Download References

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Gene
APC












●
Mutations increase risk for:
Adenomatous Polyposis Syndrome (colon)
Turcot syndrome (colon)
Colon cancer
Stomach (gastric) cancers
Gardner syndrome (colon)
Breast cancer
Stomach (gastric) cancers
Pancreas cancer
Ovarian cancer
Breast cancer
Juvenile Polyposis Syndrome (colon)
Colorectal cancer
Ovarian cancer
BRCA1





Breast cancer
Ovarian cancer
Male breast cancer
Pancreatic cancer
Prostate cancer
1, 23, 24
1, 23, 24, 26
1, 23, 25
1, 2, 23, 28
23, 27
BRCA2







Breast cancer
Ovarian cancer
Male breast cancer
Pancreatic cancer
Prostate cancer
Melanoma
Breast cancer
1, 23, 24
1, 23, 24, 26
1, 23, 25
1, 2, 23, 28
23, 27
2, 33
CDH1





Breast cancer
Hereditary diffuse gastric cancer
Colorectal cancer
Ovarian cancer
Prostate cancer
1, 2, 36
1,2, 36
1, 37
2, 39
2, 40
CDK4
CDKN2A









Cutaneous malignant melanoma
Cutaneous malignant melanoma 2
Melanoma astrocytoma syndrome
Melanoma-pancreatic cancer syndrome
Breast cancer
Li-Fraumeni syndrome (colon)
Prostate cancer
Colon cancer
Ovarian cancer
2, 42
2, 43
2, 44
2, 45
2, 46, 49
2, 47
2, 38
2, 51
2, 53
ATM
BARD1
BMPR1A
BRAF
BRIP1
CHEK2
References
1, 2, 3
2, 5
2, 4
2, 7
6
2, 10, 15
2, 11
2, 13
2, 15
2, 16
1, 2, 17
1, 18
2, 149
2, 34
EGFR


Anal cancer
Epithelial ovarian cancer
56, 57
58, 59
ELAC2

Prostate cancer, hereditary
2, 62, 63
EPCAM

Lynch syndrome
2, 65, 66
HRAS1
•
Breast cancer
2, 150
KRAS


Pancreatic cancer
Colorectal cancer
2, 74, 75
2, 77
MLH1



Lynch syndrome
Endometrial cancer
Ovarian cancer
1, 2, 79, 82
1, 80
1, 81
MRE11A
MSH2


Breast & ovarian cancer
Lynch syndrome
2, 151
1, 2, 88, 89
MSH6

Lynch syndrome
1, 2, 88, 89
MUTYH
NBN





Familial adenomatous polyposis (colon)
Breast cancer
Prostate cancer
Ovarian cancer
Melanoma
2, 95, 96
2, 99
2, 100
2, 101
2, 102
PALB2

Breast cancer
2, 104, 105, 106
PMS2

Lynch syndrome
1, 2, 88, 89
PTCH1







2, 101, 111
2, 110
2, 110
1, 2, 113
2, 116
2, 117
2, 120
2, 121, 122
2, 123, 124
1, 2, 129
152
RAD50
RAD51C


Gorlin syndrome (colon)
Breast cancer
Colon cancer
Cowden syndrome (colon)
Prostate cancer
Endometrial cancer
Melanoma
Breast cancer
Breast-ovarian cancer
RET

Multiple endocrine neoplasia
PTEN
SMAD4
STK11
TP53








Juvenile polyposis syndrome (colon)
Colon cancer
Pancreas cancer
Breast cancer
Melanoma
Breast cancer
Li-Fraumeni syndrome (colon)
Colorectal cancer
1, 2, 134
2, 136
2, 137
2, 139
2, 141
1, 2, 142
1, 2, 144
2, 145
References
1. http://www.informeddna.com/index.php
2. http://ghr.nlm.nih.gov/
3. Deep sequencing with intronic capture enables identification of an APC exon 10 inversion in a
patient with polyposis. Shirts BH et al. Genet Med. 2014 Mar 27
4. Parallel states of pathological Wnt signaling in neonatal brain injury and colon cancer. Fancy SP
et al. Nat Neurosci. 2014 Apr;17(4):506-12.
5. The APC Gene in Turcot's Syndrome. N Engl J Med 1995; 333:524. August 24, 1995.
6. http://www.cancer.net/cancer-types/gardner-syndrome
7. Mutation analysis of APC gene in gastric cancer with microsatellite instability. Fang DC. World J
Gastroenterol. 2002 Oct;8(5):787-91.
8. Characterization of ATM Gene Mutations in 66 Ataxia Telangiectasia Families. Sandoval n et al.
Hum. Mol. Genet. (1999) 8 (1): 69-79.
9. http://www.cancer.gov/cancertopics/factsheet/Risk/ataxia
10. Rare variants in the ATM gene and risk of breast cancer. Goldgar ED. Breast Cancer Research
2011, 13:R73
11. Alteration of the ATM gene occurs in gastric cancer cell lines and primary tumors associated with
cellular response to DNA damage. Zhang L et al. Mutation Research/Genetic Toxicology and
Environmental Mutagenesis. Volume 557, Issue 1, 10 January 2004, Pages 41–51.
12. Genistein sensitizes bladder cancer cells to HCPT treatment in vitro and in vivo via ATM/NFκB/IKK pathway-induced apoptosis. Wang Y et al. PLoS One. 2013;8(1):e50175.
13. ATM mutations in patients with hereditary pancreatic cancer. Robert NJ et al. Cancer Discov.
2012 Jan;2(1):41-6.
14. ATM polymorphisms and risk of lung cancer among never smokers. Lo YL et al. Lung Cancer.
2010 Aug;69(2):148-54.
15. Contributions of ATM mutations to familial breast and ovarian cancer. Thorstenson YR et al.
Cancer Res. 2003 Jun 15;63(12):3325-33.
16. Mutation screening of the BARD1 gene: evidence for involvement of the Cys557Ser allele in
hereditary susceptibility to breast cancer. Karppinen S-M et al. J Med Genet 2004;41:e114.
17. http://www.cancer.net/cancer-types/juvenile-polyposis-syndrome
18. BMPR1A mutations in hereditary nonpolyposis colorectal cancer without mismatch repair
deficiency. Nieminen TT. Gastroenterology. 2011 Jul;141(1):e23-6.
19. Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes:
molecular diversity and associated phenotypic spectrum. Sarkozy A. Hum Mutat. 2009
Apr;30(4):695-702.
20. https://www.inkling.com/read/jones-smiths-recognizable-patterns-human-malformation7th/chapter-1q/multiple-lentigines-syndrome
21. http://www.cancer.gov/cancertopics/pdq/treatment/lchistio/HealthProfessional/page3
22. Erdheim-Chester Disease Harboring the BRAF V600E Mutation. Blombery P et al. JCO
November 10, 2012 vol. 30 no. 32 e331-e332.
23. http://www.cancer.gov/cancertopics/factsheet/Risk/BRCA
24. http://cancer.stanford.edu/information/geneticsAndCancer/types/herbocs.html
25. Breast Cancer Risk Among Male BRCA1 and BRCA2 Mutation Carriers. Tai YC et al. JNCI J Natl
Cancer Inst (2007) 99 (23): 1811-1814.
26. Salpingo-oophorectomy and the risk of ovarian, fallopian tube, and peritoneal cancers in women
with a BRCA1 or BRCA2 mutation.Finch A, Beiner M, Lubinski J, et al. JAMA 2006; 296(2):185–
192.
27. Cancer risks among BRCA1 and BRCA2 mutation carriers. Levy-Lahad E, Friedman E. British
Journal of Cancer 2007; 96(1):11–15.
28. BRCA germline mutations in Jewish patients with pancreatic adenocarcinoma. Ferrone CR,
Levine DA, Tang LH, et al. Journal of Clinical Oncology 2009; 27(3):433–438.
