Download Targets

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Metastable inner-shell molecular state wikipedia , lookup

Fusor wikipedia , lookup

Transcript
Introduction
To extend the study of the structure of nuclei far from stability
 Production of RIB's via the fission process induced
- either by fast neutrons from a C converter in a UCx target
goal >1013 fissions/s
- or by direct bombardment of fissile material
 Production of heavy ion beams for fusion-evaporation physics
C
D
1+
n+
UCx
IS
ECR
Basic configuration for RIB production :
 high intensity D primary beam on a D-N Converter with a Carbon wheel
 fission fragments produced by N-induced fission of a
UCx fissile target - low or high density (Gatchina)
 Different ion sources coupled (depending on ionization efficiency)
 Isotopes bred to higher charge state for proper post-acceleration
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 1
Fission yields
with converter and ~ 5 mA primary beam...
d
n
UCx
Fission of 239U
Ex= 20 MeV
low density
 = 2.3 g/cm3
1013 f/s
high density
5.1013 f/s
2.1014 f/s
V = 240 cm3
 = 11 g/cm3
V = 240 cm3
V = 1000 cm3
200 kW dissipation in the converter
5 mA - 40 MeV deuteron
300 W
6 kW (limit)
power deposited
in the target
without converter and ~ 0.15 mA primary beam...
d,3,4He,...
Fission of 240Pu
Ex≥ 50 MeV
UCx
5.1012 f/s
6 kW
acces to a wider mass region
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 2
Regions of the nuclear chart covered by
primary beam:
 deuterons
 heavy ions
4. N=Z
ISOL (thick target)
5. Transfermiums
In-flight (Z=106, 108)
2. Fusion reaction
with exotic beam1
Z
1. Fission products (w/ converter)
3. High Ex fission products (w/o converter)
N
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 3
Physics with fast neutrons
Material irradiation
SPIRAL2 will deliver  1015 neutrons /s peaked at 14 MeV
ideal spectrum for material studies in future fusion machines
available before IFMIF and at reduced cost
Pulsed neutron beam (future option)
measurement of cross-sections for fission and (n,xn) reactions
neutron energy inferred from time of flight technique (ToF)
with 1% resolution for 10 m long beamline
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 4
Schematic Layout
Charge breeder
1+ / N+
α
CIME
Source q/A=1/3
Source
Separator deuterons
TIS Station
Stable ion
beams
1.
2.
3.
4.
Driver
Target - Ion Source Station
Secondary Beam Lines
High Energy Radioactive Beam Lines
Irradiation
Neutrons
14 MeV
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 5
Charge breeder
1+ / N+
α
CIME
1.
2.
3.
4.
Source q/A=1/3
Source
deuterons
Driver
Target - Ion Source Station
Secondary Beam Lines
High Energy Radioactive Beam Lines
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 6
Facility layout
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 7
Simultaneous beams at GANIL
Multi-Faisceaux
easier with direct lines
CIME  salles G1-G2
3
séparateur
1+/n+
1
4
5
2
Example (5 beams)
SPIRAL2 : 40 MeV D+ onto ECS
1) Low energy RIB (LIRAT)
2) 6 A.MeV RIB
CIME  VAMOS / EXOGAM
Standard GANIL
3) stable beam/RIB at
50-100 A.MeV (CSS ’s)
4) 1 A.MeV stable (IRRSUD)
5) 8-10 A.MeV stable (SME)
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 8
Converter
SPIRAL2
PSI
200 kW
60 kW
Diameter
1m
0.45 m
Pradiation
53 W/cm2
35 W/cm2
1750°C
1527°C
Pmax
T max
beam spot Ø 40 mm (parabolic distrib)
thickness = 10 mm
rotation speed < 600 trs/mn
in case of C wheel failure :
target protection =
Carbon foil between wheel and target
 70 ms to switch the beam off
(time delay for 1000° to 3200°C increase)
Homogeneous and Bragg model energy deposition
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 9
Targets
Geometry of the UCx target has been studied by calculating the optimum location
taking into account the distribution of the neutron flux coming from the converter.
