertical lines represent SEM. *, P ⬍ 0.001 vs. control group incubated with vehicle; §, P ⬍ 0.001 vs. group treated with oxytocin. hybridization signals were seen in cells adjacent (Fig. 6, A and B) or near (Fig. 6C) these neurons. Study of OTR mRNA in hypothalamic astrocytes and GT1-7 cells Detection of OTR mRNA by RT-PCR showed that the transcripts are abundant in cultured rat hypothalamic astrocytes and in the rat medial basal hypothalamus (Fig. 7A). In contrast, they were absent in immortalized mouse GnRH neurons but clearly evident in cultured mouse hypothalamic astrocytes and mouse medial basal hypothalamus (Fig. 7B), suggesting that oxytocin might act on astrocytes to stimulate GnRH release indirectly, instead of acting on GnRH neurons. PGE2 release by oxytocin from hypothalamic astrocytes TGF␣ stimulates GnRH release via a glial intermediacy that involves activation of astrocytic erbB1 receptors and the FIG. 7. OTR mRNA can be detected by RT-PCR in hypothalamic astrocytes but not in immortalized GnRH-producing cells. A, OTR mRNA is present in cultured rat hypothalamic astrocytes (Astr-1 and Astr-2) and rat medial basal hypothalamus (MBH). B, Absence of OTR mRNA in GT1-7 cells (GT), in contrast with its presence in both cultured mouse hypothalamic astrocytes (Astr) and mouse MBH. C, Stimulation of PGE2 release from rat hypothalamic astrocyte cultures by oxytocin (10⫺8 M) or TGF␣ (100 ng/ml). Bars are means, and vertical lines are SEM. Numbers in parentheses are number of wells per group. **, P ⬍ 0.01; *, P ⬍ 0.05 vs. basal release. Cyclo, Cyclophilin mRNA; MM, molecular markers; ⫺RT, no RT reaction. subsequent release of PGE2 (32). We hypothesized that oxytocin action on GnRH neurons could be similarly mediated by astrocytic PGE2. We measured PGE2 release from rat hypothalamic astrocytes in primary culture after 16 h of exposure to oxytocin (10⫺8 m) or TGF␣ (100 ng/ml). As shown in Fig. 7C, oxytocin induced a significant (P ⬍ 0.01) increase in PGE2 release, which was, however, lower than that elicited by TGF␣. Discussion FIG. 6. Absence of OTR mRNA in GnRH neurons of the immature (28-d-old) female rat preoptic region, as assessed by combined immunohistochemistry (GnRH)/in situ hybridization (OTR) using a [35S]UTP-labeled OTR cRNA. A and B, Examples of OTR mRNApositive cells (arrows) adjacent to GnRH neurons (brown staining) lacking detectable OTR mRNA transcripts. C, OTR mRNA-positive cells (arrows) in the vicinity of GnRH neurons lacking OTR mRNA. Bars, 20 m. In this paper, we provide evidence that oxytocin facilitates sexual maturation in the female rat. We also show that oxytocin accelerates GnRH pulse frequency in vitro from hypothalamic explants obtained from female rats of different prepubertal ages and that this effect is mostly lost in adulthood. Using medial basal hypothalamic explants obtained from adult male rats, acceleration of GnRH pulsatile release by oxytocin concentrations as low as 10⫺10 m was previously Parent et al. • Oxytocin and Female Sexual Maturation reported (5). The present study, using hypothalamic explants from female rats, is in agreement with those earlier findings. That endogenous oxytocin is physiologically involved in the control of female puberty is suggested by the delayed sexual maturation resulting from blocking oxytocin actions during the infantile period of postnatal development. Of note, the oxytocin antagonist did not affect pulsatile GnRH secretion from 5-d-old explants, in contrast to the inhibitory effects observed earlier on d 1 and later on d 15. This ineffectiveness at 5 d may be related to a low availability of endogenous oxytocin at this age, instead of a reduced OTR response, because oxytocin was as effective on d 5 as on d 1 or 15 to increase GnRH pulse frequency. It is possible that after the effect of oxytocin of maternal origin dissipates shortly after birth, a maturational process is required for endogenous oxytocin to be released at physiologically relevant amounts in the offspring. Earlier studies have shown that significant amounts of mature oxytocin are detected in the hypothalamus only after the second week of postnatal life (33, 34). In agreement with this hypothesis, a study reported the absence of effect of the oxytocin antagonist on age at vaginal opening and first estrus when administered between 1 and 7 d of age. In contrast, they observed a delayed vaginal opening and first estrus after exposure to oxytocin during the same period (35). Our in vitro data suggest that the stimulatory effect of oxytocin on GnRH secretion decreases with age. This could be due to an age-related increase in oxytocin clearance or a reduced activity of its receptor. No study has specifically reported the ontogeny of oxytocin expression in the rat hypothalamus during pubertal maturation. However, Chibbar et al. (36) have shown that oxytocin mRNA levels increase in rats after puberty, after sex steroids stimulation. The regulation of the OTR appears to be complex as well. Although the receptor is expressed prenatally in the rat brain (37), the same study described a progressive decrease in receptor expression in certain regions, such as the hippocampus and the parietal cortex during postnatal development (37). Autoradiography experiments have shown the appearance of OTRs in the rat ventromedial hypothalamus at the time of puberty, probably under the stimulation of estrogens (38). To our knowledge, expression of the OTR in the hypothalamus during pubertal development has never been studied. The age-related decrease in oxytocin effectiveness in our model might be related to a decrease in expression of its receptor, as suggested by the aforementioned studies. Alternatively, a change in receptor affinity for oxytocin may also occur as the animal matures. However, only a limited subset of oxytocin neurons project to targets located within the hypothalamus (39). Thus, changes of oxytocin expression affecting the overall population of oxytocin neurons might make it difficult to identify changes occurring only in those subsets of oxytocin neurons innervating the hypothalamus. Beside its role in puberty, oxytocin has been suggested to play a role in the preovulatory LH surge. Using explants obtained at different phases of the estrous cycle, it has been shown that oxytocin can stimulate GnRH release in the afternoon of proestrus only (6). In our study, neither oxytocin nor the antagonist was any longer effective in significantly altering the frequency of pulsatile GnRH secretion in adult female rats. However, these data were obtained using ex- Endocrinology, March 2008, 149(3):1358 –1365 1363 plants studied in the morning, whereas we have shown earlier that the amplitude of GnRH secretion was increased in the afternoon of proestrus (28). Data concerning oxytocin effects on the human menstrual cycle are controversial. In contrast to the data showing an effect of oxytocin and an oxytocin antagonist on the endogenous LH surge (15, 40), a recent study showed that neither oxytocin nor its antagonist had any effect on basal and GnRH-induced gonadotropin secretion in the late follicular phase of the normal menstrual cycle (41). A major finding of the present study is that blockade of endogenous oxytocin actions by in vivo administration of a specific antagonist delays the initiation of female puberty. The onset of puberty is characterized by an increase in GnRH pulse generator activity (7). The main hypothalamic neurotransmitters/neuromodulators involved in this activation have been extensively characterized (14). They include excitatory and inhibitory amino acids such as ␥-aminobutyric acid and glutamate (11) and the newly described neuropeptide kisspeptin (12, 13). Our results suggest the existence of an independent oxytocin-mediated pathway contributing to the central regulation of the pubertal process. When endogenous oxytocin actions are blocked transiently (single injection of the antagonist), the timing of puberty is not affected. A delay is observed only when the antagonist is given for 6 d at the end of the infantile period, and becomes more evident when the treatment is initiated at an even earlier age. The age at which the antagonist is effective and the need for a sustained blockade for the antagonist to act effectively suggests that oxytocin regulates the pubertal process by modifying hardwiring events that take place during infantile development. The nature of these events has not been elucidated, but it may be related to the ability of oxytocin to cause morphological changes in glial cells and neurons (42). Other studies have shown that both neuronal remodeling induced by oxytocin (43) and permanent sex-related changes in glial morphology that occur during early postnatal development are mediated by PGE2 (44). Thus, our in vivo and in vitro data suggest the convergence of different regulatory mechanisms. The stimulatory effect of oxytocin on PGE2 release from astrocytes in primary culture as well as the stimulatory effect of oxytocin on GnRH secretion from hypothalamic explants in vitro suggest a rapid stimulatory effect of oxytocin. Oxytocin stimulation leads to a release of PGE2 that is able to directly stimulate GnRH release (17). The necessity of repeated in vivo injections suggests a long-term effect potentially involving morphological changes, as discussed above. The oxytocin antagonist was administered by ip injection, leading to the question of its transfer across the blood-brain barrier. The common understanding is that oxytocin antagonists cross the blood-brain barrier in small amounts (45– 47). However, oxytocin antagonists have been shown to induce behavioral changes when administered peripherally, implying a rate of brain transfer sufficient to induce central effects (48 –50). Because these behavioral effects were observed shortly after a single peripheral injection of the oxytocin antagonist (50), it would appear unlikely that the antagonist failed to cross the blood-brain barrier in our experiments. In the present study, the concordant reduction in GnRH pulse frequency observed both ex vivo after systemic administra- 1364 Endocrinology, March 2008, 149(3):1358 –1365 tion of the antagonist and in vitro demonstrates that the antagonist is acting centrally after peripheral administration. However, a peripheral effect of the injected oxytocin antagonist cannot be excluded. Oxytocin and its receptor are both expressed in rodent, human. and nonhuman primate ovaries (51–53), and the local production of oxytocin seems to play a role in the regulation of ovarian function during the estrous cycle (reviewed in Ref. 54). To our knowledge, no effect of oxytocin on ovarian maturation has been yet shown. Oxytocin neurons are located in the supraoptic and the paraventricular nuclei, and their axons terminate in several areas including the median eminence and the rostral hypothalamus (39). Our results suggest that oxytocin does not stimulate pulsatile GnRH release by acting directly on GnRH neurons. Instead, the stimulatory effect of oxytocin on GnRH secretion appears to be mediated by PGE2 released from astrocytes. These findings are in keeping with earlier reports showing the involvement of PGE2 in mediating oxytocin actions in other cellular systems (55). PGE2 is a potent GnRH secretagogue (16), which upon release from glial cells, binds to specific receptors located on GnRH neurons to elicit GnRH release (17) (reviewed in Ref. 56) However, a very recent study using double-label immunofluorescence reported the expression of OTR in 10% of the GnRH neurons in female rat hypothalamus (57), suggesting a possible direct action of oxytocin on GnRH neurons. Our results did not reveal the presence of OTR mRNA in GnRH neurons. Our combined immunohistochemistry/in situ hybridization procedure might not be sensitive enough to detect low levels of transcripts in such a small fraction of neurons. Cytosolic PLA2 is a major enzyme involved in prostaglandin production by generating arachidonic acid, the precursor of the prostaglandins, from membrane glycerophospholipids. Blocking PLA2 with AACOCF3 prevented the effect of oxytocin on GnRH pulse frequency, implicating prostaglandins in this process. That the prostaglandin involved is PGE2 of glial origin was evidenced by the presence of OTRs in astrocytes but not GnRH neurons and the ability of hypothalamic astrocytes to release PGE2 in response to oxytocin. Because the effect of oxytocin was more evident after 16 h, it is possible that the effect of oxytocin on PGE2 release may involve an increase of cyclooxygenase 2 expression, because it is observed in supraoptic neurons and astrocytes (43). Although the stimulatory effect of PGE2 on GnRH release appears to be more prominent in the median eminence (16), the main terminal field for GnRH axons, PGE2 is also able to stimulate GnRH neurons when directly applied to the preoptic region (58). That this is an important site of action in mediating oxytocin-induced GnRH release is suggested by the previous observation that during the preovulatory GnRH release, a stimulatory effect of oxytocin requires the presence of the preoptic area in addition to the median eminence (6). Spontaneous mutations in the oxytocin gene have not been reported in either rodents or humans. With the exception of an inability to eject milk, no reproductive defects have been reported to occur in oxytocin knockout mice (59). Because it frequently occurs when describing knockout animals, a detailed analysis of potential defects in pubertal maturation resulting from oxytocin deficiency has not been undertaken, but is necessary. Given the complexity of the neuroendocrine Parent et al. • Oxytocin and Female Sexual Maturation mechanisms involved in controlling puberty, the failure of unconditional gene targeting to verify findings made via other means can be best explained as due to early compensatory mechanisms set in motion in response to the gene deletion. In summary, our results show that oxytocin can act on the immature female hypothalamus to accelerate pulsatile GnRH release and to advance the onset of female puberty. Our results also show that this effect requires the intermediacy of OTR-containing astroglial cells that respond to oxytocin with PGE2 release. Acknowledgments We thank Ms. Maria Costa for expert technical assistance. Received July 31, 2007. Accepted November 13, 2007. Address all correspondence and requests for reprints to: Jean-Pierre Bourguignon, Developmental Neuroendocrinology Unit, CHU Sart Tilman, 4000 Liège, Belgium. E-mail: [email protected]. This work was supported by National Institutes of Health Grants HD25123 and U54 HD18185 through cooperative agreement as part of the Specialized Cooperative Center’s Program in Reproduction and Infertility Research, National Institute of Child Health and Human Development, and RR00163 for the operation of the Oregon National Primate Research Center (S.R.O.). A.-S.P. is a fellow of the Belgian “Fonds National de la Recherche Scientifique” (FNRS). This work was supported by grants from the Fonds de la Recherche Scientifique Médicale, Grants 3.4515.01 and 3.4573.05 (J.P.B.). Disclosure Statement: The authors have nothing to disclose. References 1. Crowley WR, Armstrong WE 1992 Neurochemical regulation of oxytocin secretion in lactation. Endocr Rev 1:13–18 2. Schulze HG, Gorzalka BB 1991 Oxytocin effects on lordosis frequency and lordosis duration following infusion into the medial preoptic area and ventromedial hypothalamus of female rats. Neuropeptides 18:99 –106 3. Pedersen CA, Prange Jr JA 1979 Induction of maternal behavior in virgin rats after cerebroventricular administration of oxytocin. Proc Natl Acad Sci USA 76:6661– 6665 4. Pedersen CA, Ascher JA, Monroe JA, Prange Jr JA 1982 Oxytocin induces maternal behavior in virgin female rats. Science 216:648 – 649 5. Rettori V, Canteros G, Renoso R, Gimeno M, Mc Cann SM 1997 Oxytocin stimulates the release of luteinizing hormone releasing hormone from medial basal hypothalamic explants by releasing nitric oxide. Proc Natl Acad Sci USA 94:2741–2744 6. Selvage D, Johnston CA 2001 Central stimulatory influence of oxytocin on preovulatory gonadotropin-releasing hormone requires more than the median eminence. Neuroendocrinology 74:129 –134 7. Parent AS, Lebrethon MC, Gerard A, Bourguignon JP 2005 Factors accounting for perinatal occurrence of pulsatile gonadotropin-releasing hormone secretion in vitro in rat. Biol Reprod 72:143–149 8. Yamanaka C, Lebrethon MC, Vandersmissen E, Gerard A, Purnelle G, Lemaitre M, Wilk S, Bourguignon JP 1999 Early prepubertal ontogeny of pulsatile gonadotropin-releasing hormone (GnRH) secretion. I. Inhibitory autofeedback control through prolyl endopeptidase degradation of GnRH. Endocrinology 140:4609 – 4615 9. Bourguignon JP, Gérard A, Mathieu J, Mathieu A, Franchimont P 1990 Maturation of the hypothalamic control of pulsatile gonadotropin-releasing hormone secretion at onset of puberty: I. Increased activation of N-methylD-aspartate receptors. Endocrinology 127:873– 881 10. Bourguignon JP, Gérard A, Alvarez Gonzalez ML, Franchimont P 1992 Neuroendocrine mechanism of onset of puberty. Sequential reduction in activity of inhibitory and facilitatory N-methyl-d-aspartate receptors. J Clin Invest 90:1736 –1744 11. Ojeda S, Terasawa E 2002 Neuroendocrine regulation of puberty. In: Pfaff D, Arnold A, Etgen A, Fahrbach S, Moss R, Rubin R, eds. Hormones, brain and behavior. Vol 4. New York: Elsevier; 589 – 659 12. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E 2003 Hypogonadotropic hypogonadism due to loss of function of the KISS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 100:10972–10976 13. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O’Rahilly S, Carlton MB, Parent et al. • Oxytocin and Female Sexual Maturation 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. Crowley Jr WF, Aparicio SA, Colledge WH 2003 The GPR54 gene as a regulator of puberty. N Engl J Med 349:1614 –1627 Herbison AE 2006 Physiology of the gonadotropin-releasing hormone neuronal network. In: Neill JD, eds. Physiology of reproduction. 