Download PPT - Congjun Wu

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Quartetting and pairing instabilities in 1D spin 3/2
fermionic systems
Congjun Wu
Kavli Institute for Theoretical Physics, UCSB
Ref: C. Wu, Phys. Rev. Lett. 95, 266404 (2005).
Many thanks to S. C. Zhang, E. Demler, Y. P. Wang, A. J. Leggett for
helpful discussions.
March meeting, 03/16/2006 (10:24)
1
Multiple-particle clustering (MPC) instability
• Feshbach resonance: Cooper pairing superfluidity.
• Beyond Cooper pairing: In fermionic systems with multiple
components, Pauli’s exclusion principle allows MPC.
• More two particles form bound states.
baryon (3-quark); alpha particle (2p+2n); bi-exciton (2e+2h)
• Driven by logic, it is natural to expect the MPC as a possible
focus for the future research.
• Spin-3/2 fermions have 4-componets.
132Cs, 9Be, 135Ba, 137Ba, 201Hg.
2
Quartetting order in spin 3/2 systems
• 4-fermion counterpart of Cooper pairing.
SU(4) singlet:
k1
k2
4-body maximally
entangled states

Oqt   3/ 2 (r ) 1/ 2 (r ) 1/ 2 (r ) 3/ 2 (r )


k2
k1

• Difficulty: lack of a BCS type well-controlled mean field theory.
trial wavefunction in 3D SU(4) symmetric model:
A. S. Stepanenko and J. M. F
Gunn, cond-mat/9901317.
• Quartetting v.s singlet pairing in the 1D spin 3/2 systems with
the general s-wave scattering interactions.
C. Wu, Phys. Rev. Lett. 95, 266404 (2005).
3
Generic spin 3/2 Hamiltonian in the continuum model
• The s-wave scattering interactions and spin SU(2) symmetry.
2


2
H   dx   ( x)(
 x   )  ( x)
2m
  3 / 2 , 1 / 2

g0 
g
 ( x) ( x)  2
2
2


 a ( x)  a ( x)
a 1~ 5
3
2

1
2
1
2

3
2
• Pauli’s exclusion principle: only Ftot=0, 2
are allowed; Ftot=1, 3 are forbidden.
3 3
singlet:   ( x)   00 | 2 2 ;    ( x)  ( x)

3 3



quintet:  a ( x)    2a | 2 2 ;    ( x)  ( x)

4
Phase diagram: bosonization+RG
g2
SU(4)
g0  g2
C: Singlet pairing
A: Luttinger liquid
g0
B: Quartetting
SU(4) g 0
 g2
• Gapless charge sector.
• Spin gap phases B and C:
pairing v.s.quartetting.
• Ising transition between
B and C.
• Singlet pairing in purely
repulsive regime.
5
Phase B: the quartetting phase
• Quartetting superfluidity v.s. CDW of quartets (2kf-CDW).
Oqt   3/ 2 1/ 2 1/ 2 3 / 2  e 2i
N 2 k f   R L  ei
 c
 c
wins at K c  2;
wins at K c  2.
Kc: the Luttinger parameter in the charge channel.
d  2 /( 2k f )
6
Phase C: the singlet pairing phase
• Singlet pairing superfluidity v.s CDW of pairs (4kf-CDW).
    3/ 2 3 / 2  1/ 2 1/ 2  ei
O4 k f ,cdw   R R L L  e 2i
c
 c
wins at K c 
1
;
2
wins at K c  12 .
d  2 /( 4k f )
• Existence of singlet Cooper pair superfluidity at 1>Kc>1/2.
7
Competition between quartetting and pairing phases

• Two-component superfluidity 1   3/ 23
/2
   1  2  ei
 c
Oquar  12  ei
4  c
(e i
v
+ e i
v
cos2
   v .

2  1/ 21/
2
c overall phase;
);

v relative phase.

• The relative phase channel determines
the transition.

1
1
H eff  {( x v ) 2  ( xv ) 2 } 
(1 cos 2   v  2 cos 2   v )
2
2a
• 1  2 the relative phase is locked: pairing order;
1  2 the dual field is locked: quartetting order.
Ising transition: two Majorana fermions with masses:
1  2
A. J. Leggett, Prog, Theo. Phys. 36, 901(1966); H. J. Schulz, PRB 53, R2959 (1996).
8
Experiment setup and detection
• Array of 1D optical tubes.
• RF spectroscopy to measure
the excitation gap.
pair breaking:
quartet breaking:
M. Greiner et. al., PRL, 2001.
9
Summary
• Spin 3/2 cold atomic systems provide a good starting point
to study the quartetting problem.
• Both singlet Cooper pairing and quartetting orders are allowed
in 1D systems.
• The phase transition between them is Ising-like at 1D.
10
Hidden symmetry and novel phases in spin 3/2
systems
• The exact Sp(4) or SO(5) symmetry without fine-tuning.
• Quintet Cooper pairing: the Alice string and topological
generation of quantum entanglement.
• Strong quantum fluctuations in spin 3/2 magnetic systems.
Ref: C. Wu, J. P. Hu, and S. C. Zhang, Phys. Rev. Lett. 91, 186402(2003);
C. Wu, Phys. Rev. Lett. 95, 266404 (2005);
S. Chen, C. Wu, S. C. Zhang and Y. P. Wang, Phys. Rev. B 72, 214428 (2005);
C. Wu, J. P. Hu, and S. C. Zhang, cond-mat/0512602.
11
Related documents