Download Lesson 17 - Trigonometry

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
College Algebra to Calculus and the TI-83
Lesson 17
Trigonometry
I. RADIAN AND DEGREE MODES
Degrees: MODE  sets the calculator in degrees mode
Radians: MODE 
sets the calculator in radians mode
To enter seconds, , press ALPHA  (on the + key)
Exercise 1. Convert 251535 to degrees and radians




MODE  ENTER 2nd QUIT (to select Degrees MODE)
25 2nd ANGLE 1 15 2nd ANGLE 2 35 ALPHA  (the + key) ENTER
answer : 25.25972222 degrees
MODE  ENTER 2nd QUIT (to select Radians MODE)
2nd ANS 2nd ANGLE 1 ENTER answer: .4408653209 radians
Exercise 2. Convert 28.6582 to degrees, minutes, seconds.
 MODE 
ENTER 2nd QUIT
 28.6582 2nd ANGLE 4 ENTER
answer: 28 39 29.52
 MODE  ENTER 2nd QUIT
 2nd ANS 2nd ANGLE 1 ENTER
answer: .5001799477
Exercise 3. Find sin(40 28 34) and csc (40 28 34)
(set up the calculator in degrees mode)



MODE  ENTER 2nd QUIT
sin(40 2nd ANGLE 1 28 2nd ANGLE 2 34 ALPHA  ) ENTER
answer.: sin(40 28 34) = .6491309484
x 1
ENTER
answer: csc (40 28 34) = 1.54052121911
Exercise 4: convert 50 degrees to radians and π radians to degrees.




MODE  ENTER 2nd QUIT (to select radian MODE)
50 2nd ANGLE 1 ENTER
answer: .872664626 radians
nd
MODE  ENTER 2 QUIT
π 2nd ANGLE 3 ENTER
answer: 180 degrees
-82-
Exercise 5: convert 2.4 radians and 5/19 radians to DMS
 MODE  ENTER 2nd QUIT
 2.4 2nd ANGLE 3 2nd ANGLE 4 ENTER answer: 137 30  35.535
 (5π19) 2nd ANGLE 3 2nd ANGLE 4 ENTER answer: 47 22  6.316
Exercise 6. Find the trigonometric values of 4815 45
 MODE  ENTER 2nd QUIT
 48 2nd ANGLE 1 15 2nd ANGLE 2 45 ALPHA  STO ALPHA A
 ENTER
 sin(A) ENTER
answer: sin (4815 45)= .7462026301


x
1
cos(A)
x
1
ENTER
ENTER
answer: csc(4815 45)=1.340118568
answer: cos(4815 45)=.6657188857


tan(A)
ENTER
ENTER
answer: sec(4815 45)=1.502135543
answer: tan(4815 45)=1.120897493

x
ENTER
answer: cot(4815 45)=.8921422396
1
II. Graph of the Trigonometric functions –select the radian mode.
Exercise 7. Graph the sine function with amplitude 3 and period 4.
x 

 2 
Y= 3sin 



MODE  ENTER 2nd QUIT
Y=
Y1=3sin(πx2)
WINDOW Xmin=-10 Xmax=10 Ymin=-4 Ymax=4 GRAPH
Exercise 8. Graph the function of exercise 7, with a phase shift of
half a unit to the left.
Y=




 ( x  0.5) 

3sin 
2


and then shift the result 3 units upward.
Y=
Y2=3sin(π(x+0.5)2)
WINDOW Xmin=-10 Xmax=10 Ymin=-4 Ymax=4 GRAPH
Y=
Y3=3sin(π(x+.5)2) +3
WINDOW Xmin=-10 Xmax=10 Ymin=-4 Ymax=8 GRAPH
Exercise 9. Graph the function y=tan(πx), -1≤ x ≤1


Y=
Y1=tan(πx)
WINDOW Xmin=-1
Xmax=1 Ymin=-10 Ymax=10 GRAPH
-83-
Exercise 10. Graph the function y=cot(πx), -1≤ x ≤1. Graph both function in exercises 9 and 10
simultaneously.
 Y=
Y2=1  tan(πx)
 WINDOW Xmin=-1 Xmax=1 Ymin=-10 Ymax=10
 Turn on Y1 and Y2 GRAPH
x
x 
 and Y4= x+sin 
 

 2 
 2 
Exercise 11. Graph the function Y3= xsin 





Y=
Y3=xsin(πx2)
WINDOW Xmin=-10 Xmax=10 Ymin=-20 Ymax=20 GRAPH
Y=
Y4=x + sin(πx  2)
WINDOW Xmin=-5 Xmax=5 Ymin=-6 Ymax=6
Deselect Y3 GRAPH
Exercise 12. Graph the function y  cos x  and y=| cosπx |.
2