3rd ed. San Diego: Academic Press/Elsevier; 1415–1482 Evans J, Reid R, Wakeman S, Croft L, Benny P 2003 Evidence that oxytocin is a physiological component of LH regulation in non-pregnant women. Hum Reprod 18:1428 –1431 Ojeda SR, Negro-Vilar A, Mc Cann SM 1979 Release of prostaglandin Es by hypothalamic tissue: evidence for their involvement in catecholamine-induced luteinizing hormone-releasing hormone release. Endocrinology 104:617– 624 Rage F, Lee BJ, Ma YJ, Ojeda SR 1997 Estradiol enhances prostaglandin E2 receptor gene expression in luteinizing hormone-releasing hormone (LHRH) neurons and facilitates the LHRH response to PGE2 by activating a glia-toneuron signalling pathway. J Neurosci 17:9145–9156 Bourguignon JP, Gérard A, Franchimont P 1989 Direct activation of GnRH secretion trough different receptors to neuroexcitatory amino acids. Neuroendocrinology 49:402– 408 Bourguignon JP, Gérard A, Mathieu J, Simons J Franchimont P 1989 Pulsatile release of gonadotrophin-releasing hormone from hypothalamic explants is restrained by blockade of N-methyl-d,l-aspartate receptors. Endocrinology 125:1090 –1096 Hartter DE, Ramirez VD 1985 Responsiveness of immature versus adult male rat hypothalami to dibutyryl cyclic AMP-and forskolin-induced LHRH release in vitro. Neuroendocrinology 40:476 – 482 Ma YJ, Berg-von der Emde K, Moholt-Siebert M, Hill DF, Ojeda SR 1994 Region-specific regulation of transforming growth factor ␣ (TGF ␣) gene expression in astrocytes of the neuroendocrine brain. J Neursci 14:5644 –5651 Ma YJ, Hill DF, Creswick KE, Costa ME, Ojeda SR 1999 Neuregulins signalling via a glial erbB2/erbB4 receptor complex contribute to the neuroendocrine control of mammalian sexual development. J Neurosci 19:9913–9927 Ojeda SR, Urbanski HF, Katz KH, Costa ME 1986 Activation of estradiol positive feedback at puberty: Estradiol sensitizes the LHRH releasing system at two different biochemical steps. Neuroendocrinology 43:259 –265 Jung H, Shannon EM, Fritschy JM, Ojeda SR 1997 Several GABAA receptor subunits are expressed in LHRH neurons of juvenile female rats. Brain Res 780:218 –229 Urbanski HF 1991 Monoclonal antibodies to luteinizing hormone-releasing hormone: production, characterization, and immunocytochemical application. Biol Reprod 44:681– 686 Manning M, Miteva K, Pancheva S, Stoev S, Stoev S, Wo NC, Chan WY 1995 Design and synthesis of highly selective in vitro and in vivo uterine receptor antagonists of oxytocin: comparisons with Atosiban. Int J Pept Protein Res 46:244 –252 Hoar W, Hickman 1975 Ovariectomy and the estrous cycle of the rat. In: Hoar W, Hickman CP, eds. General and comparative physiology. 2nd ed. Upper Saddle River, NJ: Prentice-Hall; 260 –265 Parent AS, Lebrethon MC, Gerard A, Bourguignon JP 2000 Leptin effect on pulsatile gonadotropin releasing hormone secretion from the adult rat hypothalamus and interaction with cocaine and amphetamine regulated transcript peptide and neuropeptide Y. Regul Pept 92:17–24 Bourguignon JP, Gerard A, Debougnoux G, Rose JR, Franchimont P 1987 Pulsatile release of gonadotropin-releasing hormone (GnRH) from the rat hypothalamus in vitro: calcium and glucose dependency and inhibition by superactive GnRH analogs. Endocrinology 121:993–999 Di Scala-Guenot D, Mouginot D, Strosser MT 1994 Increase of intracellular calcium induced by oxytocin in hypothalamic cultured astrocytes. Glia 11: 269 –276 Yoshimura R, Kiyama H, Kimura T, Araki T, Maeno H, Tanizawa O, Tohyama M 1993 Localization of oxytocin receptor messenger ribonucleic acid in the rat brain. Endocrinology 133:1239 –1246 Ma YJ, Berg-von der Emde K, rage F, Wetsel WC, Ojeda SR 1997 Hypothalamic astrocytes respond to transforming growth factor ␣ with secretion of neuroactive substances that stimulate the release of luteinizing hormonereleasing hormone. Endocrinology 138:19 –25 Almazan G, Lefebvre DL, Zingg HH 1989 Ontogeny of hypothalamic vasopressin, oxytocin and somatostatin gene expression. Dev Brain Res 45:69 –75 Whitnall MH, Key S, Ben-Barak Y, Ozato K, Gainer H 1985 Neurophysin in the hypothalamo-neurohypophysial system. II. Immunocytochemical studies of the ontogeny of oxytocinergic and vasopressinergic neurons. J Neurosci 5:98 –109 Withuhn TF, Kramer KM, Cushing BS 2003 Early exposure to oxytocin affects Endocrinology, March 2008, 149(3):1358 –1365 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 1365 the age of vaginal opening and first estrus in female rats. Physiol Behav 80:135–138 Chibbar R, Toma JG, Mitchell BF, Miller FD 1990 Regulation of neural oxytocin gene expression by gonadal steroids in pubertal rats. Mol Endocrinol 4:2030 –2038 Snijdewint FG, Van Leeuwen FW, Boer GJ 1989 Ontogeny of vasopressin and oxytocin binding sites in the brain of Wistar and Brattleboro rats as demonstrated by lightmicroscopical autoradiography. J Chem Neuroanat 2:3–17 Tribollet E, Charpak S, Schmidt A, Dubois-Dauphin M, Dreifuss JJ 1989 Appearance and transient expression of oxytocin receptors in fetal, infant, and peripubertal rat brain studied by autoradiography and electrophysiology. J Neurosci 9:1764 –1773 Sawchenko PE, Swanson LW 1985 Relationship of oxytocin pathways to the control of neuroendocrine and autonomic function. In: Amico JA, Robinson AG, eds. Oxytocin: clinical and laboratory studies. Amsterdam: Excerpta Medica; 87–103 Hull ML, Reid RA, Evans JJ, Benny PS, Aickin DR 1995 Pre-ovulatory oxytocin administration promotes the onset of the luteinizing hormone surge in human females. Hum Reprod 10:2266 –2269 Vanakara P, Dafopoulos K, Papastergiopoulou L, Kallitsaris A, Papageorgiou I, Messinis IE 2007 Oxytocin is not important for the control of gonadotropin secretion in the late follicular phase of the cycle. Clin Endocrinol (Oxf) 66:816 – 821 Langle SL, Poulain DA, Theodosis DT 2003 Induction of rapid, activitydependent neuronal-glial remodelling in the adult rat hypothalamus in vitro. Eur J Neurosci 18:206 –214 Wang YF, Hatton GI 2006 Mechanisms underlying oxytocin-induced excitation of supraoptic neurons: prostaglandin mediation of actin polymerization. J Neurophysiol 95:3933–3947 Amateau SK, McCarthy MM 2004 Induction of PGE2 by estradiol mediates developmental masculinization of sex behaviour. Nat Neurosci 7:643– 650 Ermisch A, Ruhle H-J, Landgraf R, Hess J 1985 Blood-brain barrier and peptides. J Cereb Blood Flow Metab 5:350 –357 Jones PM, Robinson ICAF 1982 Differential clearance of neurophysin and neurophysial peptides from the cerebrospinal fluid in conscious guinea pigs. Neuroendocrinology 34:297–302 Banks WA, Kastin AJ 1985 Permeability of the blood-brain barrier to neuropeptides: the case for penetration. Psychoneuroendocrinology 10:389 –399 Bales KL, Carter CS 2003 Developmental exposure to oxytocin facilitates partner preferences in male prairie voles. Behav Neurosci 117:854 – 857 Bales KL, Pfeifer LA, Carter CS 2004 Sex differences and effects of manipulations on oxytocin on alloparenting and anxiety in prairie voles. Dev Psychobiol 44:123–131 Boccia MM, Baratti CM 2000 Involvement of central cholinergic mechanisms in the effects of oxytocin and an oxytocin receptor antagonist on retention performance in mice. Neurobiol Learn Mem 74:217–228 Kimura T, Tanizawa O, Mori K, Brownstein MJ, Okayama H 1992 Structure and expression of a human oxytocin receptor. Nature 356:526 –529 Einspanier A, Ivell R, Hodges JK 1995 Oxytocin: a follicular luteinisation factor in the marmoset monkey. Adv Exp Med Biol 395:517–522 Furuya K, Mizumoto Y, Makimura N, Mitsui C, Murakami M, Tokuoka S, Ishikawa N, Nagata I, Kimura T, Ivell R 1995 A novel biological aspect of ovarian oxytocin: gene expression of oxytocin and oxytocin receptor in cumulus/luteal cells and the effect of oxytocin on embryogenesis in fertilized oocytes. Adv Exp Med Biol 395:523–528 Gimpl G, Fahrenholz F 2001 The oxytocin receptor system: structure, function, and regulation. Physiol Rev 81:629 – 683 Jeng YJ, Liebenthal D, Strakova Z, Ives KL, Hellmich MR, Soloff MS 2000 Complementary mechanisms of enhanced oxytocin-stimulated prostaglandin E2 synthesis in rabbit amnion at the end of gestation. Endocrinology 141: 4136 – 4145 Ojeda SR, Prevot V, Heger S, Lomniczi A, Dziedzic B, Mungenast A 2003 Glia-to-neuron signaling and the neuroendocrine control of female puberty. Ann Med 35:244 –255 Caligioni CS, Oliver C, Jamur MC, Franci CR 2007 Presence of oxytocin receptors in the gonadotropin-releasing hormone (GnRH) neurones in females rats: a possible direct action of oxytocin on GnRH neurones. J Neuroendocrinol 19:439 – 448 Ojeda SR, Jameson HE, McCann SM 1977 Hypothalamic areas involved in prostaglandin (PG)-induced gonadotropin release. I. Effects of PGE2 and PGF2␣ implants on luteinizing hormone release. Endocrinology 100:1585–1594 Russel JA, Leng G 1998 Sex, parturition and motherhood without oxytocin? J Endocrinol 157:343–359 Endocrinology is published monthly by The Endocrine Society (http://www.endo-society.org), the foremost professional society serving the endocrine community. TOXICOLOGICAL SCIENCES 102(1), 33–41 (2008) doi:10.1093/toxsci/kfm285 Advance Access publication November 20, 2007 Mechanisms of Interaction of Endocrine-Disrupting Chemicals with Glutamate-Evoked Secretion of Gonadotropin-Releasing Hormone Grégory Rasier,* Anne-Simone Parent,* Arlette Gérard,* Raphaël Denooz,† Marie-Christine Lebrethon,* Corinne Charlier,† and Jean-Pierre Bourguignon*,1 *Developmental Neuroendocrinology Unit, Centre for Cellular and Molecular Neurobiology; and †Clinical, Forensic and Environmental Toxicology Laboratory, University of Liège, University Hospital, B-4000 Liège (Sart-Tilman), Belgium Received August 17, 2007; accepted October 15, 2007 In previous studies, we detected a dichlorodiphenyltrichloroethane (DDT) derivative in the serum of children with sexual precocity after migration from developing countries. Recently, we reported that DDT stimulated pulsatile gonadotropin-releasing hormone (GnRH) secretion and sexual maturation in the female rat. The aim of this study was to delineate the mechanisms of interaction of endocrine-disrupting chemicals including DDT with GnRH secretion evoked by glutamate in vitro. Using hypothalamic explants obtained from 15-day-old female rats, estradiol (E2) and DDT caused a concentration-related increase in glutamate-evoked GnRH release while p,p#-dichlorodiphenyldichloroethene and methoxychlor had no effect. The effective DDT concentrations in vitro were consistent with the serum concentrations measured in vivo 5 days after exposure of immature rats to 10 mg/kg/day of o,p#-DDT. Bisphenol A induced some stimulatory effect, whereas no change was observed with 4-nonylphenol. The o,p#-DDT effects in vitro were prevented partially by a selective antagonist of the a-amino-3-hydroxy-5methyl-4-isoxazole propionic acid (AMPA) subtype of glutamate receptors. A complete prevention of o,p#-DDT effects was caused by an estrogen receptor (ER) antagonist as well as an aryl hydrocarbon receptor (AHR) antagonist and inhibitors of protein kinases A and C and mitogen-activated kinases. While an intermittent incubation with E2 caused no change in amplification of the glutamate-evoked GnRH release for 4 h, continuous incubation with E2 or o,p#-DDT caused an increase of this amplification after 3.5 h of incubation. In summary, DDT amplifies the glutamate-evoked GnRH secretion in vitro through rapid and slow effects involving ER, AHR, and AMPA receptor mediation. Key Words: gonadotropin-releasing hormone; endocrinedisrupting chemicals; glutamate receptors; estrogen receptors; aryl hydrocarbon receptor. 1 To whom correspondence should be addressed at Division of Paediatric Endocrinology and Adolescent Medicine, University Hospital, B-4000 Liège (Sart-Tilman), Belgium. Fax: þ32-4-366-72-46. E-mail: jpbourguignon@ ulg.ac.be. The persisting secular shift in timing of puberty toward early onset in United States (Herman-Giddens et al., 1997; Lee et al., 2001) raised the issue of the possible role of environmental factors including endocrine-disrupting chemicals (EDCs) (Buck-Louis et al., in press). In other countries such as Belgium and Denmark, a 20–80 times increased risk of sexual precocity in internationally adopted children (KrstevskaKonstantinova et al., 2001; Teilmann et al., 2006) also led to the question of possible EDC involvement (Parent et al., 2003). Based on the measurement of p,p#-dichlorodiphenylchloroethene (DDE) levels in the serum of those children, it was hypothesized that migration could account for early puberty after transient exposure to the estrogenic insecticide dichlorodiphenyltrichloroethane (DDT) in the home country (KrstevskaKonstantinova et al., 2001; Parent et al., 2003). That hypothesis was consistent with the early report of precocious puberty in female rats treated neonatally with o,p#-DDT by Heinrichs et al. (1971) who showed inhibitory effects on pituitary gonadotropin secretion and suggested a facilitatory hypothalamic mechanism (Gellert et al., 1972). Very recently, we administered o,p#-DDT for 5 or 10 days in infantile female rats, and we found pulsatile gonadotropinreleasing hormone (GnRH) secretion in vitro to accelerate prematurely and precocious puberty to occur subsequently (Rasier et al., 2007). In that study, the effects on GnRH secretion became significant after several hours, and both the estrogen receptors (ERs) and the orphan dioxin receptor (aryl hydrocarbon receptor [AHR]) appeared to be involved in DDT effects on pulsatile GnRH secretion. In previous studies from our laboratory, estradiol (E2) was shown to cause a rapid (within 7.5–15 min) amplification of the GnRH release evoked by glutamate, a main excitatory neurotransmitter in the brain. This effect involved the a-amino-3-hydroxy-5-methyl-4isoxazole propionic acid (AMPA)-kainate receptor subtypes, the a-subunit of ERs, and different intracellular kinases (Matagne et al., 2005). Beside those rapid effects, initially inactive concentrations of E2 (Matagne et al., 2005) and DDT (Rasier et al., 2007) were shown to have effects appearing with time, indicating slow and possibly genomic effects. This was Ó The Author 2007. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please email: [email protected] 34 RASIER ET AL. the reason why the glutamate-evoked secretion of GnRH was studied over several hours in the present study. Our aims were as follows: (1) to study whether DDT and derivatives could have rapid effects similar to E2 on the glutamate-evoked release of GnRH in vitro; (2) to compare DDT effects with those of other EDCs such as methoxychlor (MXC) and bisphenol A (BPA). MXC is another pesticide that has been developed to replace DDT and to have a similar spectrum of intended effects while being more readily eliminated from the body and less persisting in nature. MXC estrogenic activity is presumably related to the ability of its metabolite hydroxyphenyltrichloroethane to bind to intracellular ERs (Miller et al., 2006). BPA is a common EDC used in the manufacture of a variety of products including reusable milk and food storage containers, baby formula bottles, interior lacquer coating of food cans, or dental sealants. This compound has been found to compete with E2 for binding to ERs though its affinity for those receptors is much less than that of E2 (Kwon et al., 2000). (3) To study whether DDT and derivatives could have effects on the glutamate-evoked release of GnRH over a period of several hours and the receptor mechanisms involved in such effects. MATERIALS AND METHODS Animals Fifteen-day-old female Wistar rats were purchased from the University of Liège. They were housed in standardized conditions with lactating dams (22°C, lights on from 06:30 to 18:30 h, food and water ad libitum) till the time of sacrifice. Each litter contained 5–10 pups. The day of birth was considered as postnatal day (PND) 1. All experiments were carried out with the approval of the Belgian Ministry of Agriculture and the Ethical Committee at the University of Liège. Incubation of Hypothalamic Explants After decapitation, the hypothalamus was rapidly dissected. The limits to obtain the retrochiasmatic hypothalamus were the caudal margin of the optic chiasm, the caudal margin of the mammillary bodies, and the lateral hypothalamic sulci. Each explant was transferred into an individual incubation chamber, as described in detail previously (Bourguignon et al., 1989a; Matagne et al., 2004), which contained 500 ll of phenol red–free minimum essential medium (MEM) supplemented with glucose, magnesium, glycine, and bacitracin to achieve final concentrations of 25 3 103, 103, 108, and 2 3 105M, respectively. The explants were incubated in an atmosphere of 95% O2–5% CO2. The incubation medium was collected and renewed every 7.5 min and kept frozen until assayed. Since some ‘‘traumatic’’ peptide release was observed for the first 7.5–15 min of incubation, the explants were incubated for 30 min before the first glutamate stimulation. Assays The GnRH release in the incubation medium was measured in duplicate using a radioimmunoassay method with intra- and interassay coefficients of variation of 14 and 18%, respectively (Bourguignon et al., 1989a,b). The highly specific CR11-B81 anti-GnRH antiserum (final dilution 1:80,000) was kindly provided by Dr V. D. Ramirez (Urbana, IL) (Dluzen and Ramirez, 1981). The data below the limit of detection (5 pg/7.5-min fraction) were assigned that value. The identification and quantification of p,p#-DDT, o,p#-DDT, p,p#-DDE, and o,p#-DDE in serum were performed using a gas chromatographic analyzer coupled to an ion-trap mass spectrometer (MS) detector (PolarisQ, Thermo Scientific, Waltham, MA). Sample preparation included a liquid-liquid extraction (petroleum ether:diethylether, 98:2) followed by a solid-phase extraction (Bond Elut Certify, Varian, Harbor City, CA). The eluate was evaporated to dryness, reconstituted with n-hexane, and then injected into the gas chromatograph. The column was a HP-5 Trace (30 m 3 0.25 mm internal diameter) from Agilent (Waldbronn, Germany). For detection, the MS was operated in the electronic impact mode (70 eV). Multiple reaction monitoring was used for identification and quantification. All solvents were of the highest purity available and