Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Intro VSR SFQED VSR/QED Very Special Relativity as a background field theory Anton Ilderton Plymouth University, UK 2016-10-05 1605.04967 [hep-th], Phys. Rev. D 94 (2016) 045019 Outro Intro VSR SFQED VSR/QED Outline 1. Intro: Lorentz violation and Very Special Relativity 2. Intro: Strong Field QED. 3. Particle motion in VSR and in background fields 4. SF-QED Ø SIM(2)-QED correspondence Outro Intro VSR SFQED VSR/QED What is VSR? New physics from violation of spacetime symmetries? Liberati, Class. Quant. Grav. 30 (2013) 133001 VSR 1. Replace Lorentz group (6 dim) Ñ subgroup (2,3,4 dim.) 2. Keep translation invariance. 3. Build (Lorentz invariance violating) QFTs. Cohen & Glashow, PRL 97 (2006) 021601 Original motivation: allows for neutrino masses. Cohen & Glashow, hep-ph/0605036 Outro Intro VSR SFQED VSR/QED Outro SIM(2) Largest subgroup: 4-dimensional SIM(2). J3 , K3 , T1 “ K 1 ` J 2 , T2 “ K 2 ´ J 1 c constant, same dispersion. Ñ p2 “ constant. SIM(2) + parity = Lorentz. Ñ Parity violation. Bucher et al, PRL 116 (2016) 112503 B. Bucher et al, PRL 116 (2016) 112503 Null hyperplanes invariant... Ñ Lightlike stability group Preferred lightlike direction Ñ From an æther? nµ “ p1, 0, 0, 1q But no scale? Gibbons et al, PRD 76 (2007) 081701 Cheon et al, PLB 679 (2009) 73 Direction, but no velocity Intro VSR SFQED VSR/QED SIM(2) and mass terms SIM(2) permits nonlocal terms of the form Dirac equation. . . nµ n.B . . . in SIM(2) δm2 n { “m 2n.p p{ “ m ÝÑ p{ ´ p2 “ m2 ÝÑ p2 “ m2 ` δm2 . Mass-shell: δm Ø small neutrino mass. Cohen & Glashow PRL 97 (2006) 021601 Outro Intro VSR SFQED VSR/QED Outro Particle motion in background fields Background plane wave field (basic laser model): ` ˘ eAµ pxq “: aµ pn.xq “ ma0 0, cospωn.xq, sinpωn.xq, 0 nµ “ p1, 0, 0, 1q x0 Lightlike wave vector nµ . x− x+ Frequency ω. Intensity (coupling) a0 . x3 Integrable model x+ = 0 (Lorentz, KG, Dirac all solvable) Sengupta, Bull. Math. Soc. Calcutta 44 (1952) 175, Volkov, Z. Phys. 94 (1953) 250 Intro VSR SFQED VSR/QED Classical motion σ, rates involve averages over many field oscillations. Nikishov & Ritus 1963 Example: classical momentum. πµ pn.xq “ pµ ´ aµ pn.xq ` average Ó 2p.apn.xq ´ a2 pn.xq nµ 2n.p (linear in a Ñ 0, quadratic Ñ 0) qµ :“ xπµ y “ pµ ` a20 m2 nµ . 2n.p Outro Intro VSR SFQED VSR/QED VSR connection a20 m2 nµ 2n.p ÝÑ q 2 “ m2 ` a20 m2 πµ ÝÑ qµ “ pµ ` π 2 “ m2 quasimomentum effective mass T.W.B. Kibble, Phys. Rev. 138 (1965) B740, Harvey, Heinzl, Ilderton, Marklund PRL 109 (2012) 100402 Frequency scale drops out Averaged motion in plane waves described by VSR? a20 m2 Ø δm2 Outro Intro VSR SFQED VSR/QED Outro QED in background fields QED in a background field / BSM photon background. ` ˘ eAµ pxq “: aµ pn.xq “ ma0 0, cospωn.xq, sinpωn.xq, 0 nµ “ p1, 0, 0, 1q x0 ‹ Very high frequency scale ω. x− x+ ‹ Cannot be probed by typical processes. x3 ‹ Effective physical observables: averages. x+ = 0 Intro VSR SFQED VSR/QED Averaging Basic idea. Obtain an “effective” theory by: 1. Killing rapidly oscillating terms 2. Keeping slowly varying terms e.g. aµ pn.xq e.g. a2 pn.xq “ ´δm2 Classically: gives quasi-momentum/VSR momentum. Quantum: consistent, gauge invariant truncation of QED? Outro Intro VSR SFQED VSR/QED Dirac equation Dirac equation in the background plane wave: ` ˘ iB{ ´ a{ ψ ´ mψ “ 0 Volkov solutions: ż ψ“ n.x ˙ „ ˆ ż n { a{ pn.xq 2 up exp ´ip.x´i 2p.a´a bp `. . . dp 1` 2n.p Average: ψ Ñ ψav . The averaged field obeys: ˆ iB{ ´ ˙ δm2 n { ψav ´ mψav “ 0 2in.B The Dirac equation in SIM(2) VSR! a20 m2 Ø δm2 Outro Intro VSR SFQED VSR/QED Outro Averaging in QED Fermion propagator in a plane wave. D.M. Volkov, Z. Phys. 94 (1935) 250 H. Mitter, Acta Phys. Austr. Suppl. 