Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Interaction with electromagnetic radiation
Electric Dipole approximation:
dipole
r r
E (r , t )
r
r
d = er
r r
interacts with field E (r , t )
a0 = 1 Å
r
k
r r
B (r , t )
Interaction hamiltonian:
r r r
H = er ⋅ E (r , t )
r r
r −iωt ikr ⋅rr
E (r , t ) = E0e e
r r 1 r r2
r − iωt ⎡
n ⎤
(
)
(
)
1
...
= E0e
+
i
k
⋅
r
+
k
⋅
r
+
+
O
r
⎢⎣
⎥⎦
2
r − iωt
≈ E0e
( )
Note:
λ = 5000 Å
⎛ 2πa ⎞
⎟
⎝ λ ⎠
Higher order terms in O⎜
r r
2πa
<< 1
k ⋅ r ≈ ka =
λ
E-field does not vary over
size of the atom, hence:
H EM
Electric quadrupole, octupole
r r r
H
=
μ
⋅ B (r , t )
Magnetic interactions:
M
Lecture Notes Structure of Matter: Atoms and Molecules; W. Ubachs
r r
= er ⋅ E (t )
Quantum analog of electromagnetic radiation
Classical electric dipole radiation
Classical oscillator
I rad
Transition dipole moment
Quantum jump
r2
∝ er
2
* r
ψ 1 er ψ 2
2
I rad ∝ μ fi =
The atom does not radiate when it is in a stationary state !
The atom has no dipole moment
μii = ∫
*r
ψ 1 r ψ 1dτ
=0
Intensity of spectral lines linked
to Einstein coefficient for absorption:
Lecture Notes Structure of Matter: Atoms and Molecules; W. Ubachs
Bif =
μ fi
2
6ε 0h 2
Selection rules
depend on angular behavior of the wave functions
Parity operator
r
r
θ
φ
r
−r
r
r
Pr = −r
( x , y , z ) → ( − x, − y , − z )
(r ,θ , φ ) → (r , π − θ , φ + π )
Lecture Notes Structure of Matter: Atoms and Molecules; W. Ubachs
All quantum mechanical wave functions
have a definite parity
r
r
Ψ (− r ) = ± Ψ (r )
r
Ψ f r Ψi ≠ 0
If
Ψf
and
Rule about the
Ψi
Ylm
have opposite parity
functions
PYlm (θ , φ ) = (− )l Ylm (θ , φ )
Selection rules
Mathematical background: function of odd parity gives 0 when integrated over space
In one dimension:
∞
Ψ f x Ψi =
∞
∫
Ψ *f xΨi dx
−∞
=
with
∫ f ( x)dx
f ( x) = Ψ *f xΨi
−∞
∞
0
∞
0
∞
∞
∞
−∞
−∞
0
∞
0
0
0
∫ f ( x)dx = ∫ f ( x)dx + ∫ f ( x)dx = ∫ f (− x)d (− x ) + ∫ f ( x)dx = ∫ f (− x)dx + ∫ f ( x)dx
∞
= 2 ∫ f ( x)dx ≠ 0
if
Ψi
f ( − x) = f ( x)
and Ψ f
opposite parity
0
=0
if
f (− x) = − f ( x)
Ψi
and Ψ f
same parity
Electric dipole radiation connects states of opposite parity !
Lecture Notes Structure of Matter: Atoms and Molecules; W. Ubachs
Selection rule
r
Ψ f r Ψi
Δl
Transition dipole matrix element
Parity consideration
r
r
P Ψ f r Ψi = P RnlYlm r Rn'l 'Yl 'm'
= (− )l (− )(− )l ' = even
if
l + 1 + l' = even
Δl = ±1,±3,...
Lecture Notes Structure of Matter: Atoms and Molecules; W. Ubachs
Selection rule Δm
cos φ
x
Ψ f y Ψi = r Ψ f sin φ Ψi = r Ψ f
1
z
[x]:
2π
=
∫e
−im 'φ
0
2π
[y]:
[z]:
= ∫e
−im 'φ
0
2π
=
(e φ + e φ )/ 2
(e φ − e φ )/ 2i Ψ
i
−i
i
−i
i
1
ei (−m'±1+ m )φ
dφ ≠ 0
2
if
m − m'±1 = 0
2π i ( − m ' m1+ m )φ
eiφ − e − iφ imφ
e
e dφ = ∫
dφ ≠ 0
2i
2i
0
if
m − m'±1 = 0
eiφ + e −iφ imφ
e dφ =
2
∫e
−im 'φ imφ
e
dφ ≠ 0
2π
∫
0
if
m − m'= 0
0
Combinations of x, y, z related to the polarization of light
Lecture Notes Structure of Matter: Atoms and Molecules; W. Ubachs
Polarization vectors
(
)
1
rˆ = xê x + yê y + zê z
r
= sin θ cos φê x + sin θ sin φê y + cos θê z
rˆ ∝ Y1,−1
ê x +iê y
2
ê rad = A
σ−
+ Y10ê z + Y11
ê x −iê y
2
2π
Y1,−1 − Y11
3
2π
sin θ sin φ = i
Y1,−1 + Y11
3
)
(
-ê x +iê y
cos θ =
2
⎛ ê x +iê y ⎞
⎟
⎜−
σ+⎜
2 ⎟⎠
⎝
(
sin θ cos φ =
)
4π
Y10
3
Definition of Yij
+ Aπ ê z + A
definition of polarized light vectors
r̂ ⋅ ê rad = A
Y
+ Aπ Y10
σ − 1,−1
+A
Y
σ + 11
Verify selection rules for
x+iy and x-iy
Circular polarization
Lecture Notes Structure of Matter: Atoms and Molecules; W. Ubachs
m=0
m=-1
σ-
σz
m=1
σ+
l=0,m=0
Properties of
Write r-vector in terms of
spherical harmonics
Ylm
Y11 = −
Y1,−1 = −
Y10 =
*
Y
∫ l f m f Y1,mYl imi sin θdθdφ ≠ 0
if
l f = li ±1
m f = mi ± m
Lecture Notes Structure of Matter: Atoms and Molecules; W. Ubachs
z
r
− 1 ( x + iy ) 3
3
sin θeiφ =
4π
8π
2 r
1 ( x − iy ) 3
3
sin θe −iφ =
4π
8π
2 r
3
4π
Triangular property of
Spherical harmonics
Verify with “Mathematica”
Photon picture of selection rules
r
J
r
J'
absorption
r
J f =1
photon
r r r
J '= J + 1
so
J ' = J +1
J'= J
J ' = J −1
Lecture Notes Structure of Matter: Atoms and Molecules; W. Ubachs
ΔJ = 0,±1
For the total angular momentum
Non-electric dipole selection rules
Higher order transitions
Scale like xy, r2
*
Y
∫ l f m f Y2,mYl imi sin θdθdφ ≠ 0
l f − l i = 0,±2
Magnetic dipole interactions have different selection rules
Lecture Notes Structure of Matter: Atoms and Molecules; W. Ubachs
Selection rules in Hydrogen atom
Intensity of spectral lines given by
r
r
μ fi = ∫ Ψ*f μΨi = Ψ f − er Ψi
n
1) Quantum number
no restrictions
Balmer series
2) Parity rule for l
Δl = odd
3) Laporte rule for
l
Angular momentum rule:
r
r r
l f = li + 1
From 2. and 3.
so
Δl ≤ 1
Δl = ±1
Lecture Notes Structure of Matter: Atoms and Molecules; W. Ubachs
Lyman series
Related documents