pesticide-grade quality (Baker, Phillipsburg, NJ). Reference standards of all pesticides were obtained from Dr Ehrenstorfer (Augsburg, Germany). Aldrine was used as internal standard. The calibration curve was constructed from 0.5 to 20 ppb, and samples dilutions were applied to this concentration range. The limits of quantification were defined as 10 times the SD of the results of a blank sample. These limits were 0.5 ppb for p,p#-DDT, o,p#-DDT, p,p#-DDE, and o,p#-DDE, and the coefficients of variation were 7.7, 7.1, 8.2, and 6.1%, respectively. Based on the amount of serum used, the limit of detection was 1 ng/ml serum (Charlier and Plomteux, 2002). Reagents The phenol red–free MEM (supplemented with Earle’s and L-glutamine) was purchased from Life Technologies Invitrogen Corporation (Merelbeke, Belgium). E2 (17b-estradiol or 3,17b-dihydroxy-1,3,5(10)-estratriene), the two DDT isomers, o,p#-DDT (2,4#-DDT) and p,p#-DDT (4,4#-DDT), p,p#-DDE (4,4#-DDE), MXC (1,1,1-trichloro-2,2-bis-(4-methoxyphenyl)ethane), BPA (2,2-bis-(4-hydroxyphenyl)-propane), 4-nonylphenol (4-NP), bacitracin, the AHR antagonist a-naphthoflavone (7,8-benzoflavone), the protein kinase (PK) A and C inhibitor staurosporine, and the PKC inhibitor chelerythrine chloride (1,2-dimethoxy-N-methyl(1,3)benzodioxolo(5,6-c)phenanthridinium chloride) were purchased from Sigma-Aldrich (Bornem, Belgium). The AMPA/kainate subtype of glutamate receptor antagonist DNQX (6,7-dinitroquinoxaline-2,3dione), the AMPA receptor selective antagonist SYM 2206 (4-aminophenyl1,2-dihydro-1-methyl-2-propylcarbamoyl-6,7-methylenedioxyphtalazine) and the ER antagonist ICI 182,780 (7a,17b-[9[(4,4,5,5,5-pentafluoropentyl)sulfinyl]nonyl]-1,3,5(10)-estratriene-3,17b-diol) were purchased from Tocris Fisher Bioblock Scientific (Illkirch, France). The mitogen-activated protein kinase (MAPK, extracellular signal-regulated kinase 1/2) inhibitor PD98059 (2#amino-3#-methoxyflavone) was purchased from Calbiochem (VWR International, Leuven, Belgium). In all experiments, steroid or EDCs were dissolved initially in absolute ethanol (Labonord, Templenars, Belgium) and subsequently in the incubation medium to achieve a final ethanol concentration of 0.01%. All the other drugs were directly diluted in the incubation medium. Experimental Protocols In vivo experiments. Female rats received a daily sc administration of o,p#-DDT (10 mg/kg/day) or vehicle (sesame oil) for 5 days (PND 6–10). The insecticide was first dissolved in absolute ethanol and then diluted in 50 ll of sesame oil for sc injection with 24 rats studied in the treated group in comparison with 24 controls. On PND 15 and 22, on the day of vaginal opening (VO) and on the day of first estrus, six rats from each group were sacrificed to study the serum levels of the DDT isomers. A daily examination for imperforation of the vaginal membrane was achieved to determine age at VO. Thereafter, vaginal smears were taken every day in the afternoon until first estrus. Slides of vaginal smears were colored using the Papanicolaou method to detect the occurrence of estrous cyclicity (Papanicolaou and Traut, 1941). The age at first estrus was considered when vaginal smears contained primary cornified cells after the first proestrous phase which is characterized by both stratified and cornified cells (Ojeda and Urbanski, 1994). The in vivo conditions for these experiments were similar to a previous study (Rasier et al., 2007). In vitro experiments. The effects of E2 or EDCs were studied on the glutamate-evoked GnRH release from hypothalamic explants obtained in 15-day-old female rats. Glutamate was incubated with the explant for a 7.5-min ENDOCRINE DISRUPTERS AND GnRH SECRETION fraction, at a submaximal concentration (102M) which was shown previously to be required to evoke GnRH secretion in vitro (Matagne et al., 2005). Such a glutamate challenge was repeated every 37.5 min for a period of 4–5 h. The 102M concentration of glutamate was presumably not resulting in any toxic effect since a similar GnRH secretory response could be obtained throughout a 4-h experiment (Bourguignon et al., 1989b; Matagne et al., 2005). Each experiment on the effects of E2 or EDCs started and finished with a control glutamate stimulation in the absence of any other compound. The glutamateevoked release of GnRH was compared in control conditions and during coincubation with E2 or EDCs added in the incubation medium. These substances were used at increasing concentrations (E2: 1010 to 106M; p,p#DDT and o,p#-DDT: 108 to 104M; p,p#-DDE, MXC, BPA, and 4-NP: 109 to 104M) for two 7.5-min fractions, before and during incubation with glutamate. In some experiments, the effects of E2 or EDCs were studied in the presence of antagonists or inhibitors that were used for three consecutive 7.5-min fractions so that they were firstly incubated alone, secondly with the steroid or EDCs, and thirdly with the two substances and glutamate. DNQX and SYM 2206 (106M) were used to study the involvement of the AMPA/ kainate subtype of glutamate receptors on the amplification of the glutamateevoked GnRH release caused by E2 (107M) or o,p#-DDT (104M). The implication of ERs was studied using the antagonist ICI 182,780 (107M). To investigate the implication of AHR, the antagonist a-naphthoflavone (107M) was used. The concentration of these four antagonists was selected based on previous data from this laboratory and another study (Ojeda and Urbanski, 1994; Rasier et al., 2007). To investigate intracellular pathways and kinase involvement in E2 or o,p#-DDT effects, the PKA and C inhibitor staurosporine (107M), the PKC inhibitor chelerythrine chloride (105M), and the MAPK inhibitor PD98059 (5 3 105M) were used. Statistical Analysis A minimum of four explants were used for each condition in an experiment. The secretory response (pg/7.5-min fraction) was calculated as the difference between the levels in the fractions collected immediately prior to and during exposure to the glutamate. Raw data were pooled and analyzed by a one-way analysis of variance test followed by a Newman-Keuls posttest when the threshold for significance of difference ( p < 0.05) was reached (GraphPad Prism software for PC). In order to compare the results obtained among experiments in which the control data were different due to the use of receptor antagonists in some experiments, the absolute levels (determined by radioimmunoassay as pg/7.5-min fraction) were transformed as percentages of the glutamate-evoked release observed in control conditions and regarded as 100%. The statistical analysis was performed using the absolute as well as transformed data, and identical significance levels were obtained in both conditions. The time-related changes in serum concentrations of o,p#-DDT were compared after log transformation of the data because they were lognormally distributed. Geometric means were calculated, and data were represented on a log scale. All other results are expressed as mean ± SD. RESULTS Serum Levels of DDT Isomers and Derivatives After In Vivo Treatment We showed earlier that an early exposure to o,p#-DDT between PND 5 and 10 accelerated pulsatile GnRH secretion and induced a precocious puberty in female rats (Rasier et al., 2007). In order to determine if the concentrations of o,p#-DDT achieved in vivo were consistent with the concentrations used in vitro in the present study, we measured DDT isomers and metabolites serum concentrations after in vivo administration of o,p#-DDT. Five days after a 5-day treatment with o,p#-DDT, 35 FIG. 1. Geometric mean (± SD) serum levels of o,p#-DDT at four time points after administration of o,p#-DDT for 5 days (PND 6–10): PND 15, PND 22, on the day of VO, and on the day of first estrus. The average serum concentration on PND 15 is equivalent to 106M (n ¼ 6). the mean serum level of this isomer was 361 ng/ml. Seven days later, the level dropped to 23 ng/ml. VO and first estrus occurred early on PND 23 and 27, respectively, confirming our previous findings (Rasier et al., 2007). The mean serum o,p#-DDT level was 22 ng/ml at VO and 4 ng/ml at first estrus (Fig. 1). The p,p#-DDT isomer and the p,p#-DDE and o,p#-DDE derivatives were undetectable in the serum of the treated rats at any time of the study, and none of the studied compounds were detectable in the serum of control rats. Concentration-Response Effects of E2 or EDCs on Glutamate-Evoked GnRH Release In Figure 2 are illustrated three representative concentrationresponse profiles of the glutamate-evoked GnRH release from retrochiasmatic hypothalamic explants obtained at 15 days in female rats. Repeated challenges with glutamate alone for 7.5 min every 37.5 min resulted in a reproducible release of GnRH which was maintained for 4 h (Fig. 2A). Coincubation with increasing concentrations of E2 caused a concentrationrelated increase in glutamate-evoked GnRH release (Fig. 2B). As shown in Figure 3A, this effect became significant using 108M of E2 (128.0 ± 4.9% of control) and further increased to 162.6 ± 15.1% and 195.0 ± 6.4% using 107M and 106M of E2, respectively. A concentration-response increase in glutamateevoked GnRH release was also caused by o,p#-DDT (Figs. 2C and 3B), 105 and 104M being required for a significant effect (130.8 ± 4.5% and 173.7 ± 7.6%, respectively). After repeated glutamate stimulation in the presence of increasing concentrations of E2 or o,p#-DDT, a final stimulatory challenge with glutamate alone could evoke a release similar to that obtained initially (Figs. 2B and C). The p,p#-DDT isomer was as effective as o,p#-DDT since the 105 and 104M concentrations accounted for a significant increase in GnRH release (135.7 ± 8.8% and 185.3 ± 18.1%, respectively). 36 RASIER ET AL. FIG. 2. Representative profiles of glutamate-evoked GnRH secretion from hypothalamic explants obtained at 15 days in female rats and incubated in MEM for 4 h. Glutamate was added repeatedly (every 37.5 min) for 7.5 min alone (A) and together with increasing concentrations of E2 (B) or o,p#-DDT (C) which were also incubated for an additional 7.5 min before glutamate stimulation. The limit of detection was 5 pg/7.5 min. In contrast, p,p#-DDE, a stable DDT derivative, and MXC, a DDT-related EDC, had no effect (Fig. 3B). BPA was significantly stimulatory when used at 104M (201.7 ± 74.2%), whereas the 105M concentration did not result in any effect (94.2 ± 22.0%). When used at similar concentrations, 4-NP did not show any effect (Fig. 3C). Receptors and Signaling Involved in E2 or EDC Effects on Glutamate-Evoked GnRH Release When DNQX, an antagonist of the AMPA/kainate subtypes of glutamate receptors, was used, the glutamate-evoked release of GnRH was markedly reduced versus control (5.8 ± 0.4% vs. 11.2 ± 1.3 pg/7.5 min). This was presumably due to suppression of the kainate receptor contribution to the glutamate-evoked release since the selective AMPA antagonist SYM 2206 did not significantly reduce the glutamate-evoked release of GnRH (10.8 ± 0.8 vs. 11.4 ± 1.1 pg/7.5 min). To allow comparison of the amplification by 107M of E2 or 104M of o,p#-DDT of the glutamate-evoked GnRH secretion, the data were calculated as percentages of the secretory response obtained in the presence of the antagonist alone. In the presence of DNQX, both E2 and o,p#-DDT could still significantly increase the glutamate-evoked secretion of GnRH though the amplification of the response by E2 was less than that in control conditions. In the presence of the specific AMPA antagonist SYM 2206, both the E2 and o,p#-DDT amplification of the glutamate-evoked GnRH release were significant but less marked than in control conditions, indicating a contribution of AMPA receptors (Fig. 4A). When the ER antagonist ICI 182,780 was used (Fig. 4B), the E2 and o,p#-DDT amplification of the glutamate-evoked GnRH secretion were completely prevented. When the AHR antagonist a-naphthoflavone was used, only the increase in GnRH secretory response caused by o,p#-DDT was prevented, whereas the E2 potentiating effect was unchanged (Fig. 4B). Inhibitors of PKA and C (staurosporine and chelerythrine chloride) as well as MAPK (PD98059) all prevented completely the amplification by E2 and o,p#-DDT of the glutamate-evoked GnRH release (Table 1). When 108M of E2 was applied intermittently for 15-min episodes that were repeated every 37.5 min, the GnRH release evoked by glutamate showed a similar increase during a 4-h study period (Fig. 5). After stopping exposure to E2 at the end of the experiment, the explants recovered a response similar to that obtained initially. When E2 was applied continuously, the glutamate-evoked GnRH release showed a significant increase similar to that observed when E2 was used intermittently. After 3.5 h of incubation, however, a further increase in glutamateevoked GnRH secretion (148.2 ± 2.1%) was caused by E2 and some significant increase persisted at the end of the experiment (114.9 ± 1.4%), after stopping incubation with E2. A similar time-dependent effect was observed using 105M of o,p#DDT, except that the increase in glutamate-evoked secretion was less marked and did not persist after being back to control conditions at the end of the experiment. DISCUSSION In the present study, we provide evidence that several EDCs can directly stimulate the GnRH secretion evoked by glutamate. Such effects occur rapidly, within 15 min and further increase after several hours of exposure. Emphasis was put on o,p#-DDT since we showed recently that early exposure to this chemical resulted in acceleration of pulsatile GnRH secretion and sexual precocity (Rasier et al., 2007). The concentrations used in vitro for our study were shown to be consistent with serum levels achieved after in vivo administration. We found that the mechanism of o,p#-DDT effects involves several receptors (ERs, AHR, and AMPA) and intracellular kinases (A, C, and MAPK). ENDOCRINE DISRUPTERS AND GnRH SECRETION 37 FIG. 3. Concentration-response effect of E2 (A) and several EDCs (B and C) on glutamate-evoked secretory response of GnRH using hypothalamic explants from 15-day-old female rats. The GnRH secretory response (mean ± SD) was calculated as the difference between the levels in the fraction collected immediately prior to and during exposure to the glutamate (pg/7.5-min fraction). Those differences were then converted in percentage of controls (glutamate alone). *p < 0.05 versus control. When compared with other in vitro paradigms involving GnRH neurons, the static incubation of hypothalamic explants maintains GnRH neurons in their original surrounding neurono-glial environment and such explants retain the capacity of pulsatile secretion of GnRH (Matagne et al., 2004; Rasier et al., 2007). Though these two characteristics may account for some functional relevance of our observations in vitro, the required concentrations of some reagents such as glutamate are higher than using cell cultures (Donoso et al., 1990; Kuehl-Kovarik et al., 2002; Matagne et al., 2005; Ojeda and Urbanski, 1994; Rubin et al., 2006). This discrepancy which is still unexplained (reagent diffusion, degradation, . . .) raises the issue of possible irrelevance of the in vitro data as well as concerns regarding possible excitotoxic effects mediated via the N-methyl-D-aspartic acid (NMDA) receptor subtype. However, the capacity of the explants to respond to repeated glutamate stimulation is sustained for several hours, suggesting the functional integrity of the neurono-glial apparatus involved in the secretory process. The concentrations of E2 and o,p#-DDT used in vitro for the mechanistic studies are consistent with those used by others (Clark et al., 1998; Diel et al., 2002; Urbanski et al., 1996). They have been selected after a concentration-response study on amplification of the glutamate-evoked secretion of GnRH. For each EDC, the maximal effective concentration has not been determined but a concentration-response effect can be observed. Similar to E2, the two DDT isomers increased rapidly the GnRH secretion evoked by glutamate in a concentration-dependent manner. The E2:EDC ratios of biocapacity observed with DDT isomers and BPA were consistent with other in vitro studies (Clark et al., 1998; Desaulniers et al., 2005; Rasier et al., 2006). The other tested EDCs did not show any effect at the studied concentrations. The lack of effect of DDE can be explained by its prominent anti-androgenic nature. In fact, DDE is considered to be much less estrogenic than DDT. The absence of effect of MXC could be explained by a recent study showing that its estrogenic effects might be mediated by its metabolites, mono-OH MXC and bis-OH MXC (1,1,1-trichloro-2,2-bis(4hydroxyphenyl)ethane), after cytochrome P450 metabolization (Miller et al., 2006). It is important that the serum o,p#-DDT concentrations measured 5 days after a treatment in vivo with the EDC are consistent with the effective concentrations in vitro. Using a 10 times higher dose of p,p#-DDT in vivo given orally for 7 days, others found a plateau plasma concentration of 7.20 lg/l, that is about 20 times higher than the level we have observed 5 days after termination of treatment in our conditions (Mussi et al., 2005). No DDT derivatives, in particular o,p#-DDE, could be detected in our conditions after o,p#-DDT treatment, suggesting that, in the rat, few transformation of DDT into DDE had occurred. Tomiyama et al. (2003), 38 RASIER ET AL. FIG. 4. Effects of antagonists of AMPA/kainate (DNQX) and AMPA (SYM 2206) subtypes of glutamate receptors (A), ERs (ICI 182,780), and AHR (anaphthoflavone) (B) on the increase in glutamate-evoked GnRH secretion caused by E2 or o,p#-DDT. The GnRH secretory response (mean ± SD) was calculated as the difference between the levels in the fraction collected immediately prior to and during exposure to the glutamate (pg/7.5-min fraction). Those differences were then converted in percentage of control (glutamate alone or glutamate with antagonist). Hypothalamic explants from 15-day-old female rats were used. p < 0.05 versus glutamate alone (a), versus glutamate þ antagonist (b), versus glutamate þ E2 (c), versus glutamate þ o,p#-DDT (d). however, found plasma DDE to