Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
P . 4r r m C o m o l e x N u m b e r s 39 ComptexNumbers Our system of numbers developed as the need arose. Numbers were first used for counting.As society advanced,the rational numberswere formed to expressfractional parts and ratios. Negative numberswere invented to expresslossesor debts.When it was discoveredthat the exact size of some very real objects could not be expressed with rational numbers,the irrational numbers were addedto the system,forming the set of real numbers.Later still, there was a need for anotherexpansionto the number system.In this sectionwe study that expansion,the set of complex numbers. Definitions In Section P.3we saw that there are no even roots of negative numbers in the set of real numbers. So, the real numbers are inadequateor incomplete in this regard. The imaginary numbers were invented to complete the set of real numbers. Using real and imaginary numbers, every nonzero real number has tyvosquareroots, three clbe roots, four fourth roots, and so on. (Actually finding all of the roots of any real number is done in trigonometry.) The imaginary numbersare basedon the symbol V - l. Since there is no real number whose squareis -1. a new number called i is defined such that i2 : -1. Definition: lrnaginaryNumberi Theimaginary number i is definedby i2 : -1. Wemay alsowrite t : \/ -1. A complex number is formed as a real number plus a real multiple of i. Definition: ComplexNumbers The set of complex numbers is the set of all numbersof the form a I bi, wherea andb arerealnumbers. In a * bi, a is called the real part and b is called the imaginary part. Two complex numbers a * bi and c f di are equal if and only if their real parts are equal (a : c) and their imaginary parts are equal (b : d).If b : 0, then a * bi is a real number.If b * 0, then a * bi is an imaginary number. The form a * bi is the standard form of a complex numbeg but for convenience we use a few variations of that form. If either the real or imaginary part of a complex number is 0, then that part is omitted. For example, 0*3i:3i, 2*0i:2, and 0+0i:0. If b is a radical, then i is usually written before b. For examplg we write 2 + i\/t rather than 2 + \,6i,which could be confused with2 + \/3i,If b is negative,a subtraction symbol can be used to separate the real and imaginary parts as in 21i, 3 + (-2)i : 3 - 2i. A complex number with fractions, such as + may be w r i t t e nu = . 40 ChapterP rrF Prerequisites fua.trV/a I Standardform of a complexnumber Determine whether each complex number is real or imaginary and write it in the standardforma I bi. a.3i b.87 c.4-5i d.0 e. l*ni 2 Solution a. b. c. d. Complex numbers The complex number 3i is imaginary,and3i : 0 + 3i. The complex number 87 is a real number,and 87 : 87 + 0i. The complex number 4 - 5i is imaginary,and4 - 5i : 4 + (-5)t. The complex number 0 is real, and 0 : 0 + 0i. e. The complexnumberL+t is imaginary,anaLld : ) * T,. 4fV Tful. Determinewhetheri - 5 is real or imaginaryandwrite it in standard r torm. , FigureP,23 The real numberscanbe classifiedasrationalor irrational.The complexnumberscan be classifiedas real or imaginary.The relationshipbetweenthesesetsof numbersis shownin Fig.P.23. Addition, Subtraction, and Multiptication Now that we have defined complex numbers, we define the operationsof arithmetic with them. Definition: Addition, Subtraction, and Multiplication If a * bi and c * di are complex numbers, we define their sum, difference, and product as follows. (a + bi) + (c + di) : (a.