29. The Fanconi anaemia/BRCA pathway. D'Andrea AD et al. Nat Rev Cancer. 2003 Jan;3(1):23-34.
30. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Garcia-Higuera I
et al. Mol Cell. 2001 Feb;7(2):249-62.
31. Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Xia B et al. Nature
Genetics 39, 159 - 161 (2006).
32. http://emedicine.medscape.com/article/960401-overview
33. http://www.skincancer.org/skin-cancer-information/melanoma/breast-cancer-melanoma-link
34. A Novel Breast Cancer–Associated BRIP1 (FANCJ/BACH1) Germ-line Mutation Impairs Protein
Stability and Function. Nicolo AD et al. Clin Cancer Res July 15, 2008 14; 4672.
35. http://www.ncbi.nlm.nih.gov/books/NBK1401/
36. http://cancer.stanford.edu/patient_care/services/geneticCounseling/HDGC.html
37. Germline E-cadherin gene (CDH1) mutations predispose to familial gastric cancer and colorectal
cancer. Richards FM et al. Hum Mol Genet. 1999 Apr;8(4):607-10.
38. Association between E-cadherin (CDH1) polymorphisms and papillary thyroid carcinoma risk in
Han Chinese population. Wang YX et al. Endocrine. 2012 Jun;41(3):526-31.
39. http://www.genecards.org/cgi-bin/carddisp.pl?gene=CDH1
40. The E-cadherin (CDH1) −160 C/A polymorphism and prostate cancer risk: a meta-analysis. Qiu
LX et al. Eur J Hum Genet. Feb 2009; 17(2): 244–249.
41. 16q22.1 microdeletion detected by array-CGH in a family with mental retardation and lobular
breast cancer. Palka Bayard de Volo C et al. Gene. 2012 May 1;498(2):328-31.
42. http://www.cancercommons.org/patients-caregivers/melanoma/cdk4/
43. http://omim.org/entry/155601
44. http://omim.org/entry/155755
45. http://omim.org/entry/606719
46. http://www.cancer.gov/cancertopics/genetics/breast/CHEK2gene
47. Chapter 22: Li-Fraumeni Syndrome, including Li-Fraumeni-Like Syndrome. Concise Handbook of
Familial Cancer Syndromes, Second Edition. Journal of the National Cancer Institute
Monographs, No. 38, 2008, pp 48-50.
48. Mutations in CHEK2 Associated with Prostate Cancer Risk. Dong X et al. Am J Hum Genet. Feb
2003; 72(2): 270–280. Published online Jan 17, 2003.
49. The CHEK2 gene and inherited breast cancer susceptibility. Nevanlinna H et al. Oncogene
(2006) 25, 5912–5919. doi:10.1038/sj.onc.1209877.
50. CHEK2*1100delC homozygosity in the Netherlands—prevalence and risk of breast and lung
cancer. Huijts P EA et al. European Journal of Human Genetics (2014) 22, 46–51.
51. Germline CHEK2 mutations and colorectal cancer risk: different effects of a missense and
truncating mutations? Cybulski C et al. European Journal of Human Genetics (2007) 15, 237–
241.
52. CHEK2 Is a Multiorgan Cancer Susceptibility Gene. Cybulski C et al. Cybulski C et al. Am J Hum
Genet. Dec 2004; 75(6): 1131–1135.
53. http://www.familialcancerdatabase.nl/loggedin/syndromedetails.aspx?enc=5Hs6oRA2n56PTbnlB
8c7BaW5I8NWyEa+J20dPdOnUMef2UNFhFljUMeFKIT7HXSM
54. EGFR mutations and lung cancer. da Cunha Santos G et al. Annu Rev Pathol. 2011;6:49-69.
55. http://www.cancer.net/research-and-advocacy/asco-care-and-treatment-recommendationspatients/epidermal-growth-factor-receptor-egfr-testing-advanced-non-small-cell-lung-cancer
56. EGFR, KRAS, BRAF, and PIK3CA characterization in squamous cell anal cancer. EGFR, KRAS,
BRAF, and PIK3CA characterization in squamous cell anal cancer. Martin V et al. Histol
Histopathol. 2013 Oct 14.
57. The Role of EGFR Inhibitors in the Treatment of Metastatic Anal Canal Carcinoma: A Case
Series. Muhammad W. Saif et al. Journal of Oncology Volume 2011 (2011), Article ID 125467, 5
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
pages
http://dx.doi.org/10.1155/2011/125467
The therapeutic potential of targeting the EGFR family in epithelial ovarian cancer. Sheng Q et al.