attain concentrations 10 times lower to those of DDT as soon as 2 days after starting exposure to DDT. Some explanation for this discrepancy could relate to differences in degradation rate depending on the nature of DDT isomer, the treatment dose, and the age at administration since they administered p,p#-DDT between PND 36 and 42 while we gave 10 times less of o,p#-DDT on PND 6–10. In previous studies from our laboratory, the effects of E2 on pulsatile GnRH secretion occurring within hours (Matagne et al., 2004) were found to parallel the effects on glutamate- evoked GnRH release occurring within minutes (Matagne et al., 2005). Therefore, after showing that o,p#-DDT stimulated frequency of pulsatile GnRH secretion (Rasier et al., 2007), we followed a similar approach toward a mechanistic study based on glutamate-evoked secretion. Along the same line, 15-day-old female rats were used since GnRH secretion in vitro was maximally affected by E2 at that age (Matagne et al., 2004, 2005). While BPA was found to be also capable of stimulating the glutamate-evoked GnRH secretion, we put emphasis on DDT because of the possible TABLE 1 Effect of Kinase Inhibitors on the Glutamate-Evoked GnRH Release (% of Controls) Inhibitor Inhibited kinase Glutamate þE2 107M — Staurosporine Chelerythrine chloride PD98059 — PKA and PKC PKC MAPKs (ERK1/2) 100.0 90.6 ± 6.4 93.8 ± 6.4 101.6 ± 7.9 150.4 95.5 90.6 100.0 Note. ERK1/2, extracellular signal-regulated kinase; n ¼ 5; *p < 0.05 versus glutamate. ± ± ± ± 7.6* 7.6 6.4 9.1 þo,p#-DDT 104M 142.0 96.8 93.7 96.8 ± ± ± ± 4.7* 4.4 6.5 4.4 ENDOCRINE DISRUPTERS AND GnRH SECRETION FIG. 5. Secretory response of GnRH to 102M of glutamate used for 7.5 min every 37.5 min for 5 h. Starting after 60 min and ending after 262.5 min, the explants are incubated intermittently (for 15 min, every 37.5 min) or continuously with E2 or o,p#-DDT. a: p < 0.05 versus initial glutamate secretory response; b: p < 0.05 versus previous E2-potentiated or o,p#-DDT– potentiated glutamate secretory response. involvement of the insecticide in sexual precocity of migrating children (Krstevska-Konstantinova et al., 2001; Parent et al., 2003) and the experimental evidence of hypothalamic-pituitary effects in the rat (Gellert et al., 1972; Heinrichs et al., 1971). Overall, the effects of DDT appear to be comparable to those of E2, and ERs play a key role in mediating such effects. The two main mechanisms involved in endocrine disruption are agonistic effects at ERs or estrogenic as shown for DDT, and antagonistic effects at androgen receptors or anti-androgenic as shown for DDE (Clark et al., 1998; Kelce et al., 1995). In our experimental conditions, it was shown previously that both estrogens and androgens were capable of potentiating the GnRH secretion, the effects of androgens being aromatase dependent and ultimately mediated through estrogens (Matagne et al., 2004). Thus, the effects reported here fall within the estrogenic category. The AMPA receptors are an additional class of receptors involved in DDT effects. The prominent role of NMDA and kainate receptors in glutamate-mediated pulsatile GnRH secretion and the involvement of both NMDA and kainate receptors in the glutamate-evoked release of GnRH have been demonstrated in earlier studies (Bourguignon et al., 1989b; Matagne et al., 2004, 2005; Parent et al., 2005). By contrast, a selective AMPA antagonist does not affect, neither pulsatile GnRH secretion (Rasier et al., 2007) nor the glutamate-evoked release as shown here, indicating no involvement of the AMPA receptor subtype in such conditions. These receptors, however, appear to play some role in the effects of E2 and o,p#-DDT on both the pulsatile secretion of GnRH (Rasier et al., 2007) and its release evoked by glutamate. Since those two effects occur, 39 respectively, after 1–2 h and 7.5–15 min, the former were thought to possibly involve genomic mechanisms and the latter nongenomic. In consistency with a time-dependent involvement of two mechanisms, E2 and o,p#-DDT cause rapidly an increase in glutamate-evoked GnRH release and a further increase occurring after few hours as a slow effect. Not only time but also continuity of the exposure to the steroid is critical since the slow component of the increased responsiveness to glutamate does not appear when exposure is discontinuous. In contrast, we had no evidence of priming of the response caused by the repeated glutamate stimulation. Herbison (1998), and Herbison and Pape (2001) have reported that E2 exerts complex effects on GnRH neuronal function including longterm or genomic effects through binding to ERa- and/or bsubtypes. Furthermore, in vitro rapid nongenomic effects of E2 can occur within seconds to minutes in various conditions to influence cellular events such as kainate-induced currents in hippocampal neurons (Improta-Brears et al., 1999) and second messenger cascades in hippocampal (Gu et al., 1999) or hypothalamic neurons (Abraham et al., 2004; Lagrange et al., 1999). Regarding a possible genomic effect, E2 has been shown to stimulate AMPA glutamate receptor expression in the rat hypothalamus (Diano et al., 1997). This could be one of the mechanisms explaining AMPA involvement in E2 or EDC effects on GnRH secretion. As far as we know, this is the first report showing the involvement of the AMPA subtype of glutamate receptors in rapid EDC effects. A few recent studies showed that AMPA receptors mediate plastic effects induced by E2 in different populations of neurons (Todd et al., 2007; Tsurugizawa et al., 2005). Particularly, AMPA receptors have been shown to be involved in the neuronal morphological changes induced by E2 in the ventromedial nucleus of the hypothalamus in female rats, specifically (Todd et al., 2007). Both E2 and o,p#-DDT potentiating effects on the glutamateevoked GnRH release could be prevented by PKA and C and MAPK inhibitors. These observations confirm our earlier report for E2 and provide further evidence of a rapid intracellular component of EDC effects. Our data also indicate the possible role of AHR in mediating o,p#-DDT effects on GnRH secretion. As reviewed recently, the AHR is an ubiquitous receptor system binding endogenous ligand as well as xenobiotics such as dioxins (Harper et al., 2006). In this study, it appears that o,p#-DDT could be a ligand of AHR since its effects on GnRH release are antagonized by a-naphthoflavone. Only the glutamate-evoked GnRH secretion amplified by o,p#-DDT is prevented by a-naphthoflavone, suggesting that DDT can stimulate GnRH secretion through a mechanism partially different from that of E2. Beyond the presumably initial step in o,p#-DDT effects, the pathway seems to be similar to E2 with involvement of the AMPA receptors in rapid effects and also ERs in rapid and slow effects (Rasier et al., 2007). To integrate these observations, it is conceivable that the o,p#-DDT–AHR complex results in a cross talk with the E2 signaling machinery and forms a functional 40 RASIER ET AL. transcriptional complex in the regulatory region of ERaresponsive genes (Ohtake et al., 2003). Recently, kisspeptin (kiss-1), a tumor suppressing peptide, and its receptor GPR54 have been identified as major actors of the regulation of GnRH secretion (de Roux et al., 2003; Seminara and Kaiser, 2005). Kiss-1 and GPR54 are expressed in the medial basal hypothalamus, and kiss-1 has a direct action on GnRH neurons which express GPR54. Recent studies have shown that kisspeptin neurons in the anteroventral periventricular nucleus express a-subtype of ERs and that E2 might exert a positive feedback on GnRH secretion during LH surge by stimulating kiss-1 expression (Adachi et al., 2007). Knowing that crucial role of kiss-1 in regulation of GnRH secretion and its modulation by E2, we could hypothesize that kiss-1 could be a potential target for estrogenic EDCs. In summary, this study shows that EDCs, in particular o,p#-DDT, can modulate the GnRH secretion in vitro in the immature female hypothalamus through both rapid and slow effects with the involvement of estrogen, dioxin, and AMPA receptor pathways. FUNDING European Commission (EDEN project, QLRT-2001-00269); Faculty of Medicine at the University of Liège (Léon Frédéricq Foundation); Belgian Study Group for Paediatric Endocrinology. REFERENCES Abraham, I. M., Todman, M. G., Korach, K. S., and Herbison, A. E. (2004). Critical in vivo roles for classical estrogen receptors in rapid estrogen actions on intracellular signalling in mouse brain. Endocrinology 145, 3055–3061. Adachi, S., Yamada, S., Takatsu, Y., Matsui, H., Kinoshita, M., Takase, K., Sugiura, H., Ohtaki, T., Matsumoto, H., Uenoyama, Y., et al. (2007). Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. J. Reprod. Dev. 53, 367–378. de Roux, N., Genin, E., Carel, J. C., Matsuda, F., Chaussain, J. L., and Milgrom, E. (2003). Hypogonadotropic hypogonadism due to loss of function of the kiss-1-derived peptide receptor GPR54. Proc. Natl. Acad. Sci. U.S.A. 100, 10972–10976. Desaulniers, D., Cooke, G. M., Leingartner, K., Soumano, K., Cole, J., Yang, J., Wade, M., and Yagminas, A. (2005). Effects of postnatal exposure to a mixture of polychlorinated biphenyls, p,p#-dichlorodiphenyltrichloroethane, and p,p#-dichlorodiphenyldichloroethene in prepubertal and adult female Sprague-Dawley rats. Int. J. Toxicol. 24, 111–127. Diano, S., Naftolin, F., and Horvath, T. L. (1997). Gonadal steroids target AMPA glutamate receptor-containing neurons in the rat hypothalamus, septum and amygdala: A morphological and biochemical study. Endocrinology 138, 778–789. Diel, P., Olff, S., Schmidt, S., and Michna, H. (2002). Effects of the environmental estrogens bisphenol A, o,p#-DDT, p-tert-octylphenol, and coumestrol on apoptosis induction, cell proliferation, and the expression of estrogen sensitive molecular parameters in the human breast cancer cell line MCF-7. J. Steroid Biochem. Mol. Biol. 80, 61–70. Dluzen, D. E., and Ramirez, V. D. (1981). Presence and localization of immunoreactive luteinizing hormone-releasing hormone within the olfactory bulbs of adult male and female rats. Peptides 2, 493–496. Donoso, A. O., Lopez, F. J., and Negro-Vilar, A. (1990). Glutamate-receptors of the non-N-methyl-D-aspartic acid type mediate the increase in luteinizing hormone-releasing hormone release by excitatory amino acids in vitro. Endocrinology 126, 414–420. Gellert, R. J., Heinrichs, W. L., and Swerdloff, R. S. (1972). DDT homologues: Estrogen-like effects on the vagina, uterus, and pituitary of the rat. Endocrinology 91, 1095–1100. Gu, Q., Korach, K. S., and Moss, R. L. (1999). Rapid action of 17b-estradiol on kainate-induced currents in hippocampal neurons lacking intracellular estrogen receptors. Endocrinology 140, 660–666. Harper, P. A., Riddick, D. S., and Okey, A. B. (2006). Regulating the regulator: Factors that control levels and activity of the aryl hydrocarbon receptor. Biochem. Pharmacol. 72, 267–279. Heinrichs, W. L., Gellert, R. J., Bakke, J. L., and Lawrence, N. L. (1971). DDT administered to neonatal rats induces persistent estrus syndrome. Science 173, 642–643. Herbison, A. E. (1998). Multimodal influence of estrogen upon gonadotropinreleasing hormone neurons. Endocr. Rev. 19, 302–330. Herbison, A. E., and Pape, J. R. (2001). New evidence for estrogen receptors in gonadotropin-releasing hormone neurons. Front. Neuroendocrinol. 22, 292–308. Bourguignon, J. P., Gérard, A., and Franchimont, P. (1989a). Direct activation of gonadotropin-releasing hormone secretion through different receptors to neuroexcitatory amino acids. Neuroendocrinology 49, 402–408. Herman-Giddens, M. E., Slora, E. J., Wasserman, R. C., Bourdony, C. J., Bhapkar, M. V., Koch, G. G., and Hasemeier, C. M. (1997). Secondary sexual characteristics and menses in young girls seen in office practice: A study from the paediatric research in office settings network. Pediatrics 99, 505–512. Bourguignon, J. P., Gérard, A., Mathieu, J., Simons, J., and Franchimont, P. (1989b). Pulsatile release of gonadotropin-releasing hormone from hypothalamic explants is restrained by blockade of N-methyl-D-aspartate receptors. Endocrinology 125, 1090–1096. Improta-Brears, T., Whorton, A. R., Codazzi, F., York, J. D., Meyer, T., and McDonnell, D. P. (1999). Estrogen-induced activation of mitogen-activated protein kinase requires mobilization of intracellular calcium. Proc. Natl. Acad. Sci. U.S.A. 96, 4686–4691. Buck-Louis, G. M., Gray, L. E., Jr, Michele Marcus, M., Ojeda, S., Pescovitz, O. A., Feldman Witchel, S., Sippell, W., Abbott, D. A., Soto, A., Tyl, R. W., et al. (2008). Environmental factors and puberty timing: Expert panel research needs. Pediatrics (in press). Kelce, W. R., Stone, C. R., Laws, S. C., Gray, L. E., Kemppainen, J. A., and Wilson, E. M. (1995). Persistent DDT metabolite p,p#-DDE is a potent androgen receptor antagonist. Nature 375, 581–585. Charlier, C., and Plomteux, G. (2002). Determination of organochlorine pesticides residues in the blood of healthy individuals. Clin. Chem. Lab. Med. 40, 361–364. Clark, E. J., Norris, D. O., and Jones, R. E. (1998). Interactions of gonadal steroids and pesticides (DDT and DDE) on gonadal duct in larval tiger salamanders Ambystoma tigrinum. Gen. Comp. Endocrinol. 109, 94–105. Krstevska-Konstantinova, M., Charlier, C., Craen, M., Du Caju, M., Heinrichs, C., de Beaufort, C., Plomteux, G., and Bourguignon, J. P. (2001). Sexual precocity after immigration from developing countries to Belgium: Evidence of previous exposure to organochlorine pesticides. Hum. Reprod. 16, 1020–1026. Kuehl-Kovarik, M. C., Pouliot, W. A., Halterman, G. L., Handa, R. J., Dudek, F. E., and Partin, K. M. (2002). Episodic bursting activity and ENDOCRINE DISRUPTERS AND GnRH SECRETION response to excitatory amino acids in acutely dissociated gonadotropinreleasing hormone neurons genetically targeted with green fluorescent protein. J. Neurosci. 22, 2313–2322. Kwon, A., Stedman, D. B., Elswick, B. A., Cattley, R. C., and Welsch, F. (2000). Pubertal development and reproductive functions of Crl: CDBR Sprague-Dawley rats exposed to bisphenol A during prenatal and postnatal development. Toxicol. Sci. 55, 399–406. Lagrange, A. H., Wagner, E. J., Ronnekleiv, O. K., and Kelly, M. J. (1999). Rapid effects of estrogen to modulate G protein-coupled receptors via activation of protein kinase A and protein kinase C pathways. Steroids 64, 64–75. Lee, P. A., Guo, S. S., and Kulin, H. E. (2001). Age of puberty: Data from the United States of America. APMIS 109, 81–88. Matagne, V., Lebrethon, M. C., Gérard, A., and Bourguignon, J. P. (2005). Kainate/estrogen receptors and intracellular signalling pathways involved in estradiol rapid effects on gonadotropin-releasing hormone secretion in vitro. Endocrinology 146, 2313–2323. Matagne, V., Rasier, G., Lebrethon, M. C., Gérard, A., and Bourguignon, J. P. (2004). Estradiol stimulation of pulsatile gonadotropin-releasing hormone secretion in vitro: Correlation with perinatal exposure to sex steroids and induction of sexual precocity in vivo. Endocrinology 145, 2775–2783. Miller, K. P., Gupta, R. K., and Flaws, J. A. (2006). Methoxychlor metabolites may cause ovarian toxicity through estrogen-regulated pathways. Toxicol. Sci. 93, 180–188. Mussi, P., Ciana, P., Raviscioni, M., Villa, R., Regondi, S., Agradi, E., Maggi, A., and Di Lorenzo, D. (2005). Activation of brain estrogen receptors in mice lactating from mothers exposed to DDT. Brain Res. Bull. 65, 241–247. 41 Parent, A. S., Teilmann, G., Juul, A., Skakkebaek, N. E., Toppari, J., and Bourguignon, J. P. (2003). The timing of normal puberty and the age limits of sexual precocity: Variations around the world, secular trends, and changes after migration. Endocr. Rev. 24, 668–693. Rasier, G., Parent, A. S., Gérard, A., Lebrethon, M. C., and Bourguignon, J. P. (2007). Early maturation of gonadotropin-releasing hormone secretion and sexual precocity after exposure of infant female rats to estradiol or dichlorodiphenyltrichloroethane. Biol. Reprod. 77, 734–742. Rasier, G., Toppari, J., Parent, A. S., and Bourguignon, J. P. (2006). Female sexual maturation and reproduction after prepubertal exposure to estrogens and endocrine disrupting chemicals: A review of rodent and human data. Mol. Cell. Endocrinol. 254–255, 187–201. Rubin, B. S., Lenkowski, J. R., Schaeberle, C. M., Vandenberg, L. N., Ronsheim, P. M., and Soto, A. (2006). Evidence of altered brain sexual differentiation in mice exposed perinatally to low, environmentally relevant levels of bisphenol A. Endocrinology 147, 3681–3691. Seminara, S. B., and Kaiser, U. B. (2005). New gatekeepers of reproduction GPR54 and its cognate ligand, kiss-1. Endocrinology 146, 1686–1688. Teilmann, G., Pedersen, C. B., Skakkebæk, N. E., and Jensen, T. K. (2006). Increased risk of precocious puberty in internationally adopted children in Denmark. Pediatrics 118, 391–399. Todd, B. J., Schwarz, J. M., Mong, J. A., and McCarthy, M. M. (2007). Glutamate AMPA/kainate receptors, not GABA(A) receptors, mediate estradiol-induced sex differences in the hypothalamus. Dev. Neurobiol. 67, 304–315. Ohtake, F., Takeyama, K. I., Matsumoto, T., Kitagawa, H., Yamamoto, Y., Nohara, K., Tohyama, C., Krust, A., Mimura, J., Chambon, P., et al. (2003). Modulation of estrogen receptor signalling by association with the activated dioxin receptor. Nature 423, 545–550. Tomiyama, N., Watanabe, M., Takeda, M., Harada, T., and Kobayashi, H. (2003). A comparative study on the reliability of toxicokinetic parameters for predicting hepatotoxicity of DDT in rats receiving a single or repeated administration. J. Toxicol. Sci. 28, 403–413. Ojeda, S. R., and Urbanski, H. F. (1994). Puberty in the Rat. In In the Physiology of Reproduction. (E. Knobil and J. D. Neil, Eds.), Vol. 2, pp. 363–409. Raven Press Ltd, New York. Papanicolaou, G. N., and Traut, H. F. (1941). The diagnostic value of vaginal smears in carcinoma of the uterus. Arch. Pathol. Lab. Med. 121, 211–224. Tsurugizawa, T., Mukai, H., Tanabe, N., Murakami, G., Hojo, Y., Kominami, S., Mitsushashi, K., Komatsuzaki, Y., Morrison, J. H., Janssen, W. G. M., et al. (2005). Estrogen induces rapid decrease in dendritic thorns of CA3 pyramidal neurons in adult male rat hippocampus. Biochem. Biophys. Res. Commun. 