Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Video Lecture Course
Numerical Simulations on Physical
Problems
Lecturer: Ramaz Khomeriki
Lecture #1
1. Overview of the course
2. Basic MATLAB operations
3. Ordinary Differential Equations (ODE-s)
4. Simulating ODE-s with MATLAB
x
FDr kx
Lecture #2
MATLAB Simulations on anharmonic oscillator
FDr kx
FDr kx k3 x 3
d 2x
m 2 kx
dt
d 2x
m 2 kx k3 x 3
dt
Lecture #3:
Mathematical pendulum Model;
Driven-Damped Oscillations
d
l 2 g sin
dt
2
Double Pendulum Model:
MATLAB Simulations
Lecture #4:
Simulations on anharmonic oscillator chain
using MATLAB ODE toolbox
Fermi-Pasta-Ulam Lattice
d 2u n
3
3
m 2 k un1 un k un1 un k3 un1 un k3 un1 un
dt
Lecture #5:
Simulations on Pendula Chain: Sine-Gordon Equation
d 2 n
ml 2 k n 1 n 1 2 n mgsin n ,
dt
Lecture #6:
MATLAB animations on Fermi-Pasta-Ulam
Model and Pendula Chain
Lecture #7:
Quantum-Mechanical Problems: Rabi
Oscillations in Two-Well potential
2
i
2 V ( x, t ) 0
t
x
Lecture #8:
Landau-Zener Tunneling in Two well potential
W0
2
i
0
2
t
x
cosh x vt
Lecture #9:
Bloch oscillations in Optical waveguide arrays
1 B(r , t )
E (r , t )
;
c t
1 D(r , t )
H (r , t )
;
c t
D(r , t ) 0;
2
i
2 a cos 2 x bx 0
z x
B(r , t ) 0
Lecture #10:
Simulations on Magnetic spin systems:
Landau-Lifshitz Equation
H JSi Si 1 Di S
N
i 1
1
J y S nz S ny1 S ny1 J z S ny S nz1 S nz1 2 DS ny S nz ,
2
1
S ny J z S nx S nz1 S nz1 J x S nz S nx1 S nx1 2 DS nx S nz ,
2
1
S nz J x S ny S nx1 S nz1 J y S nx S ny1 S ny1 .
2
S nx
z 2
i
Lecture #11:
Simulations on the systems with two and more
dimensions
Lecture #12:
Bose-Hubbard model for two-boson system
and modelling of Hilbert space
j-1
N 1
j
j+1
N
Hˆ g aˆ j 1aˆ j aˆ j aˆ j 1 bˆ j 1bˆ j bˆ j bˆ j 1 U aˆ j bˆ j aˆ j bˆ j
j 1
j 1
Vectors in MATLAB
A 2, 3, 1.5, 7, 2
A 2 3 1.5 7 - 2
1
3
B 5
2
4
B 1; 3; 5; 2; 4
B 1 3 5 - 2 4
5
Scalar Product
A * B Ai Bi
i 1
Matrixes in MATLAB
1 3 2
C 3 -1 5
5 2 - 4
1 3 5
C 3 -1 2
2 5 - 4
C 1, 3, 2; 3, - 1, 5; 5, 2, - 4
C * C 1
C^(-1)
1
0
0
0 0
1 0
0 1
Multiplication of Matrixes in MATLAB
maSin
1 3 2
C 3 -1 5
5 2 - 4
2 -1 0
D 4 1 2
3 0 2
1 * (-1) 3 *1 2 * 0
1 * 0 3 * 2 2 * 2 20 2 10
1* 2 3 * 4 2 * 3
C * D 3 * 2 (1) * 4 5 * 3 3 * (-1) (-1) *1 5 * 0 3 * 0 (1) * 2 5 * 2 17 - 4 8
5 * 2 2 * 4 (4) * 3 5 * (-1) 2 *1 (-4) * 0 5 * 0 2 * 2 (-4) * 2 6 - 3 - 4
A 2 3 1.5 7 - 2
1
3
B 5
2
4
C*B
A*C
C*A’
Solving Algebraic Equations in MATLAB
x y 5 z 1
2 x 3 y z 3
x 6 y z 2
1 -1 5
S 2 3 - 1 ,
1 6 1
S*X N
x
X y ,
z
X S ^ (1) * N
- 1
N 3
2
Plotting curves and surfaces in MATLAB
A 2 3 1.5 7 - 2
1
3
B 5
2
4
plot ( A, B)
A 2 7 - 2
B 2 10 5
surf ( A, B, C )
1 3 2
C 3 -1 5
5 2 - 4
Ordinary Differential Equations (ODE-s) in MATLAB
ODE of the first order
dy
ay b
dt
ODE of the second order
d 2x
kx
2
dt
Reduction to two
first order ODE-s
y [x, v]
y (1) x; y(2) v
dx
v
dt
dy (1)
y (2);
dt
dv
kx
dt
dy (2)
ky(1)
dt
First MATLAB file “osc.m” for simplest ODE
clear
tspan=0:0.1:400;
y0=1;
[T,y]=ode45('osc1',tspan,y0);
Second MATLAB file “osc1.m” for simplest ODE
function dydt=osc1(t,y)
a=0.01; b=0.0;
dydt=-a*y+b;