| c) * (b + Ai (a + bi) * (c + di): (a - c) + (b * d)i (a + bi)(c + di) : (ac - bd) + (bc + afii It is not necessaryto memorize these definitions, becausethe results can be obtained by performing the operations as if the complex numbers were binomials with I being a variable,replacingi 2 with - I whereverit occurs. fuaw7/e [ 0perationswith comptexnumbers Performthe indicatedoperationswith the complexnumbers. ^. (-2+ 3, + (-4 - ei) b. (-1 - 5, - (3 - 2i) c. 2i(3+ i) d. (3,)2 e. G3i)2 f. (s - zi)(s + 2i) Sotution ^ . ( - 2 + 3 , )+ ( - 4 - 9 i ) : - 6 - 6 i b. (-1 - s, - (3 - 2i)- -l - si - 3 i 2i : -4 - 3i -2 + 6i c.2i(3+ r: 6i + 2i2:6i + 2(-l): d . G D z: 3 2 i 2 : 9 ( - l ) : - 9 P . 4r r r C o m p l e x N u m b e r s41 e. (-3t)2: (-3)2i2: 9(-1) : -9 f. (5 - 2i)(s + 2i) : 25 - 4i2 - 25 - 4(-l) : 2g ffi Checktheseresultswith a calculatorthat handlescomplexnumbers,as in Fig.P.24. 77V TiA. Find theproduct (4 - 3i)(r + 2i). r r FigureP.24 We canfind whole-numberpowersof i by using the definition of multiplication. S i n c e f l: i a n di 2 : - l , w e h a v e i3 : il . i2 : i(-l) : -i i4 : it . i3 : i(-i) : -i2 : l. and The first eightpowersof i arelistedhere. .l l- : I .) l-: .5.6..1..R ..1-: I l-: -l . -l .? l- : -I .4 : l L - -l ,- = I l This list could be continuedin this pattern,but any other whole-numberpower of i canbe obtainedfrom knowing the first four powers.We can simpliff a powerof i by using the fact that i4 : I and(i1) = 1 for anyintegern. simd*ying a powerof f fua*Vla I Simpliff. -i83 a. b. i-46 Solutioa a. Divide 83 by 4 andwrite 83 : 4 . 20 * 3. So i 8 3: ( i \ 2 0 . f - 1 1 0 i.3 : l . i 3 : _ i . b. Since-46 : 4(-12) * 2, we have i - 4 6- e + y - r z .i 2 - 1 ' t 2 . ; 2 : 1 ( _ t ) - _ 1 . i 35. TrV 77a1. Simplify Division of ComptexNumbers The complexnumbersa t bi anda - bi ne calledcomplexconjugatesof each other. fud*Vle I Gompleor coniugates Find the productof the given complexnumberand its conjugate. a.3-i b.4+2i c.-i Sohtion - i2:10. a . T h e c o n j u g a t e o- f 3i i s 3 * i , a n d ( 3- t ) ( 3 + t : 9 + 2iis4 - 2i,and(4 + 2i)(4- 2i): 16 - 4i2:20. b. Theconjugateof4 c. Theconjugate of -i is i,and -i . i : -i2 : l. Try 7fif5. Find theproductof 3 - 5i andits conjugate. 42 ChapterPrre Prerequisites In general we have the following theorem about complex conjugates. Theorem: ComplexConjugates We use the theorem about complex conjugates to divide imaginary numbers, in a processthat is similar to rationalizing a denominator. fud*F/e uiviaing imaginarynumbers I Write eachquotientin the form a -l bi. 8-t I A. z+t D. _ )-+t u.- 3-2i t Sotution - i,theconjugate a. Multiplythenumeratoranddenominatorby2 of 2 -l i: - , ] _ t 6- t o i _i+2_ r s- r 0 , : -3 _ 2 i 1 ? ? ! ? (2+i)(2-i) 4-i2 s = : 2+i (3 - 2i)(2 + r:8 Checkdivisionusingmultiplication: . v.- s-2i, t/(5-4i ) rFrEc Sr'4l+4"/41i. {3*21 }r[ -2-Si, * FigureP.25 1 l(s+4, s+4i (s-4r(s+4r) s-4i ls C h e c kl : """""' \+r s+4i 2s+16 a \ )s )o + -t l(5 - 4it: 1 +'-!i 4r') 4t 4t 41 - -,. 5 4. 41 4t' 2 0 .