Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Grupo de Espectroscopia Molecular, Unidad Asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad de Valladolid. SPAIN EIGTH SEVEN CONFORMERS OF PIPECOLIC ACID IDENTIFIED IN THE GAS PHASE CARLOS CABEZAS, ALCIDES SIMAO and JOSE L. ALONSO International Symposium on Molecular Spectroscopy, June 20 24, 2016 Champaign-Urbana, Illinois, USA Research in our group is devoted to : *Rotational Spectra of Molecules of Astrophysical Interest The combination of Lab. Data and Radioastronomy provides a power capability for the detection and conclusive identification of molecular species in the ISM Frequency Domain • • Stark Modulation MW: 8- 170 GHz Millimeter and Submillimeterwave : 50- 1000 GHz *Conformation and Structure of Biomolecules. Rotational studies of solid biomolecules by FTMW spectroscopy in a supersonic expansion combined with laser ablation techniques of vaporization. Time Domain • • • • MB-FTMW: 5- 26 GHz LA-MB-FTMW : 2- 10 GHz LA-MB-FTMW : 4-26 GHz CP-FTMW: 2- 40 GHz Why Biomolecules in Gas Phase? STRUCTURE To understand the structure and functionality of biological systems in their native environments (in vivo condensated phases) it is often imperative to first understand these properties for the isolated system in the gas-phase. FUNCTIONALITY Why Amino Acids in Gas Phase? Amino Acids in their natural condensed phases are stabilized as by strong intermolecular interactions as zwitterions which does not occur in the polypetide chain The structural research of the neutral amino acids should be conducted in gas phase where the they present an unsolvated neutral form HN-CH(R)-COOH which represents the best approximation of an amino acid residue in a polipeptide chain. Gas phase Neutral H2N−CH(R)−COOH Condensed phase Zwitterion + H N−CH(R)−COO3 bipolar ionized form The 20 Natural Amino Acids Ala Gly O Val H 2N OH Ser Cys O O HO HS OH Thr OH Phe Tyr O OH Tryp O Asn H 2N OH NH2 H 2N O OH O Arg Gln O O NH2 N NH2 HN Lys OH OH NH2 HO NH2 NH2 H N OH NH2 OH Hys O OH S NH2 NH2 O O O HO OH O Met O HO NH2 NH Glu O OH NH2 NH2 Asp O OH OH NH2 NH2 NH2 NH2 O OH OH OH OH Pro O O O O Leu Ile O H 2N NH OH NH2 H 2N O N H OH NH2 Pipecolic Acid • Proline homologue (piperidine ring vs pyrrolidine ring) • Can be produced from L-lysine (natural pathway envolves PIPO) • It can be found in human physiological fluids, fungi and plants • Constituent of various pharmaceutical compounds (ropivacaine, rapamycin...) • Melting point : 280ºC Pipecolic Acid Proline Pipecolic Acid • Proline homologue (piperidine ring vs pyrrolidine ring) • Can be produced from L-lysine (natural pathway envolves PIPO) • It can be found in human physiological fluids, fungi and plants • Constituent of various pharmaceutical compounds (ropivacaine, rapamycin...) • Melting point : 280ºC Pipecolic Acid Proline PCCP, 11,617 (2009) Angew. Chem. 41, 4673 (2002) Conformational Panorama of Pipecolic Acid: What Can We Expect? L-Pipecolic Acid H N H COOH H C ring configuration H N COOH H C N H COOH Axial-equatorial N H H COOH COOH H N H COOH H N N H COOH Ce N H H C RH H O C O I (N-H···O=C) and cis-COOH H Ce Ca RH Intramolecular hydrogen bonding H H H N C Ca RH O C O N H H C O C O H II (N···H-O) H III (N-H···O-H) and cis-COOH Conformational Panorama of Pipecolic Acid: What Can We Expect? ΔE(cm-1) ΔG A B C |µa| |µb| |µc| Pc 138 20 3247 1094 942 1.1 1.8 0.0 40.55 -e-I 40 1 2562 1425 1166 0.3 1.1 0.3 59.24 -e-I 95 0 3264 1142 892 0.7 1.2 1.2 15.40 -a-II 0 49 2544 1447 1154 4.4 1.5 2.2 54.99 C -e-II 181 182 3221 1123 959 5.1 1.2 0.6 39.97 C -a-II 336 351 3199 1159 895 5.1 1.2 0.0 14.68 C -e-III 210 102 3252 1144 897 0.8 1.4 1.2 16.88 C -a-III 446 330 3248 1084 961 1.9 0.2 1.8 47.96 161 118 2536 1445 1177 0.3 1.1 0.3 59.82 Conformer C -a-I C C C C C -e-III C -e-I C -a-II C -e-I C -e-II C -a-I C -a-II C -e-III C -e-III -a-III Experimental Approach Vaporization Gas Phase Isolation Supersonic Expansion Laser Ablation LA Spectroscopic Characterization + MB FT-MW + FTMW LA + MB-FTMW Spectroscopy LA + CP-FTMW Spectroscopy Experimental: CP-FTMW + Laser Ablation Vaccum Chamber Picosecond Laser FT-MW Spectrometer Experimental: CP-FTMW + Laser Ablation Jet Diffusion pump Laser Experimental: CP-FTMW + Laser Ablation Jet Diffusion pump Broadband Fourier Transform: Operation Gas pulse Ne Laser pulse Jet Solid sample Diffusion pump Rotary Nd:YAG laser Laser Broadband Fourier Transform: Operation CP-FTMW spectrometer Gas pulse Molecular emission Ne Laser pulse Chirped MW pulse Detection Diffusion pump Rotary Broadband Fourier Transform: Operation CP-FTMW spectrometer Gas pulse Molecular emission Ne Laser pulse Chirped MW pulse Detection Diffusion pump Detection Rotary FT Time-domain Frequency-domain Pipecolic Acid: Observed Conformers C C C -e-I C -a-II C -e-III C -e-I C -e-II C -a-III -a-I -a-II Observation Type III Pipecolic Acid Alanine Type III Type I < 275 cm-1 ~ 450 cm-1 Grupo de Espectroscopia Molecular Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Universidad de Valladolid. Spain Carlos Cabezas Isabel Peña Lucie Kolesnikova Santiago Mata Elena R. Alonso Veronica Diez Jose M. Rodriguez Marta San Juan Research Funded by: