Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Calculus II
Practice Exercises
Integral Test
Use the integral test to determine whether the series converges.
∞
1
1) ∑
8n
n=1
A) converges
∞
2)
∑
7
n
n=1
A) diverges
∞
3)
∑
∞
∑
∞
∑
∞
∑
∞
∑
B) diverges
cos 1/n
n2
n=1
A) converges
7)
B) converges
1
2n
e - 1
n=1
A) converges
6)
B) converges
1
2n - 1
n=1
A) diverges
5)
B) converges
7
n
n=1
A) diverges
4)
B) diverges
B) diverges
5n
2
n + 2
n=1
A) converges
B) diverges
Provide an appropriate response.
8) Which of the following is not a condition for applying the integral test to the sequence { a n }, where a n = f(n)?
I. f(x) is everywhere positive
II. f(x) is decreasing for x ≥ N
III. f(x) is continuous for x ≥ N
A) I only
B) II only
C) All of these are conditions for applying the integral test.
D) III only
9) Which of the following statements is false?
A) If a n and f(n) satisfy the requirements of the Integral Test, and if ∫
1
∫
∞
f(x) dx.
1
B) The integral test does not apply to divergent sequences.
∞
1
C) ∑
converges if p >1 and diverges if p ≤ 1.
np
n=1
∞
1
converges if p > 1.
D) ∑
n(ln n)p
n=2
∞
∞
f(x)dx converges, then ∑
n=1
a n =
Answer Key
Testname: 20_EX
1)
2)
3)
4)
5)
6)
7)
8)
9)
A
A
A
A
A
A
B
A
A