- 1 6 . , i' n'- :4 + 1q: r 4t 41 You can alsocheckwith a calculatorthat handlescomplexnumbers,as in ffi Fig.P.25. tr -3i + 2i2 -2 - 3i (3 - 2t(-r) 3 - 2i t ^-u -t' I Check:(-2 - 3r(, : -3i2 - 2i : 3 - 2i. 4fV \fut. wite # in theforma * bi. Rootsof Negative Numbers -9. This In Examples2(d) and 2(e), we saw that both (3t)2 : -9 and (-Zi)2: means that in the complex number system there are two squareroots of -9,3i and -3i. For any positivereal numberb,wehave (tli)': -b and (-:t/t)t : -b. So there are two squareroots of - b, iV b and - i \/ b. We call i\/ b the principat square root of -b and,make the following definition. P.4ttr Definition:SquareRootof a NegativeNumber ForThouqht 43 For anypositivereal numberb, f -b : i\/b. In the real number system, f-z number systemthey are defined ut f u"d \F-g_ur"undefined, but in the complex -z : i\/iand V-g : i\,6.Even thoush we now have meaning for a symbol such as \/-, all operations with compiex numbers must be performed after converting to the a + bi form.If we perform oper_ ations with roots of negative numbers using properties of the real numbers, we can get contradictoryresults: \/-. V:8 : V(-rX_s) : r/te : q ifr.i\/8:iz.ft6:-4 Theproductrule fi ercw/e Incorrect. Correct. . f b : t/ot i"used only for nonnegative numbersa and, b. rootsof negative numbers @ Square write eachexpressionin the form a t bi,where a andb arerealnumbers. .l/la + V-18 b. ". Solution -4 + \/4 The first step in each case is to replace the squareroots ofnegative numbers by expressionswith i. ". b. Vr T + V- 18 : if8 + i\/n:2i\/i + 3i\/t : 5i\/t -q + \/-s0 -4 + i\/Eo -4 + 5i\/t 4 4 o, :-r+i,fi ". f4(fs - f-) : tit/i(t - i/t) : ei\/j - 3i2\/6 :3f 6+ sift 77V lbr. y,rir"?-!4 intheforma t bi. For Thought True or False?Explain. 1. The multiplicative inverseof i is -i. r 2. The conjugateof 1is -i. r 3. The set of complex numbersis a subsetof the set of real numbers. p 4.(ft - ilr)(\/t + ifi):57 s.(2+5i)(2+5i):4+2sF 6.s-f4:5_ 7.Gil2+9:0r 8.(-3r2+9:0r f. ia : lr l0.ir8:1p eip ChapterP rril M Prerequisites Exercises Determine whether each complex number is real or imaginary and write it in the standardform a * bi. (ExampleI) t 1. 6i lmaginary.o + 6t 2. _3i + lft ,. 4. -72Rear,-72 + oi S. f7 Real,\4 6. -ift Imaginary,V6 - 3i 7. + 0i ;Real,:, I r t Imaginary, -l +l - t JJ Imaginary, o - t/ii + 0i 8. 0 Reat,0+ 0t - (3 + 2i)-2- 3i 12.(6 - 7i)_ (3 _ 4i) 13.(r - ^[D + e + zi\/r) o *,l,frtt 14.(5+ 3i\[, + e4 - si\/i) r * zixG /'t- r\ - / - ,\r r c . ( s + 1 ) _ 1 1 _ . 1 \ o *;r< 1 6(; ' 3 . t')t \ ) \2 ;') (' ;' ) 17. -6i(3 - 2i) -t2 - tli 18. -3r(5 + 2i)6 _ tsi 19. (2 - 3i)(4 + 6i)26 20. (3 - i)(s - 2i) 13_ ll, 2r. (4 - 5r(6 + 2i) 34 - 22i 22. (3_{str)[z + si) 23. (s - 2i)(s + 2i) 2e r | | -2+i5 -3i3 r { 3 52' 53' 5+a2e- ni | it- r' ;i ,/ ,'/s4.--!i-!*6 5' 55. -3+3i 3-3156. t -r-.410r, -t ',.#+ -+' *.=+,i*lf,sr. | 13 2S. (-6 - 2i)2tz + z+i zs. (\/\ - zi)zr - ci\/i 30. (\6 + i\/t), z + oit/) 31. itl t 32. i24 t 33. ie8 - I 34. ite -i 3f. i-t -i 36. i-2 -r 40. i-27 i i-4 I 41. i-38 -t 39. i-t3 -i 42. i-66 -l Find the product ofthe given cornplex number and its conjugate. (Example4) 43.3 - sisl 6r. \/-4 - t/-s -i 62.\/-16 + t/-zsgi 63. \/-4 - r/rc -4 + 2i 64.\/4. as. $/-a)z -e 66. (V=)3 -sit/i '/----'- -r +1v3 7s.2-t1!-:-+, 2 7r. -3 + V! - 4(l)(s) 72.| - \4-rf:7(l)(l) -l+i\/tt - r + \/8) ,l n tt. / 44.4 + 3i2s as. 2it7l4 46. ircte )+ !27t4_ / 4s. -i\/,s 4s.3 - iftrrlro. 1 + iU 22 Evaluate the expressionll#3for a, b, and c. (Example6) 7 5 .a : l,b:2,c:5 t-it/i - , t7 i;_t;!