Download Slide 1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Video Lecture Course
Numerical Simulations on Physical
Problems
Lecturer: Ramaz Khomeriki
Lecture #1
1. Overview of the course
2. Basic MATLAB operations
3. Ordinary Differential Equations (ODE-s)
4. Simulating ODE-s with MATLAB
x
FDr  kx
Lecture #2
MATLAB Simulations on anharmonic oscillator
FDr  kx
FDr  kx  k3 x 3
d 2x
m 2  kx
dt
d 2x
m 2  kx  k3 x 3
dt
Lecture #3:
Mathematical pendulum Model;
Driven-Damped Oscillations
d
l 2   g sin 
dt
2
Double Pendulum Model:
MATLAB Simulations
Lecture #4:
Simulations on anharmonic oscillator chain
using MATLAB ODE toolbox
Fermi-Pasta-Ulam Lattice
d 2u n
3
3
m 2  k un1  un   k un1  un   k3 un1  un   k3 un1  un 
dt
Lecture #5:
Simulations on Pendula Chain: Sine-Gordon Equation
d 2 n
ml 2  k  n 1   n 1  2 n   mgsin  n ,
dt
Lecture #6:
MATLAB animations on Fermi-Pasta-Ulam
Model and Pendula Chain
Lecture #7:
Quantum-Mechanical Problems: Rabi
Oscillations in Two-Well potential
  2 
i
 2  V ( x, t )   0
t
x
Lecture #8:
Landau-Zener Tunneling in Two well potential
W0
  2 
i


0
2
t
x
cosh x  vt 
Lecture #9:
Bloch oscillations in Optical waveguide arrays
 
  
1 B(r , t )
  E (r , t )  
;
c t
 
  
1 D(r , t )
  H (r , t ) 
;
c t
  
  D(r , t )  0;
  2 
i
 2  a cos 2 x  bx  0
z x
  
  B(r , t )  0
Lecture #10:
Simulations on Magnetic spin systems:
Landau-Lifshitz Equation

H    JSi Si 1  Di  S
N
i 1
1
 J y S nz  S ny1  S ny1   J z S ny  S nz1  S nz1   2 DS ny S nz  ,

2
1
S ny   J z S nx  S nz1  S nz1   J x S nz  S nx1  S nx1   2 DS nx S nz  ,
2
1
S nz   J x S ny  S nx1  S nz1   J y S nx  S ny1  S ny1   .
2
S nx 

z 2
i

Lecture #11:
Simulations on the systems with two and more
dimensions
Lecture #12:
Bose-Hubbard model for two-boson system
and modelling of Hilbert space
j-1
N 1

j
j+1

N
Hˆ   g aˆ j 1aˆ j  aˆ j aˆ j 1  bˆ j 1bˆ j  bˆ j bˆ j 1  U  aˆ j bˆ j aˆ j bˆ j
j 1
j 1
Vectors in MATLAB
A  2, 3, 1.5, 7,  2
A  2 3 1.5 7 - 2
1 
 
3 
B  5 
 
  2
4 
 
B  1; 3; 5;  2; 4
B  1 3 5 - 2 4
5
Scalar Product
A * B   Ai Bi
i 1
Matrixes in MATLAB
1 3 2 


C  3 -1 5 
5 2 - 4


1 3 5 


C  3 -1 2 
 2 5 - 4


C  1, 3, 2; 3, - 1, 5; 5, 2, - 4
C * C 1
C^(-1)
1

 0
0

0 0

1 0
0 1
Multiplication of Matrixes in MATLAB
maSin
1 3 2 


C  3 -1 5 
5 2 - 4


 2 -1 0 


D  4 1 2 
3 0 2


1 * (-1)  3 *1  2 * 0
1 * 0  3 * 2  2 * 2   20 2 10 
 1* 2  3 * 4  2 * 3

 

C * D   3 * 2  (1) * 4  5 * 3 3 * (-1)  (-1) *1  5 * 0 3 * 0  (1) * 2  5 * 2   17 - 4 8 
 5 * 2  2 * 4  (4) * 3 5 * (-1)  2 *1  (-4) * 0 5 * 0  2 * 2  (-4) * 2   6 - 3 - 4 

 

A  2 3 1.5 7 - 2
1 
 
3 
B  5 
 
  2
4 
 
C*B
A*C
C*A’
Solving Algebraic Equations in MATLAB
 x  y  5 z  1

2 x  3 y  z  3
 x  6 y  z  2

 1 -1 5


S   2 3 - 1 ,
  1 6 1


S*X  N
x
 
X   y ,
z 
 
X  S ^ (1) * N
 - 1
 
N   3
 2
 
Plotting curves and surfaces in MATLAB
A  2 3 1.5 7 - 2
1 
 
3 
B  5 
 
  2
4 
 
plot ( A, B)
A  2 7 - 2
B   2 10 5
surf ( A, B, C )
1 3 2 


C  3 -1 5 
5 2 - 4


Ordinary Differential Equations (ODE-s) in MATLAB
ODE of the first order
dy
  ay  b
dt
ODE of the second order
d 2x
 kx
2
dt
Reduction to two
first order ODE-s
y  [x, v]
y (1)  x; y(2)  v
dx
v
dt
dy (1)
 y (2);
dt
dv
  kx
dt
dy (2)
 ky(1)
dt
First MATLAB file “osc.m” for simplest ODE
clear
tspan=0:0.1:400;
y0=1;
[T,y]=ode45('osc1',tspan,y0);
Second MATLAB file “osc1.m” for simplest ODE
function dydt=osc1(t,y)
a=0.01; b=0.0;
dydt=-a*y+b;
Related documents