Br J Cancer. 2011 Apr 12;104(8):1241-5.
Targeting the Epidermal Growth Factor Receptor in Epithelial Ovarian Cancer: Current
Knowledge and Future Challenges. Siwak DR et al. Journal of Oncology, Volume 2010 (2010),
Article ID 568938, 20 pages. http://dx.doi.org/10.1155/2010/568938
Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance. Taylor
TE. Curr Cancer Drug Targets. 2012 Mar;12(3):197-209.
Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme
patients. Heimberger AB. Clin Cancer Res. 2005 Feb 15;11(4):1462-6.
Meta-analysis of associations of the ser217-to-leu and ala541-to-thr variants in ELAC2 (HPC2)
and prostate cancer. Camp NJ et al. Am. J. Hum. Genet. 71: 1475-1478, 2002.
Association of HPC2/ELAC2 genotypes and prostate cancer. Rebbeck TR et al. Am. J. Hum.
Genet. 67: 1014-1019, 2000.
ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic
cardiomyopathy. Haack TB et al. Am. J. Hum. Genet. 93: 211-223, 2013.
EPCAM deletion carriers constitute a unique subgroup of Lynch syndrome patients. EPCAM
deletion carriers constitute a unique subgroup of Lynch syndrome patients. Ligtenberg MJ et al.
Fam Cancer. 2013 Jun;12(2):169-74.
http://www.lynchcancers.com/index.php/genetic-testing
Intractable infant diarrhea with epithelial dysplasia associated with polymalformation. Abely M et
al. J. Pediat. Gastroent. Nutr. 27: 348-352, 1998.
Tufting enteropathy and chronic arthritis: a newly recognized association with a novel EpCAM
gene mutation. Al-Mayouf SM et al. J. Pediat. Gastroent. Nutr. 49: 642-644, 2009.
http://medical-dictionary.thefreedictionary.com/HRAS1
HRAS1 variable number of tandem repeats polymorphism and risk of bladder cancer. van Gils
CH et al. Int J Cancer. 2002 Aug 1;100(4):414-8.
http://books.google.com/books?id=yYs2FvAUyQYC&pg=RA2-PA1796&lpg=RA2PA1796&dq=HRAS1+and+Bladder+cancer&source=bl&ots=n5x6pd4rSn&sig=53sMuAp7hYJdNv
Lp6NtbvnbxUQo&hl=en&sa=X&ei=l3g9U5eKG4ipsQTxy4HgBQ&ved=0CEUQ6AEwAw#v=onepa
ge&q=HRAS1%20and%20Bladder%20cancer&f=false
Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Niihori T net al. Nat
Genet. 2006 Mar;38(3):294-6.
http://www.openingautism.com/Genetics/MarkerDetails/16
Roles for KRAS in pancreatic tumor development and progression. di Magliano MP et al.
Gastroenterology. 2013 Jun;144(6):1220-9.
http://www.pnas.org/content/110/51/20723.short?rss=1
KRAS Mutations in Non–Small Cell Lung Cancer. Riely GJ et al. Proceedings of the American
Thoracic Society, Vol. 6, No. 2 (2009), pp. 201-205.
http://emedicine.medscape.com/article/1690010-overview
Core-binding factor acute myeloid leukemia: can we improve on HiDAC consolidation? Paschka
P et al. ASH Education Book December 6, 2013 vol. 2013 no. 1 209-219.
http://chromium.liacs.nl/LOVD2/colon_cancer/home.php?select_db=MLH1
Molecular characterization of endometrial cancer: a correlative study assessing microsatellite
instability, MLH1 hypermethylation, DNA mismatch repair protein expression, and PTEN,
PIK3CA, KRAS, and BRAF mutation analysis. Peterson LM. Int J Gynecol Pathol. 2012
May;31(3):195-205.
Analysis of MLH1 and MSH2 expression in ovarian cancer before and after platinum drug-based
chemotherapy. Samimi G et al. Clin Cancer Res. 2000 Apr;6(4):1415-21.
82. Phenotype Comparison of MLH1 and MSH2 Mutation Carriers in a Cohort of 1,914 Individuals
Undergoing Clinical Genetic Testing in the United States. Kastrinos F et al. Cancer Epidemiol
Biomarkers Prev August 2008 17; 2044.
83. http://www.mayomedicallaboratories.com/test-catalog/Clinical+and+Interpretive/83191
84. Methylation of the MLH1 gene in hematological malignancies. Matsushita M. Oncol Rep. 2005
Jul;14(1):191-4.
85. Human MLH1 deficiency predisposes to hematological malignancy and neurofibromatosis type 1.