^,86,c: z+x6 - \/=) + zit/z each choice of _4,c: I )) 78.a:2,b:-4,c:5 z+ile 2 -t-t/ir-+*" Evaluate the expression -=---;-Jbr and c. (Example6) 81.a:-2,b:6,c:6 - t/-o(t/i _ l + 2 i 7 6 .a = 5 , b : *2+l - t 7 7 ,a : 2 , b : 4 , c : 3 -z + it/i 'n' -t 3 ^ -2+\/-20 6s. r/-t -6 + V-J --, z t -*t 6 , 6s. Vrso - ro 67.\/-. lt4 27. (3 + 4i)2-t + z+i 37. i-3 i Ilrite each expression in theform a * bi, where a and b are real numbers. (Example6) 73. V-8(V-2 - it/i) s '38. 7 60.4+2i +1. t75-3t17 24. (4 + 3i)(4 _ 3i) 2s - i)(t/l + i) + 26.(\/, + i\/r)(\/, 47.i1 I , -,1+ 2-i e. (3 - 3i) + (4 + 5i)7+ 2i r0. (-32+_2i)+ (5 _ 6t 2s.($ st' 3ao*-*r Perform the indicated operations and write your answers in the -t bi, where a and b are real numbers. (Examples forn a 2 and 3) 11.(l -, Write each quotient in theform a t bi. (Exampte5) 'o' ,= each choice of a, b. Zi ],,8 -12,c:84 8 2 .a : 3 , b : 6 , c : 8 -t - it/G 3 2 Pedorm the indicated operations. Write the answers in the fonn a * bi where a and b are real numbers. 83. (3 - sr)(3+ 51 34 84. (2 - 4i)(2 + 4i) 20 tDue to spaceconstrictions, answers to these exercisesmay be found in the complete Answers beginning on page A-l in the back ofthe book. P.5rrr 8s. (3 - 5, + (3 + 5t6 ?-5t a s 7 . - ;- -r - - ] J tt )t 8 9 .( 6 - 2 i ) - ( 7 86.(2-4i)+(2+4i)4 r< 8s.2# - li tl -3t-1 +, 91. is(i2 - 3i)3 - i 34 _T e 0 -. 3( 5 -6r-(8-er) +31 9 2 . 3 i 7 ( i- 5 ; 3 )r s For Writing/Discussion Polynomials 45 98. Cooperative Learning Work in a small group to find the two squareroots of 1 and two squareroots of * 1 in the complex number system. How many fourth roots of I are there in the complex number system and what are they? Explain how to find all of the fourth roots in the complex number system for +l' +i' Fourthrootsof 1 are +l and anypositiverealnumber. + i. Fourthrootsof x for x ) 0 are + {x and,+ i{x. + il00!,wheren!(read"nfac99. Evaluatei0!+ il! + i2! +... torial") is the product ofthe integers from I through n if n > 1 a n d 0 !: l . g s + 2 i 93. Explain in detail how to find in for anypositive integern. 7hwrry Ocr#nafha Ea'r lf e ftI 94. Fin! a nurqbera * bi suchthata2 + b2 is irrational. Reversingthe Digits Find a four-digit integerx suchthat 4x is another four-digit integerwhosedigits arein the reverseorder ofthe digitsofx. 2178 tlz + itlz 95. Letw = a * bi and,w: a - bi,wherea andb arerealnumbers.Showthat w * w is real andthat w - w is imaginary. (containingno mathematical Write sentences symbols)stating theseresults. SummingReciprocals Thereis only oneway to write I asa sum ofthe reciprocalsofthree differentpositiveintegers: 1*l*1=', 236- 96. Is it truethattheproductof a complexnumberandits conjugateis a real number?Explain. True 97. Provethatthereciproc.al ofa t bi,wherea utdbare notboth .ab Z€iO. __i_ _ . arS. + b . d . + b . ___;___ - r. -_ Find all possiblewaysto write I asa sumof thereciprocalsof four differentpositiveintegers. l I I 2 3 l0 t5'2 3 l I I t1 I _r_r-r-_r-r-r--r-r-r2' 3' 7 42'2' 4' I 9 _ f I _ I - I - _ I - l - l - - I - f ll I 6' ll 1 r8'2 3 1l I t2'2' 4' I I 8 24' I 20 _ I - I s' fMPop Quiz l . Findthesumof 3 + 2i and4 - i.'7 + i , Findtheproductof 4 - 3i and2 + i. 11 - 2i. 3. Findtheproductof2 - 3i andits conjugate.13 4. wite VlTrin theforma t bi.'|| . f Find i27. -i 6. What are the two squareroots of -16? +4i ,