Download Absolute Value Equations

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Absolute Value Equations
Absolute Value is the distance from zero.
Absolute Value can NOT equal a negative number.
Does a solution exist for the following Absolute
Value Equation?
3  2x  3  6
2x  3  3
Yes, there is a solution.
The 3 tells us there is a
solution.
6  x  4  11
 x4 5
x  4  5
No, there is not a solution.
The -5 tells us there is
no solution.
To solve Absolute Value Equations
1. Isolate the absolute value
2. Write two equations
x2 5
x25
x7
OR
x  2  5
x  3
solve the Absolute Value Equations
7  7 x  5  16
7  7 x  21
7  7 x  21 OR
7 x  28
x4
7  7 x  21
7 x  14
x  2
solve the Absolute Value Equations
3 4 x  1  5  10
3 4 x  1  15
4x 1  5
4 x  1  5 OR
4x  6
6
x
4
3
x
2
4 x  1  5
4 x  4
x  1
3
x  or x  1
2
Solve the Absolute Value Equations
2x  7  5  3
2 x  7  2
NO Solution
An absolute value can NOT
equal a negative number!!!
An extraneous solution is a solution of an equation
derived from an original equation that is not a solution of
the original equation
You should ALWAYS check for extraneous solutions!!
2 x  5  3x  4
2 x  5  3x  4
OR 2 x  5    3x  4 
 x  1
2 x  5  3 x  4
x 1
5 x  9
9
x
5
NOW…you should CHECK!!
CHECK!!
2 x  5  3x  4
x 1
OR
2 1  5  3 1  4
7 7
77
The only solution is x=1
9
x
5
 9 
 9 
2    5  3   4
 5
 5
18
 27
5 
4
5
5
7 7

5
5
7 7

5 5
Related documents