Y=
Y1=(cos(πx))^2
WINDOW Xmin=-5 Xmax=5 Ymin=-1 Ymax=2
Y=
Y2= 2nd CATALOG abs ENTER
abs(cosπx)
GRAPH
GRAPH
Exercise 13. Graph the function y=secx and find the equation of the line tangent at x=-1
 Y=
Y3=1  cos(x)
 WINDOW Xmin=-4 Xmax=4 Ymin=-10 Ymax=10
GRAPH
nd
 2 Draw
5 -1 ENTER
answer: y=-2.88248x – 1.03
Exercise 14. Graph the function y=Arccos(x) and evaluate Arccos(-1) Arccos(-0.5)
Arccos(0) Arccos(.5) Arccos(1). Find the equation of the line tangent at x=0.5
 Y=
Y1=2nd cos(x)
 WINDOW Xmin=-2 Xmax=2 Ymin=-2 Ymax=5
GRAPH
 TRACE -1 ENTER
answer: 3.1415927 or π
 -0.5 ENTER
answer: 2.0943951 or 2π/3

0 ENTER
answer: 1.5707963 or π/2
 0.5 ENTER
answer: 1.0471976 or π/3
 1 ENTER
answer: 0
nd
 2 Draw
5 0 .5 ENTER
answer: y=-1.1547 x + 1.6245
-84-
Exercise 15. Graph the function y=Arcsin(x)
Evaluate Arcsin(-1) Arcsin(-0.5) Arcsin(0) Arcsin (0.5) Arcsin(1)
 Y=
Y2=2nd sin(x)
 WINDOW Xmin = -2 Xmax = 2 Ymin = -2 Ymax = 2
GRAPH
 TRACE -1 ENTER
answer: -1.570796 or –π/2
 -0.5 ENTER
answer: -.5235988 or –π/6
 0 ENTER
answer: 0
 0.5 ENTER
answer: .5235988 or or π/6
 1 ENTER
answer: 1.5707963 or π/2
Exercise 16. Graph the function y=Arctan(x)= TAN 1 ( x) . Find the equation of the tangent line at
x=3
 Y=
Y3 = 2nd TAN(x)
 WINDOW Xmin = -20 Xmax = 20 Ymin = -2 Ymax = 2
GRAPH
nd
 2 DRAW 5 3 ENTER answer: y =0.1x +0.949
Exercise 17. Consider the function y = 2sinx+3cosx
a) Graph the function
 Y=
Y4= 2sin(x) + 3cos(x)
 WINDOW Xmin = -4 Xmax = 4 Ymin = -10 Ymax =10
GRAPH
b) Find the amplitude and phase shift of the function
 2nd CALC 4
 move near and to the left of the maximum point ENTER
 move near and to the right of the maximum point ENTER
 move to a point between the left bound and the right bound ENTER
2
2
maximum occurs at x = 0.5880011 and y=amplitude=3.6055513 = 2  3
c) Use the fact that the function is a cosine function with amplitude 3.6055513 and shifted
0.5880011 to the right, to write the function as a cosine function and graph the result.
Y= 3.6055513cos(x-0.5880011)
 Y= Y5=3.6055513cos(x -0 .5880011) GRAPH (observe that the graphs are the same)
Exercise 18: Let f (x )  (sin 3x)
2
a) Graph function

Y=

WINDOW : Xmin = -3
Y1=(sin(3x))^2
Xmax = 3
Ymin = -2 Ymax = 2 GRAPH
2nd QUIT
b) Find the value of f(1.3)

GRAPH
TRACE
1.3
ENTER
answer: 0.47302229
c) Find the equation of the tangent line at x=2

2nd DRAW 5
2 ENTER
answer: y = -1.609709095708x + 3.29 2nd DRAW 1
-85-
Exercise 19. Graph the function y=xsin(x). Find a) the slope at x=3, b) the equation of the
tangent line at x=-5, c) the equation of the tangent line at x=4.5 d) the maximum value of the
function for 0 < x < 5).

MODE (select Radian mode) 2nd QUIT

Y=

WINDOW: Xmin = -10

2nd CALC

2nd DRAW 5

2nd DRAW 1 (to clear the tangent line)

2nd DRAW 5

2nd DRAW 1

MATH 7

VARS Y-VARS 1

Y3( 2nd ANS )
Y3 = xsin(x) 2nd QUIT
6
Xmax = 10
3 ENTER
-5 ENTER
Ymin = -10 Ymax = 10 GRAPH
answer: slope = dy/dx = -2.828857
answer: y=-.4593868957x-7.0915
4.5 ENTER
answer: y=-1.9261105682x+4.2686
fMax(Y3, x, 0, 5) ENTER
x = 2.028759264
3
answer: 1.819705741
Exercise 20. Use the laws of sine and cosine to solve the following triangle.
B
2
5
A
2
2
16




2
2
a c  b
b  a  c  2ac cos(B) or cos(B) 
2ac
a
b
c


13
sin(A) sin(B) sin(C)
2
C
MODE  ENTER 2nd QUIT
2nd cos( (13^2 +5^2 – 16^2) (2513))
2nd sin( sin(2nd ANS) 1316) ENTER
2nd sin( sin(2nd ANS)  513) ENTER
answer: B = 118.48 degrees
answer: A = 45.57 degrees
answer: C = 15.94 degrees
-86