Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Mapping Magnetic Field
Structure in Star-forming
Regions
賴詩萍
Oct 4, 2006, NTHU Phys Colloquium
康德-拉普拉斯 星雲假說
康德(1755年) - 原始星雲是由大小不等
的固體微粒組成的﹐“天體在吸引最強
的地方開始形成”﹐萬有引力使得微粒
相互接近。
拉普拉斯(1796年) - 形成太陽系的雲是
一團巨大的﹑灼熱的﹑轉動著的氣體﹐
大致呈球狀。由於冷卻﹐星雲逐漸收縮,
星雲的中心部分凝聚成太陽 。
Star formation standard model
Shu et al. 1987
Shu et al. (1987)
Star formation standard model
P. Andre
Starless Cores – Barnard 68
Simplest Star Formation Theory
Thermal pressure support - Jeans Mass (1928)
Thermal
Pressure
Gravitation
Why B is important in star
formation?

Regulating star formation efficiency

Observed star formation efficiency is low


B provides support in



Theoritical 200 M/year >> Observed 3 M/year
Static fields
MHD waves (turbulence)
Facilitating gravitational collapse


Angular momentum problem – magnetic braking
Magnetic flux problem - ambipolar diffusion
Morphology Evolution
Magnetic support theories
MHD simulations (Ostriker, Gammie, & Stone 1999)
2
cs
 2
VA
large -> random morphology
How to measure B?
Zeeman Effect – Too Difficult!!
Polarization of Dust Emission: PBp
Polarized Molecular Line Emission
(the Goldreich-Kylafis Effect): PBp or PBp
B
V
Polarization Observations with
Berkeley-Illinois-Maryland Array
(BIMA)
Dust Polarization observations with BIMA
Magnetic Field Morphology – W51 e1/e2
JCMT   14” at 850 m
Chrysostomou et al. (2002)
BIMA   2” at 1.3 mm
Lai et al. (2001)
NGC 2024
JCMT   14” at 850 m
Matthews et al. (2002)
BIMA   2” at 1.3 mm
Lai et al. (2002)
DR21(OH) –
JCMT vs. BIMA
(B map)
Lai et al. (2003)
NGC1333 IRAS4A
NGC1333 IRAS4A
NGC1333 IRAS4A
Twisted hourglass geometry
BIMA   2” at 1.3 mm
Lai (2002)
SMA   1” at 850 m
Girart, Rao, Marrone (2006)
Physical quantities
Dispersion of Polarization Angle ()
1.
Field Strengths (the Chandrasekhar-Fermi Method)
2.
Mass-to-magnetic-flux Ratios
3.
Turbulent-to-magnetic-energy Ratios
Chandrasekhar-Fermi Method
Dispersion of Polarization Angle ()
⇒ Field Strengths in the plane of sky
•
Uniform fields perturbed by MHD turbulence -    B
•
Incompressible fluid -  invariant
•
Small perturbation -
•
Isotropic turbulence -  p   los
4 
 
B
B
Ostriker, Stone, & Gammie 2001
 ⇒ Bp, M/ΦB,p, turb
Results

Bp ~ 0.8 – 3.5 mG

M/ΦB,p ~ 0.1 – 4.9 critical mass-to-flux ratio

 turb ~ 0.03 – 0.4
Future Work – More observations!!
Current/Future instruments
SMA (the only working interferometer for now)
 CARMA = BIMA + OVRO (?)
 ALMA!! (wait at least 7 years)

3D Magnetic Field Structure

Zeeman measurements
High density (106 cm-3) - CN
 Young Cores – CCS


Line polarization
ALMA in 7 years
廣告時間
“Star and Planet formation” Journal Club
時間 : 隔週週二中午 12:10-1:00 pm
 地點 : 502A
 目的

輪流報告最新的研究結果
 培養學生對這個研究主題的興趣


參與老師: 江瑛貴, 陳惠茹, 呂聖元, 賴詩萍
Related documents