337, 1345–1352. Parent, A. S., Lebrethon, M. C., Gérard, A., and Bourguignon, J. P. (2005). Factors accounting for perinatal occurrence of pulsatile gonadotropinreleasing hormone secretion in vitro. Biol. Reprod. 72, 143–149. Urbanski, H. F., Kohama, S. G., and Garyfallou, V. T. (1996). Mechanisms mediating the response of gonadotropin-releasing hormone neurons to excitatory amino acids. Rev. Reprod. 1, 173–181. This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Molecular and Cellular Endocrinology 324 (2010) 110–120 Contents lists available at ScienceDirect Molecular and Cellular Endocrinology journal homepage: www.elsevier.com/locate/mce Review Neuroendocrine disruption of pubertal timing and interactions between homeostasis of reproduction and energy balance Jean-Pierre Bourguignon ∗ , Grégory Rasier, Marie-Christine Lebrethon, Arlette Gérard, Elise Naveau, Anne-Simone Parent Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège and Department of Pediatrics, CHU de Liège, Belgium a r t i c l e i n f o Article history: Received 18 December 2009 Received in revised form 23 February 2010 Accepted 23 February 2010 Keywords: Hypothalamus Puberty Gonadotropin releasing hormone Endocrine disrupters Energy balance Nutrition a b s t r a c t The involvement of environmental factors such as endocrine disrupting chemicals (EDCs) in the timing of onset of puberty is suggested by recent changes in age at onset of puberty and pattern of distribution that are variable among countries, as well as new forms of sexual precocity after migration. However, the evidence of association between early or late pubertal timing and exposure to EDCs is weak in humans, possibly due to heterogeneity of effects likely involving mixtures and incapacity to assess fetal or neonatal exposure retrospectively. The neuroendocrine system which is crucial for physiological onset of puberty is targeted by EDCs. These compounds also act directly in the gonads and peripheral sex-steroid sensitive tissues. Feedbacks add to the complexity of regulation so that changes in pubertal timing caused by EDCs can involve both central and peripheral mechanisms. In experimental conditions, several neuroendocrine endpoints are affected by EDCs though only few studies including from our laboratory aimed at EDC involvement in the pathophysiology of early sexual maturation. Recent observations support the concept that EDC cause disturbed energy balance and account for the obesity epidemic. Several aspects are linking this system and the reproductive axis: coexisting neuroendocrine and peripheral effects, dependency on fetal/neonatal programming and the many factors cross-linking the two systems, for instance leptin, adiponectin, Agouti Related Peptide (AgRP). This opens perspectives for future research and, hopefully, measures preventing the disturbances of homeostasis caused by EDCs. © 2010 Published by Elsevier Ireland Ltd. Contents 1. 2. 3. 4. 5. 6. 7. Introduction: rationale for endocrine disruption of pubertal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sexually dimorphic evidence of endocrine disruption of pubertal timing in humans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Direct and indirect EDC effects on neuroendocrine maturation at puberty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Experimental models of EDC neuroendocrine effects on the reproductive axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1. In vitro studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2. In vivo studies and critical periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A rodent model of EDC neuroendocrine effects on sexual maturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Endocrine disruption of puberty and reproduction in relation to homeostasis of energy balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1. Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2. Human data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 111 112 113 114 114 115 116 116 118 118 118 118 1. Introduction: rationale for endocrine disruption of pubertal timing ∗ Corresponding author at: Department of Pediatrics, CHU ND des Bruyères, Rue de Gaillarmont, 600, B4032 CHENEE, Belgium. Tel.: +32 4 367 92 75/96 87; fax: +32 4 367 94 29. E-mail address: [email protected] (J.-P. Bourguignon). 0303-7207/$ – see front matter © 2010 Published by Elsevier Ireland Ltd. doi:10.1016/j.mce.2010.02.033 Puberty is the life period when pituitary–gonadal maturation leads to a series of physical changes and ultimately, achievement of reproductive capacity. A central event in the onset of puberty is Author's personal copy J.-P. Bourguignon et al. / Molecular and Cellular Endocrinology 324 (2010) 110–120 an increase in frequency and amplitude of Gonadotropin Releasing Hormone (GnRH) secretion in the hypothalamus. This event is controlled by redundant inhibitory or excitatory mechanisms that respectively disappear or appear at the onset of puberty (Bourguignon, 2004). It is generally agreed that variations in pubertal timing within a physiological 5-year period are predominantly determined by genetic factors while environmental factors play a comparatively minor role (Parent et al., 2003). A robust landmark of environmental effects on pubertal timing arose through the secular advance in menarcheal age. Because this observation was made between the mid-19th and the mid-20th centuries both in USA and Western Europe and more recently in developing countries (Parent et al., 2003), the likely explanation was thought to be improvement in health and nutritional status with industrialization. Accordingly, the end or slowdown of this process seen between 1960 and 2000 was expected. Around the year 2000 however, two large American studies provided evidence of earlier onset of puberty (Herman-Giddens et al., 1997; Lee et al., 2001). Very recently relatively similar findings were obtained in Denmark and Belgium (Aksglaede et al., 2009; Roelants et al., 2009). As opposed to the previous changes, the recent observations were heterogeneous: they could differ among countries; initial signs such as onset of breast development were more affected than subsequent signs such as menarcheal age (Herman-Giddens et al., 1997; Lee et al., 2001; Aksglaede et al., 2009; Roelants et al., 2009); age distribution showed skewing towards earlier ages for initial signs and towards later ages for final signs (Roelants et al., 2009; Papadimitriou et al., 2008). Because those changes in pubertal timing were concomitant with the epidemic of obesity in USA, the pathophysiological involvement of fat mass, possibly through leptin (Herman-Giddens et al., 1997; Lee et al., 2001; Himes, 2006) was hypothesized in that country. However, the recent changes in pubertal timing in Denmark were not associated with changes in adiposity (Aksglaede et al., 2009). Thus other factors including endocrine disrupting chemicals (EDCs) could be involved (Teilmann et al., 2002). Additional evidence of environmental effects on pubertal timing in humans came from studies in children migrating for international adoption. As cohorts, they appeared to mature earlier than children in the foster countries and in the countries of origin (Proos et al., 1991; Parent et al., 2003). Also, sexual precocity requiring GnRH agonist therapy was much more common in those migrat- 111 ing children than in others (Krstevska-Konstantinova et al., 2001; Teilmann et al., 2006). Based on increased serum levels of DDE, a derivative of the estrogenic insecticide DDT found among migrating children, we hypothesized that early exposure to this EDC and subsequent withdrawal due to migration could account for a neuroendocrine pathogenetic mechanism of secondary central precocious puberty (Krstevska-Konstantinova et al., 2001; Parent et al., 2003). Many other EDCs however could possibly be involved and could result in peripheral precocity as well (see below). The bias accounting for DDT study came from the very long half-life of its derivative DDE. Moreover, it was likely that other factors including recovery from earlier nutritional as well as psychosocial deprivation could play some role in this particular condition (Dominé et al., 2006). 2. Sexually dimorphic evidence of endocrine disruption of pubertal timing in humans It is challenging to link exposure to particular EDCs and health issues such as disorders of pubertal timing for several reasons (Buck Louis et al., 2008; Diamanti-Kandarakis et al., 2009). Humans as well as animals are likely exposed to a variety of EDCs acting as mixtures with time-related changes in compounds and doses. Mixtures result in more than additive effects since compounds mixed at concentrations that were inactive when used as single EDCs were shown to become active when used as mixtures (Kortenkamp, 2008). The study of mixtures, however, is complex and laborious. So far neuroendocrine studies have been performed with single classes of EDCs only. When exposure is assessed at the time of pubertal disorders, there has been a very long period since fetal/perinatal life, the most critical time for EDC effects. Though such factors could affect the relevance of the studied relationship between EDCs and pubertal disorders, we will review the available information that is mainly based on the study of single EDCs. Prenatal and postnatal exposure will be separated whenever possible as well as effects in males and females. Sexual dimorphism is indeed a critical issue when EDC effects are considered. As a whole, EDCs appear to work either as estrogen agonists or as androgen antagonists with the ratio Estrogen/Androgen actions as an ultimate determinant of EDC effects (Rivas et al., 2002). Consistent with this concept is the observation that premature breast Table 1 Variations in pubertal timing in relation with pre- and/or post-natal exposure of female humans to endocrine disrupters. Pubertal timing Early Normal Exposure Prenatal Postnatal DDE (+DDT) Menarche (Vasiliu et al., 2004) Menarche (Ouyang et al., 2005) B2 (Krstevska-Konstantinova et al., 2001) Prenatal Delayed Postnatal Prenatal Menarche (Denham et al., 2005) B2 (Wolff et al., 2008) Menarche and B3 (Gladen et al., 2000) Methoxychlor PBBs PCBs Monkey (Golub et al., 2003) Menarche (Blanck et al., 2000) Menarche (Denham et al., 2005) Dioxins Phthalates Phytoestrogens soy formula Postnatal B2 (Blanck et al., 2000) Menarche (Vasiliu B2/menarche (Den et al., 2004; Yang et Hond et al., 2002); B2 al., 2005) (Wolff et al., 2008) Menarche and B3 (Gladen et al., 2000) Menarche (Leijs et al., 2008; Warner et al., 2004) Menarche (Den Hond et al., 2002) B2 (Leijs et al., 2008) B2 (Den Hond et al., 2002) B2 (Colon et al., 2000) Menarche (Strom et al., 2001) B2 (Wolff et al., 2008) DDE: dichlorodiphenyldichloroethene; DDT: dichlorodiphenyltrichloroethane; PBB: polybrominated biphenyl; PCB: polychlorinated biphenyl; and B2, B3: Tanner’s stages 2 and 3 of breast development. Author's personal copy 112 J.-P. Bourguignon et al. / Molecular and Cellular Endocrinology 324 (2010) 110–120 Table 2 Variations in pubertal timing in relation with pre- and/or post-natal exposure of male humans to endocrine disrupters. Pubertal timing Exposure Early Prenatal Normal Postnatal Delayed Prenatal Postnatal DDE (+DDT) G3-5, PHV (Gladen et al., 2000) PCBs G3-5, PHV (Gladen et al., 2000) G, TV (Mol et al., 2002) Dioxin Prenatal Postnatal Penile length (Guo et al., 2004) P and G (Den Hond et al., 2002) P and G (Den Hond et al., 2002) DDE: dichlorodiphenyldichloroethene; DDT: dichlorodiphenyltrichloroethane; PCB: polychlorinated biphenyl; G: Tanner’s stage of genital development; P: Tanner’s stage of pubic hair development; PHV: peak height velocity; and TV: testicular volume. development can occur after exposure to phthalates that are considered to act primarily as androgen antagonists (Colon et al., 2000). Further, an estrogenic compound such as DDT can generate the anti-androgenic sub-product DDE that can also indirectly reflect previous exposure to DDT, further complicating the elucidation of estrogenic versus anti-androgenic effects (Rasier et al., 2008). Virtually, any clinical evidence of pubertal development (except testicular growth) can result from either centrally driven maturation involving the hypothalamic–pituitary system or direct peripheral interaction in the tissues targeted by sex steroids or both mechanisms. Here, the clinical manifestations will be reviewed irrespective of the underlying mechanism. In a subsequent section, the neuroendocrine mechanisms will be delineated. More data were obtained in girls (Table 1) than in boys (Table 2). This could involve methodological biases since a precise timer of maturation is provided by menarcheal age in girls who also experience more obvious onset of puberty with the development of breasts as opposed to the less perceptible increase in testicular volume in boys (Parent et al., 2003). While the majority of EDCs studied in girls accounted for normal or early timing (Table 1), dioxins and phytoestrogens were associated with delayed timing of breast development (Den Hond et al., 2002; Leijs et al., 2008; Wolff et al., 2008). Menarcheal age however did not seem to be affected by dioxins or phytoestrogens in the same studies (Den Hond et al., 2002; Leijs et al., 2008) and in others (Strom et al., 2001; Warner et al., 2004). Likewise, dissociation between normal timing of breast development and early menarche was reported in relation to exposure to PBBs (Blanck et al., 2000). These findings emphasize the importance of studying different pubertal signs possibly involving different mechanisms at several times throughout the pubertal process. Except one study reporting early menarche in relation to exposure to PCBs (Denham et al., 2005), this EDC was found to be associated with normal timing of both breast development and menarche (Gladen et al., 2000; Den Hond et al., 2002; Vasiliu et al., 2004; Yang et al., 2005; Wolff et al., 2008). Early breast development (Krstevska-Konstantinova et al., 2001) and early menarche (Vasiliu et al., 2004; Ouyang et al., 2005) were reported in relation to exposure to DDT and or DDE whereas normal pubertal timing was found by others (Gladen et al., 2000; Denham et al., 2005; Wolff et al., 2008). In the female monkey, delayed nipple growth and short follicular phase were seen after exposure to methoxychlor (Golub et al., 2003). Overall, those studies did not enable to show different effects depending on prenatal or postnatal period of exposure to the EDCs. In boys, the few studies available (Table 2) suggest no effects of DDT, DDE and dioxins (Gladen et al., 2000; Den Hond et al., 2002). Exposure to PCBs was found to be associated with either normal (Gladen et al., 2000; Mol et al., 2002) or delayed timing (Den Hond et al., 2002; Guo et al., 2004) of male pubertal development. 3. Direct and indirect EDC effects on neuroendocrine maturation at puberty Puberty involves a cascade of physiological events resulting from CNS and neuroendocrine maturation (Table 3). Because sex steroids can act at the different levels of the hypothalamic–pituitary–gonadal system, the imbalance between estrogen and androgen effects caused by EDCs (Rivas et al., 2002) potentially affects all those levels. Gender dimorphism is another important aspect both peripherally and centrally. Changes in gonads and peripheral tissues responsive to sex steroids were the first endpoints studied to show EDC effects. Direct disruption of the peripheral reproductive system involves predominantly effects mimicking estrogens in the female while counteracted androgen effects are involved peripherally in the male (Diamanti-Kandarakis et al., 2009). Since the reproductive system is regulated by feedback loops between gonads and peripheral tissues on the one hand and pituitary gland, hypothalamus and CNS on the other hand, direct peripheral effects of EDCs can secondar- Table 3 Some possible mechanisms of EDC maturational effects on the hypothalamic–pituitary–gonadal system in female and male individuals. Level possibly targeted by EDCs Developmental effects of increased Estrogen/Androgen balance Female Mechanisms Male CNS: suprahypothalamic afferences Hypothalamus: GnRH neurons and surrounding neurono-glial system Structural changes? Facilitation (or inhibition) of pulsatile GnRH secretion Female more sensitive than the male? Alteration of sexually dimorphic control of ovulation Primary central/neuroendocrine or Secondary to altered feedback effects of gonadal hormones Pituitary gland: gonadotrophic cells Early pubertal stimulation or Increased prepubertal inhibition (negative feedback) Response to neuroendocr. effects or Peripheral feedback Gonads: sex steroid production/effects and gametogenesis Peripheral tissues: sex steroid effects Alteration of folliculogenesis Alteration of spermatogenesis Early/increased stimulation of estrogen sensitive tissues (breast, uterus) Delayed/reduced stimulation of androgen sensitive tissues (penis, prostate) Primary peripheral or Secondary to altered neuroendocrine control Author's personal copy J.