3 geometries giving > 1013 fissions/s
complete effusion simulations in progress
19 series of 61 disks UC3 density 2.3 g/cm3
Ø15, thickness = 1, spacing = 0.3
Example of configuration
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 10
Ion Sources
Four types of ion sources considered for the project :
 ECR ion source (gaseous elements such as the noble gases)
 FEBIAD source (Forced Electron Beam for Ionization by Arc Discharge)
(less volatile elements)
 thermo-ionisation source (alkalis and some rare earth elements)
 laser source (non-volatile elements such as metallic ones and high selectivity)
prototype of ECR ion source (demanding in terms of room & auxiliary equipment)
adaptation of the surface ionisation source developed at TRIUMF
development of a FEBIAD prototype for pushing up the usual lifetime limitation
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 11
Plugs
Adaptation of the plug technology developed at TRIUMF
Shielding of all radio-sensitive elements, like pumps (32 Sv/h at 1 m after 3 month irradiation))
Manual disconnection of the module before handling for storing or dismantling
Size of biological shielding determined by dose rate calculations < 10 μSv/h at the top)
(basic, complete, in the vacuum tank)
Service cap
Shielding plug
1.25 m steel +
1.50 m concrete
Containment
Box
D-beam axis
RIB axis
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Shutter Valve
Page 12
Plugs (2)
couvercle béton
passages
avec câble HT
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 13
Driver
The driver must accelerate beams
 of high power (200 kW deuteron beam power)
 different ion species and mass-to-charge ratios (deuterons as well as heavier ions
of mass-to-charge ratio A/q=3 and up to A/q=6 in a later stage)
 with a high output energy flexibility (from 40 MeV deuteron energy down to low
energies, as low as the RFQ exit energy)
“Independently Phased Superconducting Linac” : provides a safe cw operation and
high flexibility in the acceleration of different ion species and charge-to-mass ratios
Short cavities: very wide velocity acceptance  optimisation of the output energy
for each ion specie by readjusting the RF phases of each cavity
Ein
[keV/u]
Eout
[MeV/u]
 rms [.mm.mrad]
z rms [.deg.MeV]
Intensity
[mA]
A/q = 2
20
20
0.2
0.05
5
a) conservative  expected from sources
A/q =3
20
14.5
0.4
0.12
1
b) z at RFQ output
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 14
Driver layout : reference design
0
6m
Sources + LEBT
11 m 15 m
RFQ
MEBT
88 MHz =0.07
QWR (12 mod x 1 cav)
28 m
88 MHz =0.12
40 m
QWR (6 mod x 2 cav)
88 MHz
Source D+
RFQ 1
Eacc = 6-7 MV/m
RFQ 2
Source q/A=1/3
Source q/A=1/6
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 15
D+ sources: SILHI-type & μPhoenix
Water cooling
UHF injection
Hexapolar magnet
Monogap
extraction
Gas injection
Plasma
electrode
Magnet for
axial field
Hybrid magnet for
Hexapolar and Axial field
ex: MicroPHOENIX 10 GHz
norm. rms  = 0.084 .mm.mrad
for 5 mAe D+ extracted @ 38 kV
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 17
Heavy Ions Sources R&D
A/q=3 ion source :
state-of-the-art in ECR sources: 1 mA 18O6+ and 0.2 mA 36Ar12+
High confinement fields (Br  2-3 T) and high frequency (f > 28 GHz) required
 Two options are explored, based on
 a fully superconducting ECR source
 a combination of permanent and high temperature superconducting magnets
European research activity “Ion Sources for Intense Beams of Heavy Ions” (ISIBHI)
SERSE at LNS 14-18 GHz
PHOENIX 28 GHz
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 18
Beam Dynamics (2)
cavity aperture
1/3
Results :
suitable emittance growths
safety margin [bore radius / max beam amplitude] 1.8 for ions 2.5 for deuteron
next step :
 systematic start-to-end simulations including all effects and alignment errors
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 20
Warm intertank space
Quads + Diagnostics : trade-off between BD and Diag people !