14 (1975) 397 ż SVolk px, yq “ ´i... dp e ˙ ˆ ˙ δm2 n{ ˆ p{ ` m n a{ n { a{ pn.xq { pn.yq 2n.q 1` 1` 2n.p p2 ´ m2 ` i 2n.p q2 Intro VSR SFQED VSR/QED Outro Averaging in QED Fermion propagator in a plane wave. D.M. Volkov, Z. Phys. 94 (1935) 250 H. Mitter, Acta Phys. Austr. Suppl. 14 (1975) 397 average SVolk px, yq ÝÑ Svsr px´yq “ ż δm2 n q{ ` m ´ 2n.q{ d4 q e´iq.px´yq p2πq4 q 2 ´ m2 ´ δm2 ` i Restores translation invariance, as in VSR. X Cohen & Glashow PRL 97 (2006) 021601 Poles shifted to VSR mass. X Spin– 12 propagator of VSR. X Intro VSR SFQED VSR/QED The VSR vertex and the Ward Identity " : However . . . Extra slowly-varying terms at vertices from products of fields. ż ˙ ˆ ˙ ˆ a{ pn.xq{ n µ n { a{ pn.xq ... 1 ` γ 1` Gµν . . . 2n.p1 2n.p Gives correction to the QED vertex: γ µ Ñ Γµ :“ γ µ ` δm2 nµ 2n.pp ` kqn.p Outro Intro VSR SFQED VSR/QED The VSR vertex and the Ward Identity " : However . . . Extra slowly-varying terms at vertices from products of fields. ż ˙ ˆ ˙ ˆ a{ pn.xq{ n µ n { a{ pn.xq ... 1 ` γ 1` Gµν . . . 2n.p1 2n.p Gives correction to the QED vertex: γ µ Ñ Γµ :“ γ µ ` δm2 nµ 2n.pp ` kqn.p ! : The three-point vertex of VSR. X Dunn & Mehen, hep-ph/0610202 Outro Intro VSR SFQED VSR/QED The VSR vertex and the Ward Identity Provided all slowly varying terms are retained Ilderton, PRD 94 (2016) 045019 a(n.x) ! γµ Gµν a(n.x) γµ − " a2 nµ n / Gµν (k) 2n.(q + k)n.q SIM(2)–QED 1. VSR 3-point vertex recovered. 2. Ward Identity is preserved: k.Γ “ 0 X Outro Intro VSR SFQED VSR/QED Higher-order vertices " : However. . . VSR has n-photon vertices for all n. Dunn & Mehen, hep-ph/0610202 Back to the propagator: ˆ ˙ ˆ ˙ ż n a{ pn.yq{ n { a{ pn.xq SVolk px, yq “ . . . 1 ` . . . p{ . . . 1 ` 2n.p 2n.p n.x “ n.y ùñ apn.xqapn.yq rapidly oscillating. Outro Intro VSR SFQED VSR/QED Higher-order vertices " : However. . . VSR has n-photon vertices for all n. Dunn & Mehen, hep-ph/0610202 Back to the propagator: ˆ ˙ ˆ ˙ ż n a{ pn.yq{ n { a{ pn.xq SVolk px, yq “ . . . 1 ` . . . p{ . . . 1 ` 2n.p 2n.p n.x “ n.y ùñ apn.xqapn.yq rapidly oscillating. What happens if n.x “ n.y? Ñ Short distance behaviour of the propagator. Outro Intro VSR SFQED VSR/QED Higher-order vertices Singular term in Volkov propagator: ż 4 d p n { ´ip.px´yq SVolk Ą i e 9 δpn.x ´ n.yq{ n. 4 p2πq 2n.p ‘Instantaneous lightfront propagator’. Brodsky et al, Phys.Rept. 301 (1998), Bakker . . . A.I. et al, Nucl.Phys.Proc.Suppl 251 (2014) 165 Outro Intro VSR SFQED VSR/QED Higher-order vertices Singular term in Volkov propagator: ż 4 d p n { ´ip.px´yq SVolk Ą i e 9 δpn.x ´ n.yq{ n. 4 p2πq 2n.p ‘Instantaneous lightfront propagator’. Brodsky et al, Phys.Rept. 301 (1998), Bakker . . . A.I. et al, Nucl.Phys.Proc.Suppl 251 (2014) 165 p! q! k! k! n.x SIM(2) QED p k q k Generates precisely the higher-order VSR vertices. X Ilderton, PRD 94 (2016) 045019 Outro Intro VSR SFQED VSR/QED VSR QED Ø SFQED VSR: an effective description of QED in a high frequency wave What is the VSR ‘æther’? Background EM wave. Preferred direction? Wave vector. Nonlocal. . . Interaction with the wave. . . . but trans. invariant. Restored by averaging. Outro Intro VSR SFQED VSR/QED Conclusions Summary SIM(2) QED as an effective theory of SFQED. New connections between § BSM physics with/without Lorentz violation. § SFQED and Lorentz invariance violation Work in progress Other VSR groups? Other sectors of the standard model? Neutrino mass in this picture? (From e.g. loop effects.) Laser physics as “VSR in the lab”? Heinzl and Ilderton, to appear Outro