-P. Bourguignon et al. / Molecular and Cellular Endocrinology 324 (2010) 110–120 113 Table 4 In vitro evidence of neuroendocrine disruption of the reproductive system. EDC Expos. Sex Endpoint PCBs GT1–7 neurons – GT1–7 neurons – Aroclor1221: increased GnRH mRNAs and peptide release; neurite outgrowth. Aroclor 1254: biphasic effects and neurotoxicity (Gore et al., 2002) Early elevation and late reduction of GnRH release; apoptotic and neurotoxic effects (Dickerson et al., 2009) MXC GT1–7 neurons – Coumestrol DDT GT1–7 neurons Rat hyp. explants – F Dioxin Adult rat F ER independent reduction of GnRH mRNAs; ER mediated stimulation of GnRH release (Gore, 2002) ER mediated inhibition of GnRH mRNA expression (Bowe et al., 2003) ER and AhR receptor mediated stimulation of pulse frequency of GnRH secretion and glutamate-evoked release (Rasier et al., 2007, 2008) TCDD in vitro: no effect on pulsatile GnRH release (Trewin et al., 2007) MXC: methoxychlor; PCBs: polychlorinated biphenyls; ER: estrogen receptor; AhR: arylhydrocarbon receptor; DDT: dichlorodiphenyltrichloroethane; and TCDD: 2,3,7,8tetrachlorodibenzo-p-dioxin. ily influence central mechanisms through changes in endogenous peripheral hormones. Consequently, changes in neuroendocrine and pituitary function could result indirectly from altered peripheral feedback. Changes in hypothalamic and pituitary function could also result directly from EDC neuroendocrine effects. Centrally, the neuroendocrine control of reproduction through the preovulatory gonadotropin surge and its alteration following exposure to sex steroids during fetal or perinatal life has been known for several decades as a specific female feature (Gorski, 1968). In such conditions, changes in gonadal and peripheral tissue function could be determined by EDC neuroendocrine effects. Due to obvious limits in assessment of neuroendocrine function in the clinical setting, the use of experimental models is required to tackle neuroendocrine effects of EDC. 4. Experimental models of EDC neuroendocrine effects on the reproductive axis In Tables 4 and 5 are summarized some findings providing experimental evidence of EDC neuroendocrine effects. The available data are quite heterogeneous as far as the studied EDCs, the experimental models and the endpoints. Since, so far, only few studies have addressed the issue of neuroendocrine disruption of sexual maturation, we have extended our review of the mecha- Table 5 In vivo evidence of neuroendocrine disruption of the reproductive system. EDC Expos. Sex Endpoint DES Quail embryo M MXC Fetal ewe F Reduced vasotocin in medial preoptic nucleus and bed nucleus of stria terminalis; suppression of male copulatory behavior (Viglietti-Panzica et al., 2005) Delayed LH surge (Savabieasfahani et al., 2006) – secondary to altered folliculogenesis? BPA Fetal ewe F Fetal rat Fetal/neonatal mouse M F Neonatal rat Neonatal rat Adult OVX rat M M/F F Neonat. mouse Neonat. fish M M/F Neonat. rat F Fetal rat F Fetal rat F Adult fish M DDT PCBs Dioxin Fish larvae Fetal rat M Isoflavone Adult rat F Coumestrol Adult OVX rat F Reduced magnitude of LH surge (Savabieasfahani et al., 2006) – secondary to altered folliculogenesis? Increased ER mRNA expression in POA (Ramos et al., 2003) Decline in tyrosine hydroxylase neurons in POA and suppression of sex-related rearing behavior (Rubin et al., 2006) Increased anxiety behavior and body weight (Patisaul and Bateman, 2008) Reduced hypothalamic Kiss-1 expression (Navarro et al., 2009) Increased progesterone receptor expression in POA and VMN; reduced sexual receptivity (Funabashi et al., 2003) Increased brain estrogen receptor (Mussi et al., 2005) Increased activity and expression of brain aromatase and male to female sex reversal (Kuhl et al., 2005) Increased frequency of pulsatile GnRH secretion, sexual precocity, disturbed estrus cyclicity (Rasier et al., 2007) Aroclor 1221: increased GnRH mRNAs in POA-anterior hypothalamus and unchanged timing of vaginal opening; Aroclor 1254: no effects (Gore, 2008) Aroclor 1221: altered female mating behavior (Steinberg et al., 2007) and reduced proestrus LH surge (Steinberg et al., 2008) Aroclor 1254: reduced tryptophan hydroxylase activity and GnRH content in POA (Khan and Thomas, 2001) TCDD: prevention of brain aromatase upregulation by estradiol (Cheshenko et al., 2007) TCDD: increased content and reduced release of GnRH by hypothalamic explants (Clements et al., 2009) Increased ER receptors in PVN; reduced upregulation of oxytocin receptors via ER␣ in VMN; reduced sexual receptivity (Patisaul et al., 2001) Reduced multiunit electrical activity in hypothalamus and inhibition of LH pulse amplitude and frequency (McGarvey et al., 2001) MXC: methoxychlor; BPA: bisphenol A; DES: diethylstilbestrol; PCBs: polychlorinated biphenyls; PVN: paraventricular nucleus; VMN: ventromedial nucleus; POA: preoptic area; OVX: ovariectomized; ER: estrogen receptor; DDT: dichlorodiphenyltrichloroethane; and TCDD: 2,3,7,8-tetrachlorodibenzo-p-dioxin. Author's personal copy 114 J.-P. Bourguignon et al. / Molecular and Cellular Endocrinology 324 (2010) 110–120 nisms of EDC effects to the overall neuroendocrine control of the reproductive system. 4.1. In vitro studies In vitro models allowed direct evaluation of EDC effects on neurono-glial function (Table 4). A debated question is as to whether sex steroids and EDCs that have the estrogen receptor as common target influence the GnRH neuron directly or indirectly. In a previous review, we concluded that GnRH neurons could be directly involved in responding to estrogens (Matagne et al., 2003). Maturational characteristics could influence estrogen effects on GnRH neurons. GT1 cells, a model for GnRH neurons that are responsive to estrogens and EDCs, have been obtained from immortalization at an embryonic stage and are somehow developmentally arrested. Direct early responsiveness of GnRH neurons to estrogens at early developmental stage is supported by a recent study showing that neurogenesis in cultured olfactory placode was directly stimulated by estradiol (Agça et al., 2008). Later in adulthood, estrogen effects on GnRH neurons may become indirect since studies with cell specific deletion of the different ER subtypes indicated that estradiol positive feedback at the time of the preovulatory surge primarily involved other estrogen responsive cells than GnRH neurons (Herbison, 2008). Species differences could also occur since it was shown recently that orchidectomy caused increased amplitude of pulsatile GnRH release from monkey but not from rat hypothalamic explants (Woller et al., 2010). Using cultured immortalized GnRH neurons, variable changes in GnRH transcripts and peptide release were obtained depending on the EDC and the concentrations used, the response being possibly non-linear and biphasic (Gore et al., 2002; Gore, 2002; Bowe et al., 2003; Dickerson et al., 2009). PCBs also accounted for neurotoxic effects with increased expression of cleaved caspase-9 (Gore et al., 2002; Dickerson et al., 2009). We used hypothalamic explants to study the effects of DDT, an estrogenic EDC, in relation to sexual maturation. Our paradigm included axons and terminals of the final effector, i.e. the GnRH neuron (Purnelle et al., 1997) as well as the afferent neuronoglial apparatus possibly involved in EDC effects. The explants also retained some developmental characteristics since they released GnRH in a pulsatile manner with a frequency increasing from birth to onset of puberty (Bourguignon et al., 1992). We used hypothalamic explants of immature female rats aged 15 days because they were found earlier to be responsive to estradiol through an increase in frequency of pulsatile GnRH secretion (Matagne et al., 2004). In such conditions, DDT resulted in effects similar to estradiol (Rasier et al., 2008). However, Trewin et al. (2007) could not observe any change in pulsatile GnRH secretion caused by dioxin using hypothalamic explants from cycling adult female rats. The age difference could account for such discrepant observations since we did not observe at 25 and 50 days the stimulatory estradiol effects seen at 5 and 15 days (Matagne et al., 2004). Though such in vitro models provided an opportunity to study directly the mechanisms of neuroendocrine EDC effects, the conditions were not comparable to those in vivo both in terms of GnRH neuron function/regulation and environmental exposure to the studied EDCs. The explants or the immortalized neurons were deafferented from physiological neurono-glial inputs. Concentrations higher than those toxicologically relevant in humans were required likely due to low diffusion in the explants (Matagne et al., 2003). This reinforced the value of in vivo models. 4.2. In vivo studies and critical periods Suggestive evidence of EDC neuroendocrine effects was obtained in vivo by studying physiological processes known to involve hypothalamic or CNS regulation (Table 5). Except phytoe- strogen effects that were studied in adult animals, the vast majority of studies were performed after exposure during fetal and/or early postnatal life. This is consistent with the concept of critical periods in early life that appeared to determine the effects of sex steroids (McCarthy et al., 2009) as well as nutrition (Gluckman and Hanson, 2004) on the homeostasis of reproduction and energy balance. The neuroendocrine events affected by EDCs in vivo include central, i.e. gonadotropin-dependent onset of puberty (Rasier et al., 2007; Gore, 2008), ovulation that is dependent on stimulation by the gonadotropin surge (Savabieasfahani et al., 2006; Steinberg et al., 2008) and sexual behavior in males (Viglietti-Panzica et al., 2005) and females (Patisaul et al., 2001; Funabashi et al., 2003; Rubin et al., 2006; Steinberg et al., 2007). Not unexpectedly, those three sexually dimorphic processes are likely regulated by sex steroids and possibly disrupted by EDCs differently in males and females in different species. Prenatal exposure of the ovine fetus to testosterone caused alteration of pubertal timing and estrus cyclicity through neuroendocrine alteration of estradiol positive feedback (Unsworth et al., 2005), including marked reduction of FOS-positive GnRH neurons in response to estradiol (Wood et al., 1996). In similar conditions, fetal lamb exposure to the EDCs methoxychlor or BPA accounted for delayed or severely reduced LH surge, respectively, without change in pubertal timing (Savabieasfahani et al., 2006). As emphasized by the authors, the exposed animals also had ovarian anomalies, growth retardation and metabolic disorders that could contribute to disrupted reproductive function. A single prenatal administration of PCB mixture on gestational day 16 caused postnatal growth retardation (Gore, 2008) and disturbed sexual behavior, prominently in females (Wang et al., 2002; Steinberg et al., 2008). Behavioral evidence of transgenerational effects came from female preference of male with no history of exposure, three generations after the progenitors were exposed to vinclozolin (Crews et al., 2007). These findings might suggest epigenetic changes in the neuroendocrine components of sexual behavior regulation. Direct evidence of epigenetic mechanisms in the hypothalamus in relation with sexual differentiation further provide rationale for studies on EDC effects on epigenetics of the neuroendocrine system (Murray et al., 2009). Other endpoints in experimental studies on neuroendocrine effects include expression or transcripts of sex steroid receptors (Patisaul et al., 2001; Funabashi et al., 2003; Ramos et al., 2003; Mussi et al., 2005) and enzymes involved in sex steroid metabolism or dependent on sex steroid effects (Khan and Thomas, 2001; Kuhl et al., 2005; Rubin et al., 2006). In this respect, aromatase deserves special attention due to its involvement in the control of sexually differentiated neuroendocrine functions including sexual behavior (Balthazart et al., 2006). In the zebra fish, dioxins were shown to alter estrogen upregulation of aromatase (Cheshenko et al., 2007). Several authors including our group have studied direct or indirect appraisal of GnRH synthesis and secretion (Khan and Thomas, 2001; McGarvey et al., 2001; Rasier et al., 2007; Gore, 2008) While we found that in vivo early postnatal exposure of female rat to DDT, an estrogenic EDC, resulted in premature developmental increase in GnRH pulse frequency in vitro (Rasier et al., 2007), Clements et al. (2009) reported recently that, in male rats, GnRH release in vitro was reduced after fetal exposure to dioxin, another estrogenic EDC. This stresses again the diversity of conditions including gender, compound and period of exposure that could account for discrepant data. Finally, neuropeptides dependent on sex steroid effects (Patisaul et al., 2001; Viglietti-Panzica et al., 2005) including the recent demonstration of reduced Kiss-1 expression by BPA (Navarro et al., 2009) and non-sexual aspects of behavior (Patisaul and Bateman, 2008). In summary, several neuroendocrine studies on EDC effects were performed but the conclusions drawn from such studies remain rather limited due to the many variables that may influence the response to EDCs, e.g. dose, age at exposure, Author's personal copy J.-P. Bourguignon et al. / Molecular and Cellular Endocrinology 324 (2010) 110–120 115 Fig. 1. Schematic illustration of the mechanisms of estradiol and o,p -DDT effects on GnRH secretion. Three pathways are identified with both rapid, presumably non-genomic effects and slow, presumably genomic effects: (1) binding the classical estrogen receptor (ER) and causing genomic effects after activation through the estrogen responsive element (ERE); (2) binding some ER and interacting with the AMPA subtype of glutamate receptor with subsequent involvement of intracellular kinases; and (3) binding the aryl hydrocarbon (AHR) orphan dioxin receptor, and cross talking with the E2 signalling machinery to form a functional transcriptional complex in the regulatory region of ER-responsive genes (Ohtake et al., 2003). duration of exposure, route of administration, gender and mixtures. Comparison between neuroendocrine effects and studies on effects in other parts of the CNS may help in elucidation of alterations caused by EDCs during CNS development (Naveau et al., 2010). 5. A rodent model of EDC neuroendocrine effects on sexual maturation Using hypothalamic explants of immature female rats aged 15 days, we showed that o,p -DDT directly stimulated GnRH pulse frequency in vitro. The mechanism (Fig. 1) involved both the ER and the aryl hydrocarbon receptor (AHR) as well as the AMPA subtype of glutamate receptors (Rasier et al., 2008). The DDT effects were not only dose-dependent but also time-dependent with both rapid and slow effects since the glutamate-evoked release of GnRH increased as soon as after 7.5 min of incubation and further after 4 h of incubation (Rasier et al., 2008). These in vitro findings provided the rationale for an in vivo study of DDT effects on pubertal timing through a central/hypothalamic mechanism. The aim was to expose female rats early and transiently to DDT in order to model the neuroendocrine effects of the pesticide that could account for sexual precocity in girls migrating for international adoption (KrstevskaKonstantinova et al., 2001; Parent et al., 2003). Because fetal or early postnatal exposure to testosterone or estradiol would masculinize the CNS and alter the mechanism of estrus cycling, the animals were exposed to DDT on postnatal days 6–10. We reported in earlier studies that exposure to estradiol within this age window resulted in sexually differentiated effects on GnRH secretion both in vitro and in vivo and subsequent female sexual precocity (Matagne et al., 2004). In similar age conditions, in vivo exposure to DDT followed by ex vivo study of GnRH release by hypothalamic explants resulted in premature acceleration of pulsatile GnRH secretion (Rasier et al., 2007). Both vaginal opening and first estrus occurred earlier after exposure to estradiol or DDT though the time interval between the two events was increased. Our findings could involve central as well as peripheral mechanisms of sexual precocity. In order to obtain further evidence of neuroendocrine effects of DDT in vivo, the response of pituitary LH to a bolus administration of synthetic GnRH was studied. LH response was shown to reflect previous stimulation by endogenous GnRH and, in man, increased LH response was regarded as the evidence of neuroendocrine maturation leading to the so-called central puberty (Carel et al., 2009). A different situation occurred in the female rat since neuroendocrine maturation was associated with a developmental reduction of LH response, a confounding observation with LH reduction due to negative feedback such as seen in peripheral precocity. Nevertheless, we observed a premature developmental reduction in LH response after exposure to DDT that possibly resulted from neuroendocrine effects (Rasier et al., 2007). Based on the rodent model, our interpretation of sexual precocity after migration is summarized in Fig. 2 (Parent et al., 2003; Rasier et al., 2006, 2007). During exposure to DDT, estrogenic effects can account for both peripheral and central (neuroendocrine) stimulation. However, due to concomitant negative feedback inhibition at the pituitary level, the central effects are not translated into gonadotropin stimulation of the ovaries until the pituitary inhibition disappears following migration in a DDTfree environment. In a study of internationally adopted girls aged 5–8 years before they eventually showed clinical evidence of sexual precocity, Teilmann et al. (2007) reported that serum FSH and estradiol levels were already elevated in several girls, confirming early pituitary–ovarian activity after migration. The above mechanism is comparable to that operating in other conditions with peripheral precocious puberty (e.g. congenital adrenal hyperplasia, adrenal or gonadal tumours) followed by secondary central precocious puberty after the peripheral disorders is cured by medical or surgical treatment (Parent et al., 2003). Consistent with this Author's personal copy 116 J.