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 21
RFQ
•
Accelerates in CW mode:
 D+ beam up to 5 mA
up to 0.75 – 1 MeV/u
 q/A=1/3 ions up to 1 mA
•
To allow hands on maintenance:
 99% of transmission w/o errors
 97% min with all combined errors
•
The construction takes into account:
6.5 m
5m
 Non constant voltage and R0 profile
  1% on the voltage law
  1/10th mm vane tips displacement
 Minimum price
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 22
RFQ : 4-vane from tube and rf joints
safe cw operation (lowest peak power density < 6W/cm2)
highest transmission
• Only mechanical assembly
• from a low cost copper tube
• Possible change of the vanes
• w/o brazing nor welding  RF join
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 23
Resonators
Legnaro-type QWR
Argonne-type QWR and HWR
(with field asymmetry compensation)
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 24
QWR : cavity shape optimization
Goals for 8 MV/m (E/) operation :
 lower Epk / Eacc ~ 5 → Epk ≈ 40 MV/m
 enlarge curvature radius of drift tube
 lower Bpk / Eacc ~ 10 mT/MV/m → Bpk ≈ 80 mT
 enlarge stem diameter
Cavity stiffening :
Stem  conical shape
Top
 rounded shape
Power coupler location :
Coupler mounted on removable bottom plate
Electric coupling in low |H| area
 Qext as low as 7 104
50 ohms coaxial line Ø = 30 mm
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 25
R&D program (1)
Goal :
to develop and test the most critical components to validate
the chosen technology before the construction phase
Provisional budget for this 2-year R&D program = 850 k€
For the accelerator :
 One RFQ module (1 meter long)
test at full RF power in summer 2004 with a 88 MHz-40 kW power source
 Two 176 MHz SC resonators, one QWR + one HWR
to validate fabrication, preparation and mounting procedures
to compare performances of both cavity types (tests before the end of 2004)
 Two high power couplers (in the range 10-20 kW)
fabrication at the end of 2004 and test in 2005.
 One 10 kW solid state amplifier module for the SC resonators
collaboration with other laboratories under study
goal : prototype tested at the end of 2004
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 26
R&D program (2)
For the target-ion source system :
 Target R&D already started within a collaboration with Gatchina
goal : to compare the performances of low and high density UCx targets
besides, R&D on low density UCx pellets of different sizes and shapes
 Design and developments of the target oven
graphite oven prototypes tested to study temperature uniformity and mechanical
resistance for a long operation period
 FEBIAD ion source tests to demonstrate the reliability of the cathode for a long
period operation
 ECR ion source tests to demonstrate the feasibility of a prototype
using magnetic coils
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 27
Time-schedule for Safety Authorities
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 28
Project organization
DSM
Institutes
IN2P3
Steering Committee
TAC Technical
SAC Scientific
Advisory
Committee
Advisory
Committee
Project Study Group
Project Management
Physics/Exp.
Accelerator
Target stations
Beam Lines
D+ Sources
Ion Sources
RFQ
Cryomodule A/B
Beam Dynamics
RF
Cryogenics
Integration
Converter
Targets
Ion Sources
Hot Cell
Plug & Handling.
Separator
Calculs lignes
Magnets
CIME post-acc.
Charge booster
1+/n+
Specific Techn.
Nuclear physics,
atomic,
astrophysics ..
Conv. Facilities Safety Radiation
Diagnostics
Buildings
Vaccum
Elec. Power
Control systems Power Supplies
Refrig. / Fuides
Waste
Tech. Support
Studies
- Safety
- Rad. shielding
Documents Prep.
-DOS, RPS,
DAM, DAR
Joint Laboratories
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 29
Collaborations
Argonne
UK ??
Gatchina
Louvain ??
Triumf
LPC
GSI ??
SPR
GANIL
DAPNIA
IRES
DPII
IPNO
CSNSM
Isolde ??
DIF
CENBG
ISN
CENG
Legnaro
Le projet SPIRAL-II, 5 octobre 2003, Porquerolles
Page 30