-P. Bourguignon et al. / Molecular and Cellular Endocrinology 324 (2010) 110–120 Fig. 2. Schematic representation of the putative mechanism of sexual precocity after transient exposure to the estrogenic insecticide DDT in girls migrating for international adoption. During exposure to DDT, neuroendocrine maturation is promoted but not translated into ovarian stimulation due to negative feedback inhibition of the pituitary gonadotropes. After migration in a DDT-free environment, the negative feedback does no longer operate and allows central maturation to lead to gonadotropin-dependent puberty (modified from Rasier et al., 2006). concept, central precocity should not be manifested in conditions of persisting exposure to DDT. We attempted to demonstrate that continued administration of DDT to the female rats was not associated with evidence of precocious central maturation but we failed due to toxic effects including malnourishment and growth failure (Rasier et al., 2007). We previously reviewed the effects of EDCs on sexual maturation in laboratory rodents (Rasier et al., 2006). Peripheral effects can be biphasic, low doses causing early puberty and high doses delayed puberty such as shown using triphenyltin in the female rat (Grote et al., 2006) and phthalates in the male (Ge et al., 2007). In the few studies where hypothalamic pituitary function was assessed, LH secretion was reduced together with early vaginal opening after DES (Kubo et al., 2003) or irregular cycling after BPA (Rubin et al., 2006). Still, the possibly coexisting central and peripheral effects remain a matter of confusion. As an example, BPA administration to neonatal female rats for 4 days resulted in early vaginal opening and acyclicity but no change in sexual receptivity and FOS induction in GnRH neurons after steroid priming (Adewale et al., 2009). This suggested predominant peripheral effects in those conditions and highlighted the importance of simultaneous study of central and peripheral effects. 6. Endocrine disruption of puberty and reproduction in relation to homeostasis of energy balance The neuroendocrine system in the hypothalamus constitutes a single place for different aspects of homeostasis including reproduction and energy balance. It is also involved, during fetal and neonatal life, in programming mechanisms accounting for the “developmental origin of health and diseases” (Gluckman and Hanson, 2004). Therefore, it appeared interesting to integrate some of the many connections between homeostasis of reproduction and homeostasis of energy balance, during both prenatal/neonatal and postnatal life (Fig. 3). 6.1. Experimental data Fetal malnourishment as well as fetal exposure to endocrine disrupters such as DES and BPA were shown to possibly result in low birth weight, early puberty, ovulatory disorders, obesity in adulthood and metabolic syndrome (Gluckman and Hanson, 2004; Newbold et al., 2008, 2009; Sloboda et al., 2009; Heindel and vom Saal, 2009). The consequences of fetal malnourishment on adult adiposity excess and metabolic syndrome could be prevented by neonatal or early postnatal leptin treatment indicating the critical role of this peripheral peptide in fetal/neonatal programming (Vickers et al., 2005). Leptin has appeared to be not only an anorexigenic hormone produced by the mature adipocyte but also a structural organizer of the hypothalamic circuitry controlling energy balance during a critical period including fetal life and the first 3 weeks of postnatal life in rodents (Bouret et al., 2004; Bouret and Simerly, 2007). Bouret (2010) hypothesized that anomalies in early leptin organizational effects in relation with nutritional disturbances during that critical window could predispose to later obesity and metabolic disorders. Leptin could also be involved after fetal/neonatal exposure to sex steroids since neonatal androgenization resulted in marked reduction of leptin mRNA levels in the pituitary gland of female rats on days 14 and 22 (Morash et al., 2001). Further involvement of leptin in relation to sex steroids and EDCs was suggested by the reduced serum leptin levels observed neonatally in association with reduced anogenital distance after fetal exposure to phthalates (Boberg et al., 2008). During postnatal life, leptin is also obviously an important link between energy balance and reproduction. As shown in Fig. 4, facilitatory effects on GnRH secretion were observed after a single leptin administration in 15-day-old rats but not at 50 days, further supporting the concept of early critical window before the age of 3 weeks in rodents (Parent et al., 2003; Lebrethon et al., 2007). Together with leptin as peripheral messenger, a common hypothalamic mediator of early EDC effects on energy balance and reproduction could be the Agouti Related Peptide (AgRP), an endogenous orexigenic antagonist at melanocortin receptors. In our laboratory, AgRP treatment in vivo or in vitro (Fig. 4) was found to cause deceleration of frequency of pulsatile GnRH secretion from male rat hypothalamic explants (Lebrethon et al., 2007). This effect was similarly seen in immature and pubertal animals suggesting a role in the neuroendocrine control of the reproductive axis but no involvement in the mechanism of puberty. Exposure of fetal and neonatal mice to BPA was shown to result in hypomethylation of a metastable epiallele locus upstream Author's personal copy J.-P. Bourguignon et al. / Molecular and Cellular Endocrinology 324 (2010) 110–120 117 Fig. 3. Schematic representation of the interactions between homeostasis of reproduction and energy balance as well as hypothalamic effectors and peripheral effectors in the neuroendocrine mechanisms involved in effects on pubertal timing. Fig. 4. Upper panel: representative profiles of GnRH secretion by hypothalamic explants from 15-day-old male rats incubated in the presence of leptin, ghrelin or Agoutirelated peptide (AgRP). In each condition, the mean ± SD interpulse interval is given (number of explants studied). Lower panel: mean interpulse interval observed in vitro using explants from 15- or 50-day-old male rats injected with leptin, ghrelin or AgRP in vivo. *p < 0.05 versus controls (modified from Lebrethon et al., 2007). Author's personal copy 118 J.-P. Bourguignon et al. / Molecular and Cellular Endocrinology 324 (2010) 110–120 to the agouti gene that was associated with increased ectopic agouti gene expression (Dolinoy et al., 2007) known to result in yellow coat color and adult obesity (Dolinoy, 2008). Fertility however was not impaired in those BPA exposure conditions and adult weight was not studied. EDCs affect adipocytes directly at different periods of life through induction of cell differentiation and adipogenesis (Grün et al., 2006) as well as lipid accumulation in differentiated adipocytes (Wada et al., 2007). Gestational and lactational exposure to BPA resulted in increased adipogenesis at weaning in female rats (Somm et al., 2009). This is in contrast to the reduced adiposity and increased insulin sensitivity in mice fed from conception to adulthood with a phytoestrogen rich diet (Cederroth et al., 2008). EDC effects on adipocytes could be increased due to storage in the adipose tissue of several EDCs that are lipophilic. Adiponectin, a factor protecting against obesity and insulin resistance, could play a role as well. Using mature abdominal adipocytes in vitro, BPA reduced the secretion of several adipokines including adiponectin (Hugo et al., 2008; Ben-Jonathan et al., 2009). Through such an effect, EDC could facilitate GnRH secretion since immortalized GnRH neurons were shown to express adiponectin receptors and GnRH release was reduced in the presence of adiponectin (Wen et al., 2008). The fetal balance between estrogenic and androgenic steroids that is disturbed by EDCs can also be directly affected by sex steroids such as treatment of pregnant ewe with testosterone. In these conditions, pubertal timing in female lambs was shifted from the female to the male pattern as a function of the degree of virilization of external genitalia (Kosut et al., 1997). Postnatal events may worsen the consequences of disturbed programming: postnatal weight excess due to overfeeding amplified the reproductive disturbances following prenatal androgenization of the female lamb (Steckler et al., 2009). ture pubarche, hyperinsulinism, ovarian hyperandrogenism and polycystic ovary syndrome (PCOS). These findings can be correlated with several experimental effects of manipulation of nutrition or exposure to sex steroids or EDCs in the fetus as detailed above. Of particular interest is the context of this discussion is the observation that IUGR is associated with increased visceral adiposity and reduced serum levels of adiponectin in childhood (Ibáñez et al., 2009). The latter effect parallels BPA-induced reduction of adiponectin production by adipocytes (Hugo et al., 2008; Ben-Jonathan et al., 2009). In addition, breast-fed IUGR newborns show lower adiposity and higher serum leptin levels than controls (Ibáñez et al., 2010), an interesting finding in the face of prevention of insulin resistance and obesity by postnatal leptin administration in the rat born IUGR (Vickers et al., 2005). 7. Perspectives Understandably, the main focus of studies on EDCs has been the reproductive system for several decades with fertility and hormone-dependent cancers as the most critical issues. More recently, genital malformations and disorders of pubertal timing have emerged as earlier manifestations of a spectrum of disturbances all likely to result from EDC effects during the fetal and neonatal critical age windows. While the interactions between nutrition and reproduction have been known for decades, it is only recently that EDCs have appeared to alter the homeostasis of both reproduction and energy balance. These two systems share neuroendocrine control in relation with feedback from peripheral tissues through circulating factors. Further studies should scrutinize the common mechanisms and factors possibly linking EDCs with disturbances of those two systems. Acknowledgments 6.2. Human data In the clinical setting, the interaction between nutrition and reproduction has been viewed for almost 40 years as an issue for adolescent and adult females in the perspective of energy availability determining reproductive system function. Such a concept that was proposed by Frisch and Revelle (1970) became further substantiated when leptin was discovered as a key messenger from adipose tissue to the hypothalamus and controlling the reproductive system via stimulation of GnRH secretion (rev in Parent et al., 2003). As already stated in the introduction, such a mechanism substantiated a putative link between obesity epidemics and earlier onset of puberty. In the field of endocrine disruption, fetal and neonatal determination of reproductive disorders in adulthood arose four decades ago following the observations of genital cancer in the female offspring of mothers treated with DES during pregnancy (Herbst et al., 1971). Similarly consistent with the early life origins of diseases, it was suggested recently that obesity and metabolic syndrome could involve primary peripheral mechanisms through early impact of nutrition on increased adipogenic and lipogenic capacity of adipocytes (Muhlhausler and Smith, 2009). Such a concept is consistent with the recent finding that fast weight gain in infancy between birth and 9 months predicts increased adiposity at 10 years and early menarcheal age (Ong et al., 2009). The hypothesis was also raised that EDC effects on adipose tissue and energy balance could provide the basis of a toxicological mechanism in the obesity epidemic (Baillie-Hamilton, 2002; Heindel, 2003). All together, those findings indicate that both the human reproductive system and energy balance system share a possible fetal/early postnatal determinism of adult disorders under the influence of early nutritional conditions and/or early exposure to EDCs. Ibáñez et al. (1998, 2007) reported that intrauterine growth retardation (IUGR) was associated with increased risk of prema- This work was supported by grants from the European Commission (EDEN project, contract QLRT-2001-00269), the Fonds National de la Recherche Scientifique (FRS-FNRS 3.4.573.05F and 3.4.567.09F), the Faculty of Medicine at the University of Liège (Léon Frédéricq Foundation) and the Belgian Study Group for Paediatric Endocrinology. References Adewale, H.B., Jefferson, W.N., Newbold, R.R., Patisaul, H.B., 2009. Neonatal bisphenol-A exposure alters rat reproductive development and ovarian morphology without impairing activation of gonadotropin-releasing hormone neurons. Biol. Reprod. 81, 690–699. Agça, E., Batailler, M., Tillet, Y., Chemineau, P., Duittoz, A.H., 2008. Modulation of estrogen receptors during development inhibits neurogenesis of precursors to GnRH-1 neurones: in vitro studies with explants of ovine olfactory placode. Brain Res. 1223, 34–41. Aksglaede, L., Sørensen, K., Petersen, J.H., Skakkebæk, N.E., Juul, A., 2009. Recent decline in age at breast development: the Copenhagen puberty study. Pediatrics 123, e932–e939. Baillie-Hamilton, P.F., 2002. Chemical toxins: a hypothesis to explain the global obesity epidemic. J. Alt. Comp. Med. 8, 185–192. Balthazart, J., Cornil, C.A., Taziaux, M., Charlier, T.D., Baillien, M., Ball, G.F., 2006. Rapid changes in production and behavioral action of estrogens. Neuroscience 138, 783–791. Ben-Jonathan, N., Hugo, E.R., Brandebourg, T.D., 2009. Effects of bisphenol A on adipokine release from human adipose tissue: implications for the metabolic syndrome. Mol. Cell. Endocrinol. 304, 49–54. Blanck, H.M., Marcus, M., Tolbert, P.E., et al., 2000. Age at menarche and Tanner stage in girls exposed in utero and postnatally to polybrominated biphenyl. Epidemiology 11, 641–647. Boberg, J., Metzdorff, S., Wortziger, R., Axelstad, M., Brokken, L., Vinggaard, A.M., Dalgaard, M., Nellemann, C., 2008. Impact of diisobutyl phthalate and other PPAR agonists on steroidogenesis and plasma insulin and leptin levels in fetal rats. Toxicology 250, 75–81. Bouret, S.G., Simerly, R.B., 2007. Development of leptin-sensitive circuits. J. Neuroendocrinol. 19, 575–582. Bouret, S.G., 2010. Role of early hormonal and nutritional experiences in shaping feeding behavior and hypothalamic development. J. Nutr. 140, 653–657. Author's personal copy J.-P. Bourguignon et al. / Molecular and Cellular Endocrinology 324 (2010) 110–120 Bouret, S.G., Draper, S.J., Simerly, R.B., 2004. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304, 108–110. Bourguignon, J.P., Gérard, A., Alvarez Gonzalez, M.L., Franchimont, P., 1992. The neuroendocrine mechanism of onset of puberty: sequential reduction in activity of inhibitory and facilitatory N-Methyl-d-Aspartate receptors. J. Clin. Invest. 90, 1736–1744. Bourguignon, J.P., 2004. Control of the onset of puberty. In: Pescovitz, O.H., Eugster, E. (Eds.), Pediatric Endocrinology: Mechanisms, Manifestations and Management. Lippincott Williams & Wilkins, pp. 285–298. Bowe, J., Li, X.F., Sugden, D., Katzenellenbogen, J.A., Katzenellenbogenz, B.S., O’Byrne, K.T., 2003. The effects of the phytoestrogen, coumestrol, on gonadotropinreleasing hormone (GnRH) mRNA expression in GT1-7 GnRH neurones. J. Neuroendocrinol. 15, 105–108. Buck Louis, G.M, Gray Jr., L.E., Michele Marcus, M., Ojeda, S., Pescovitz, O.A., Feldman Witchel, S., Sippell, W., Abbott, D.A., Soto, A., Tyl, R.W., Bourguignon, J.P., Skakkebaek, N.E., Swan, S.H., Golub, M.S., Wabitsch, M., Toppari, J., Euling, S.Y., 2008. Environmental factors and puberty timing: expert panel research needs. Pediatrics 121 (Suppl. 3), S192–S207. Carel, J.C., Eugster, E.A., Rogol, A., Ghizzoni, L., Palmert, M.R., Antoniazzi, F., Berenbaum, S., Bourguignon, J.P., Chrousos, G.P., Coste, J., Deal, S., de Vries, L., Foster, C., Heger, S., Holland, J., Jahnukainen, K., Juul, A., Kaplowitz, P., Lahlou, N., Lee, M.M., Lee, P., Merke, D.P., Neely, E.K., Oostdijk, W., Phillip, M., Rosenfield, R.L., Shulman, D., Styne, D., Tauber, M., Wit, J.M., ESPE-LWPES GnRH Analogs Consensus Conference Group, 2009. Consensus statement on the use of gonadotropin-releasing hormone analogs in children. Pediatrics 123, 752–762. Cederroth, C.R., Vinciguerra, M., Gjinovci, A., e Kühne, F., Klein, M., Cederroth, M., Caille, D., Suter, M., Neumann, D., James, R.W., Doerge, D.R., Wallimann, T., Meda, P., Foti, M., Rohner-Jeanrenaud, F., Vassalli, J.D., Nef, S., 2008. Dietary phytoestrogens activate AMP-activated protein kinase with improvement in lipid and glucose metabolism. Diabetes 57, 1176–1185. Cheshenko, K., Brion, F., Le Page, Y., Hinfray, N., Pakdel, F., Kah, O., Segner, H., Eggen, R.I., 2007. Expression of zebra fish aromatase cyp19a and cyp19b genes in response to the ligands of estrogen receptor and aryl hydrocarbon receptor. Toxicol. Sci. 96, 255–267. Clements, R.J., Lawrence, R.C., Blank, J.L., 2009. Effects of intrauterine 2,3,7,8tetrachlorodibenzo-p-dioxin on the development and function of the gonadotrophin releasing hormone neuronal system in the male rat. Reprod. Toxicol. 28, 38–45. Colon, I., Caro, D., Bourdony, C.J., Rosario, O., 2000. Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. Environ. Health Perspect. 108, 895–900. Crews, D., Gore, A.C., Hsu, T.S., Dangleben, N.L., Spinetta, M., Schallert, T., Anway, M.D., Skinner, M.K., 2007. Transgenerational epigenetic imprints on mate preference. Proc. Natl. Acad. Sci. U.S.A. 104, 5942–5946. Den Hond, E., Roels, H.A., Hoppenbrouwers, K., et al., 2002. Sexual maturation in relation to polychlorinated aromatic hydrocarbons: Sharpe and Skakkebaek’s hypothesis revisited. Environ. Health Perspect. 110, 771–776. Denham, M., Schell, L.M., Deane, G., et al., 2005. Relationship of lead, mercury, mirex, dichlorodiphenyldichloroethylene, hexachlorobenzene, and polychlorinated biphenyls to timing of menarche among Akwesasne Mohawk girls. Pediatrics 115, e127–e134. Diamanti-Kandarakis, E., Bourguignon, J.P., Giudice, L.C., Hauser, R., Prins, G.S., Soto, A.M., Zoeller, R.T., Gore, A.C., 2009. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr. Rev. 30, 293–342. Dickerson, S.M., Guevara, E., Woller, M.J., Gore, A.C., 2009. Cell death mechanisms in GT1-7 GnRH cells exposed to polychlorinated biphenyl PCB74, PCB118 and PCB153. Toxicol. Appl. Pharmacol. 237, 237–245. Dolinoy, D.C., Huang, D., Jirtle, R.L., 2007. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc. Natl. Acad. Sci. U.S.A. 104, 13056–13061. Dolinoy, D.C., 2008. The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr. Rev. 66, S7–S11. Dominé, F., Parent, A.S., Rasier, G., Lebrethon, M.C., Bourguignon, J.P., 2006. Assessment and mechanism of variations in pubertal timing in internationally adopted children: a developmental hypothesis. Eur. J. Endocrinol. 155, S17–S25. Frisch, R.E., Revelle, R., 1970. Height and weight at menarche and a hypothesis of critical body weights and adolescent events. Science 169, 397–399. Funabashi, T., Sano, A., Mitsushima, D., Kimura, F., 2003. Bisphenol A increases progesterone receptor immunoreactivity in the hypothalamus in a dose-dependent manner and affects sexual behaviour in adult ovariectomized rats. J. Neuroendocrinol. 15, 134–140. Ge, R.S., Chen, G.R., Dong, Q., Akingbemi, B., Sottas, C.M., Santos, M., Sealfon, S.C., Bernard, D.J., Hardy, M.P., 2007. Biphasic effects of postnatal exposure to diethylhexylphthalate on the timing of puberty in male rats. J. Androl. 28, 513–520. Gladen, B.C., Ragan, B., Rogan, W.J., 2000. Pubertal growth and development and prenatal and lactational exposure to polychlorinated biphenyls and dichlorodiphenyl dichloroethene. J. Pediatr. 136, 490–496. Gluckman, P.D., Hanson, M.A., 2004. The developmental origins of the metabolic syndrome. Trends Endocrinol. Metab. 15, 183–187. Golub, M.S., Hogrefe, C.E., Germann, S.L., Lasley, B.L., Natarajan, K., Tarantal, A.F., 2003. Effects of exogenous estrogenic agents on pubertal growth and reproductive system maturation in female rhesus monkeys. Toxicol. Sci. 74, 103– 113. Gore, A.C., Wu, T.J., Oung, T., Lee, J.B., Woller, M.J., 2002. A novel mechanism for endocrine-disrupting effects of polychlorinated biphenyls: direct effects on gonadotropin-releasing hormone neurones. J. Neuroendocrinol. 14, 814–823. 119 Gore, A.C., 2002. Organochlorine pesticides directly regulate gonadotropin-releasing hormone gene expression and biosynthesis in the GT1-7 hypothalamic cell line. Mol. Cell. Endocrinol. 192, 157–170. Gore, A.C., 2008. Developmental programming and endocrine disruptor effects on reproductive neuroendocrine systems. Front. Neuroendocrinol. 29, 358– 374. Gorski, R.A., 1968. Influence of age on a perinatal administration of a low dose of androgen. Endocrinology 82, 1001–1004. Grote, K., Andrade, A.J.M., Wichert Grande, S., Kuriyama, S.N., Talsness, C.E., Appel, K.E., Chahouda, I., 2006. Effects of peripubertal exposure to triphenyltin on female sexual development of the rat. Toxicology 222, 17–24. Grün, F., Watanabe, H., Zamanian, Z., Maeda, L., Arima, K., Cubacha, R., Gardiner, D.M., Kanno, J., Iguchi, T., Blumberg, B., 2006. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol. Endocrinol. 20, 2141–2155. Guo, Y.L., Lambert, G.H., Hsu, C.C., Hsu, M.M., 2004. Yucheng: health effects of prenatal exposure to polychlorinated biphenyls and dibenzofurans. Int. Arch. Occup. Environ. Health 77, 153–158. Heindel, J.J., vom Saal, F.S., 2009. Role of nutrition and environmental endocrine disrupting chemicals during the perinatal period on the aetiology of obesity. Mol. Cell. Endocrinol. 304, 90–96. Heindel, J.J., 2003. Toxicological highlight: endocrine disruptors and the obesity epidemic. Toxicol. Sci. 76, 247–249. Herbst, A.L., Ulfelder, H., Poskanzer, D.C., 1971. Adenocarcinoma of vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N. Engl. J. Med. 284, 878–881. Herbison, A.E., 2008. Estrogen positive feedback to gonadotropin-releasing hormone (GnRH) neurons in the rodent: the case for the rostral periventricular area of the third ventricle (RP3V). Brain Res. Rev. 57, 277–287. Herman-Giddens, M.E., Slora, E.J., Wasserman, R.C., Bourdony, C.J., Bhapkar, M.V., Koch, G.G., Hasemeier, C.M., 1997. Secondary sexual characteristics and menses in young girls seen in office practice: a study from the Pediatric Research in Office Settings network. Pediatrics 99, 505–512. Himes, John H., 2006. Examining the evidence for recent secular changes in the timing of puberty in US children in light of increases in the prevalence of obesity. Mol. Cell. Endocrinol. 254–255, 13–21. Hugo, E.R., Brandebourg, T.D., Woo, J.G., Loftus, J., Alexander, J.W., Ben-Jonathan, N., 2008. Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ. Health Perspect. 116, 1642–1647. Ibáñez, L., Lopez-Bermejo, A., Díaz, M., Suarez, L., de Zegher, F., 2009. Low-birth weight children develop lower sex hormone binding globulin and higher dehydroepiandrosterone sulfate levels and aggravate their visceral adiposity and hypoadiponectinemia between six and eight years of age. J. Clin. Endocrinol. Metab. 94, 3696–3699. Ibáñez, L., Sebastiani, G., Diaz, M., Gómez-Roig, M.D., Lopez-Bermejo, A., de Zegher, F., 2010. Low body adiposity and high Leptinemia in breast-fed infants born small-for-gestational-age. J. Pediatr. 156, 145–147. Ibáñez, L., Jaramillo, A., Enríquez, G., Miró, E., López-Bermejo, A., Dunger, D., de Zegher, F., 2007. Polycystic ovaries after precocious pubarche: relation to prenatal growth. Hum. Reprod. 22, 395–400. Ibáñez, L., Francois, I., Potau, N., de Zegher, F., 1998. Precocious pubarche, hyperinsulinism and ovarian hyperandrogenism in girls: relation to reduced fetal growth. J. Clin. Endocrinol. Metab. 83, 3558–3662. Khan, I.A., Thomas, P., 2001. Disruption of neuroendocrine control of luteinizing hormone secretion by Aroclor 1254 involves inhibition of hypothalamic tryptophan hydroxylase activity. Biol. Reprod. 64, 955–964. Kortenkamp, A., 2008. Lowdose mixture effects of endocrine disrupters: implications for risk assessment and epidemiology. Int. J. Androl. 31, 233–240. Krstevska-Konstantinova, M., Charlier, C., Craen, M., Du Caju, M., Heinrichs, C., de Beaufort, C., Plomteux, G., Bourguignon, J.P., 2001. Sexual precocity after immigration from developing countries to Belgium: evidence of previous exposure to organochlorine pesticides. Hum. Reprod. 16, 1020–1026. Kubo, K., Arai, O., Omura, M., Watanabe, R., Ogata, R., Aou, S., 2003. Low-dose effects of bisphenol A on sexual differentiation of the brain and behavior in rats. Neurosci. Res. 45, 345–356. Kuhl, A.J., Manning, S., Brouwer, M., 2005. Brain aromatase in Japanese medaka (Oryzias latipes): molecular characterization and role in xenoestrogen-induced sex reversal. J. Steroid Biochem. Mol. Biol. 96, 67–77. Kosut, S.S., Wood, R.I., Herbosa-Encarnacion, C., Foster, D.L., 1997. Prenatal androgens time neuroendocrine puberty in the sheep: effect of testosterone dose. Endocrinology 138, 1072–1077. Lebrethon, M.C., Aganina, A., Fournier, M., Gérard, A., Parent, A.S., Bourguignon, J.P., 2007. Effects of in vivo and in vitro administration of ghrelin, leptin and neuropeptide mediators on pulsatile gonadotrophin-releasing hormone secretion from male rat hypothalamus before and after puberty. J. Neuroendocrinol. 19, 181–188. Lee, P.A., Guo, S.S., Kulin, H.E., 2001. Age of puberty: data from the United States of America. APMIS 109, 81–88. Leijs, M.M., Koppe, J.G., Olie, K., et al., 2008. Delayed initiation of breast development in girls with higher prenatal dioxin exposure; a longitudinal cohort study. Chemosphere 73, 999–1004. Matagne, V., Lebrethon, M.C., Gérard, A., Bourguignon, J.P., 2003. In vitro paradigms for the study of GnRH neuron function and estrogen effects. Ann. N. Y. Acad. Sci. 1007, 129–142. Author's personal copy 120 J.-P. Bourguignon et al. / Molecular and Cellular Endocrinology 324 (2010) 110–120 Matagne, V., Rasier, G., Lebrethon, M.C., Gérard, A., Bourguignon, J.P., 2004. Estradiol stimulation of pulsatile GnRH secretion in vitro: correlation with perinatal exposure to sex steroids and induction of sexual precocity in vivo. Endocrinology 145, 2775–2783. McCarthy, M.M., Auger, A.P., Bale, T.L., De Vries, G.J., Dunn, G.A., Forger, N.G., Murray, E.K., Nugent, B.M., Schwarz, J.M., Wilson, M.E., 2009. The epigenetics of sex differences in the brain. J. Neurosci. 29, 12815–12823. McGarvey, C., Cates, P.S., Brooks, N., Swanson, I.A., Milligan, S.R., Coen, C.W., O’Byrne, K.T., 2001. Phytoestrogens and gonadotropin-releasing hormone pulse generator activity and pituitary luteinizing hormone release in the rat. Endocrinology 142, 1202–1208. Mol, N.M., Sørensen, N., Weihe, P., et al., 2002. Spermaturia and serum hormone concentrations at the age of puberty in boys prenatally exposed to polychlorinated biphenyls. Eur. J. Endocrinol. 146, 357–363. Morash, B.A., Ur, E., Wilkinson, M., 2001. Pituitary leptin gene expression is reduced by neonatal androgenization of female rats androgenization and pituitary leptin. Pituitary 4, 63–70. Muhlhausler, B., Smith, S.R., 2009. Early-life origins of metabolic dysfunction: role of the adipocyte. Trends Endocrinol. Metab. 20, 51–57. Murray, E.K., Annie Hien, de Vries, Geert J., Forger, Nancy G., 2009. Epigenetic control of sexual differentiation of the bed nucleus of the stria. Terminalis Endocrinol. 150, 4241–4247. Mussi, P., Ciana, P., Raviscioni, M., Villa, R., Regondi, S., Agradi, E., Maggi, A., Di Lorenzo, D., 2005. Activation of brain estrogen receptors in mice lactating from mothers exposed to DDT. Brain Res. Bull. 65, 241–247. Navarro, V.M., Sanchez-Garrido, M.A., Castellano, J.M., Roa, J., García-Galiano, D., Pineda, R., Aguilar, E., Pinilla, L., Tena-Sempere, M., 2009. Persistent impairment of hypothalamic KiSS-1 system after exposures to estrogenic compounds at critical periods of brain sex differentiation. Endocrinology 150, 2359– 2367. Naveau, E., Gérard, A., Rasier, G., Bourguignon, J.P., Parent, A.S., 2010. Early developmental effects of endocrine disrupters on neurono-glial function: mechanisms of disordered puberty and maturation. Int. J. Androl., submitted. Newbold, R.R., Padilla-Banks, E., Jefferson, W.N., Heindel, J.J., 2008. Effects of endocrine disruptors on obesity. Int. J. Androl. 31, 201–208. Newbold, R.R., Padilla-Banks, E., Jefferson, W.N., 2009. Environmental estrogens and obesity. Mol. Cell. Endocrinol. 304, 84–89. Ohtake, F., Takeyama, K.I., Matsumoto, T., Kitagawa, H., Yamamoto, Y., Nohara, K., Tohyama, C., Krust, A., Mimura, J., Chambon, P., et al., 2003. Modulation of estrogen receptor signalling by association with the activated 650 dioxin receptor. Nature 423, 545–550. Ong, K.K., Emmett, P., Northstone, K., Golding, J., Rogers, I., Ness, A.R., Wells, J.C., Dunger, D.B., 2009. Infancy weight gain predicts childhood body fat and age at menarche in girls. J. Clin. Endocrinol. Metab. 94, 1527–1532. Ouyang, F., Perry, M.J., Venners, S.A., Chen, C., Wang, B., Yang, G., Fang, Z., Zang, T., Wang, L., Xu, X., Wang, X., 2005. Serum DDT, age at menarche, and abnormal menstrual cycle length. Occup. Environ. Med. 62, 878–884. Papadimitriou, A., Pantsiotou, S., Douros, K., Papadimitriou, D.T., Nicolaidou, P., Fretzayas, A., 2008. Timing of pubertal onset in girls: evidence for non-Gaussian distribution. J. Clin. Endocrinol. Metab. 93, 4422–4425. Parent, A.S., Teilmann, G., Juul, A., Skakkebaek, N.E., Toppari, J., Bourguignon, J.P., 2003. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr. Rev. 24, 668–693. Patisaul, H.B., Bateman, H.L., 2008. Neonatal exposure to endocrine active compounds or an ER agonist increases adult anxiety and aggression in gonadally intact male rats. Horm. Behav. 53, 580–588. Patisaul, H.B., Dindo, M., Whitten, P.L., Young, L.J., 2001. Soy isoflavone supplements antagonize reproductive behavior and estrogen receptor alphaand beta-dependent gene expression in the brain. Endocrinology 142, 2946– 2952. Proos, L.A., Hofvander, Y., Tuvemo, T., 1991. Menarcheal age and growth pattern of Indian girls adopted in Sweden. I. Menarcheal age. Acta Paediatr. Scand. 80, 852–858. Purnelle, G., Gérard, A., Czajkowski, V., Bourguignon, J.P., 1997. Pulsatile secretion of gonadotropin-releasing hormone (GnRH) by rat hypothalamic explants without cell bodies of GnRH neurons. Neuroendocrinology 66, 305–312. Ramos, J.G., Varayoud, J., Kass, L., Rodriguez, H., Costabel, L., Munoz de Toro, M., Luque, E.H., 2003. Bisphenol A induces both transient and permanent histofunctional alterations of the hypothalamic–pituitary–gonadal axis in prenatally exposed male rats. Endocrinology 144, 3206–3215. Rasier, G., Toppari, J., Parent, A.S., Bourguignon, J.P., 2006. Female sexual maturation and reproduction after prepubertal exposure to estrogens and endocrine disrupting chemicals: a review of rodent and human data. Mol. Cell. Endocrinol. 254–255, 187–201. Rasier, G., Parent, A.S., Gérard, A., Lebrethon, M.C., Bourguignon, J.P., 2007. Early maturation of gonadotropin-releasing hormone secretion and sexual precocity after exposure of infantile female rats to estradiol or dichlorodiphenyltrichloroethane. Biol. Reprod. 77, 734–742. Rasier, G., Parent, A.S., Gérard, A., Denooz, R., Lebrethon, M.C., Charlier, C., Bourguignon, J.P., 2008. Mechanisms of interaction of endocrine disrupting chemicals with glutamate-evoked secretion of gonadotropin-releasing hormone. Toxicol. Sci. 102, 33–41. Rivas, A., Fisher, J., McKinnell, C., Atanassova, N., Sharpe, R.M., 2002. Induction of reproductive tract developmental abnormalities in the male rat by lowering androgen production or action in combination with a low dose of diethylstilbe- strol: evidence for importance of the androgen–estrogen balance. Endocrinology 143, 4797–4808. Roelants, M., Hauspie, R., Hoppenbrouwers, K., 2009. References for growth and pubertal development from birth to 21 years in Flanders, Belgium. Ann. Hum. Biol. 36, 680–694. Rubin, B.S., Lenkowski, J.R., Schaeberle, C.M., Vandenberg, L.N., Ronsheim, P.M., Soto, A.M., 2006. Evidence of altered brain sexual differentiation in mice exposed perinatally to low, environmentally relevant levels of Bisphenol A. Endocrinology 147, 3681–3691. Savabieasfahani, M., Kannan, K., Astapova, O., Evans, N.P., Padmanabhan, V., 2006. Developmental programming: differential effects of prenatal exposure to bisphenol-A or methoxychlor on reproductive function. Endocrinology 147, 5956–5966. Sloboda, D.M., Howie, G.J., Pleasants, A., Gluckman, P.D., Vickers, M.H., 2009. Pre- and postnatal nutritional histories influence reproductive maturation and ovarian function in the rat. PLoS ONE 4, e6744. Somm, E., Schwitzgebel, V.M., Toulotte, A., Cederroth, C.R., Combescure, C., Nef, S., Aubert, M.L., Hüppi, P.S., 2009. Perinatal exposure to bisphenol A alters early adipogenesis in the rat. Environ. Health Perspect. 117, 1549–1555. Steckler, T.L., Herkimer, C., Dumesic, D.A., Padmanabhan, V., 2009. Developmental programming: excess weight gain amplifies the effects of prenatal testosterone excess on reproductive cyclicity—implication for polycystic ovary syndrome. Endocrinology 150, 1456–1465. Steinberg, R.M., Juenger, T.E., Gore, A.C., 2007. The effects of prenatal PCBs on adult female paced mating reproductive behaviors in rats. Horm. Behav. 51, 364–372. Steinberg, R.M., Walker, D.M., Juenger, T.E., Woller, M.J., Gore, A.C., 2008. The effects of perinatal PCBs on adult female rat reproduction: development, reproductive physiology, and second generational effects. Biol. Reprod. 78, 1091– 1101. Strom, B.L., Schinnar, R., Ziegler, E.E., Barnhart, K.T., Sammel, M.D., Macones, G.A., Stallings, V.A., Drulis, J.M., Nelson, S.E., Hanson, S.A., 2001. Exposure to soy-based formula in infancy and endocrinological and reproductive outcomes in young adulthood. JAMA 286, 807–814. Teilmann, G., Juul, A., Skakkebaek, N.E., Toppari, J., 2002. Putative effects of endocrine disrupters on pubertal development in the human. Best Pract. Res. Clin. Endocrinol. Metab. 16, 105–121. Teilmann, G., Pedersen, C.B., Skakkebæk, N.E., Jensen, T.K., 2006. Increased risk of precocious puberty in internationally adopted children in Denmark. Pediatrics 118, e391–e399. Teilmann, G., Boas, M., Petersen, J.H., Main, K.M., Gormsen, M., Damgaard, K., Brocks, V., Skakkebæk, N.E., Jensen, K.T., 2007. Early pituitary–gonadal activation in 5–8 years old adopted girls before clinical signs of puberty: a study of 99 foreign adopted girls and 93 controls. J. Clin. Endocrinol. Metab. 92, 2538–2544. Trewin, A.L., Woller, M.J., Wimpee, B.A.B., Conley, M.K., Baldridge, M.G., Hutz, R.J., 2007. Short term release from adult female rat hypothalamic and pituitary explants is not altered by 2,3,7,8-tetrachlorodibenzo-p-dioxin. J. Reprod. Dev. 53, 765–775. Unsworth, W.P., Taylor, J.A., Robinson, J.E., 2005. Prenatal programming of reproductive neuroendocrine function: the effect of prenatal androgens on the development of estrogen positive feedback and ovarian cycles in the ewe. Biol. Reprod. 72, 619–627. Vasiliu, O., Muttineni, J., Karmaus, W., 2004. In utero exposure to organochlorines and age at menarche. Hum. Reprod. 19, 1506–1512. Vickers, M.H., Gluckman, P.D., Coveny, A.H., Hofman, P.L., Cutfield, W.S., Gertler, A., Breier, B.H., Harris, M., 2005. Neonatal leptin treatment reverses developmental programming. Endocrinology 146, 4211–4216. Viglietti-Panzica, C., Montoncello, B., Mura, E., Pessatti, M., Panzica, G.C., 2005. Organizational effects of diethylstilbestrol on brain vasotocin and sexual behavior in male quail. Brain Res. Bull. 65, 225–233. Wada, K., Sakamoto, H., Nishikawa, K., Sakuma, S., Nakajima, A., Fujimoto, Y., Kamisaki, Y., 2007. Life style-related diseases of the digestive system: endocrine disruptors stimulate lipid accumulation in target cells related to metabolic syndrome. J. Pharmacol. Sci. 105, 133–137. Wang, X.Q., Fang, J., Nunez, A.A., Clemens, L.G., 2002. Developmental exposure to polychlorinated biphenyls affects sexual behavior of rats. Physiol. Behav. 75, 689–696. Warner, M., Samuels, S., Mocarelli, P., et al., 2004. Serum dioxin concentrations and age at menarche. Environ. Health Perspect. 112, 1289–1292. Wen, J.P., Lv, W.S., Yang, J., Nie, A.F., Cheng, X.B., Yang, Y., Ge, Y., Li, X.Y., Ning, G., 2008. Globular adiponectin inhibits GnRH secretion from GT1-7 hypothalamic GnRH neurons by induction of hyperpolarization of membrane potential. Biochem. Biophys. Res. Commun. 371, 756–761. Wolff, M.S., Britton, J.A., Boguski, L., et al., 2008. Environmental exposures and puberty in inner-city girls. Environ. Res. 107, 393–400. Woller, M.J., Tannenbaum, P.L., Schultz-Darken, N.J., Eshelman, B.D., Abbott, D.H., 2010. Pulsatile gonadotropin-releasing hormone release from hypothalamic explants of male marmoset monkeys compared with male rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R70–R78. Wood, R.I., Kim, S.J., Foster, D.L., 1996. Prenatal androgens defeminize activation of GnRH neurons in response to estradiol stimulation. J. Neuroendocrinol. 8, 617–625. Yang, C.Y., Yu, M.L., Guo, H.R., Lai, T.J., Hsu, C.C., Lambert, G., Guo, Y.L., 2005. The endocrine and reproductive function of the female Yucheng adolescents prenatally exposed to PCBs/PCDFs. Chemosphere 61, 355–360.