Ricciardone MD et al. Cancer Res. 1999 Jan 15;59(2):290-3.
86. MRE11 mutations and impaired ATM-dependent responses in an Italian family with ataxiatelangiectasia -like disorder. Delia D et al. Hum. Molec. Genet. 13: 2155-2163, 2004.
87. Identification and functional consequences of a novel MRE11 mutation affecting 10 Saudi Arabian
patients with the ataxia telangiectasia-like disorder. Farnet M et al. Hum. Molec. Genet. 14: 307318, 2005.
88. http://www.cancer.net/cancer-types/lynch-syndrome
89. http://www.fightlynch.org/physician.php
90. http://www.cancer.net/cancer-types/muir-torre-syndrome
91. Muir Torre syndrome and MSH2 mutations: the importance of dermatological awareness.
Tischkowitz M et al. British Journal of Cancer (2006) 95, 243–244.
92. Constitutional mismatch repair deficiency and childhood leukemia/lymphoma--report on a novel
biallelic MSH6 mutation. Ripperger T et al. Haematologica. 2010 May;95(5):841-4.
93. Compound heterozygosity for MSH6 mutations in a pediatric lymphoma patient. Peters A. J
Pediatr Hematol Oncol. 2009 Feb;31(2):113-5.
94. A homozygous MSH6 mutation in a child with café-au-lait spots, oligodendroglioma and rectal
cancer. Menko FH et al. Fam Cancer. 2004;3(2):123-7.
95. http://www.uptodate.com/contents/familial-adenomatous-polyposis-and-mutyh-associatedpolyposis-screening-and-management-of-patients-and-families
96. The genetics of familial adenomatous polyposis (FAP) and MutYH-associated polyposis (MAP).
Claes K et al. Acta Gastroenterol Belg. 2011 Sep;74(3):421-6.
97. http://www.ncbi.nlm.nih.gov/books/NBK1176/
98. http://preventiongenetics.com/clinical-dna-testing/test/nijmegen-breakage-syndrome-via-the-nbngene/1351/
99. Variations in the NBN/NBS1 gene and the risk of breast cancer in non-BRCA1/2 French
Canadian families with high risk of breast cancer. Desjardins S et al. BMC Cancer 2009, 9:181.
100. An inherited NBN mutation is associated with poor prognosis prostate cancer. Cybulski C et al.
Br J Cancer. 2013 Feb 5;108(2):461-8.
101. http://www.pnas.org/content/108/44/18032.full
102.
Molecular genetic analysis of NBS1 in German melanoma patients. Meyer P et al. Melanoma
Res. 2007 Apr;17(2):109-16.
103.
Germline variants in MRE11/RAD50/NBN complex genes in childhood leukemia. Mosor
M et al. BMC Cancer. 2013 Oct 5;13:457.
104.
http://www.cityofhope.org/Breast_Cancer_Susceptibility_MDL
105.
https://www.ambrygen.com/tests/palb2-related-cancer
106.
A PALB2 Mutation Associated with High Risk of Breast Cancer. Southey MC et al. Breast
Cancer Res. 2011;12(6):R109.
107.
http://www.ncbi.nlm.nih.gov/books/NBK1401/
108.
PMS2 mutations in childhood cancer. De Vos M et al. J Natl Cancer Inst. 2006 Mar
1;98(5):358-61
109.
Differential MSH2 promoter methylation in blood cells of Neurofibromatosis type 1 (NF1)
patients. Titze S et al. Eur J Hum Genet. 2010 Jan;18(1):81-7.
110.
https://www.ambrygen.com/tests/ptch1nevoid-basal-cell-carcinoma-syndrome
111.
Nevoid basal cell carcinoma syndrome (Gorlin syndrome). Muzio LL. Orphanet Journal of
Rare Diseases 2008, 3:32.
112.
Heterogeneity of familial medulloblastoma and contribution of germline PTCH1 and
SUFU mutations to sporadic medulloblastoma. Slade I et al. Fam Cancer. 2011 Jun;10(2):337-42.
113.
PTEN Mutation Spectrum and Genotype-Phenotype Correlations in Bannayan-RileyRuvalcaba Syndrome Suggest a Single Entity With Cowden Syndrome. Marsh DJ et al. Hum.
Mol. Genet. (1999) 8 (8): 1461-1472.
114.
Germline mutation of the tumour suppressor PTEN in Proteus syndrome. Smith JM et al.
J Med Genet 2002;39:937-940 doi:10.1136/jmg.39.12.937.
115.
http://ambrygen.com/tests/pten-related-disorders-including-autism-spectrum-disorder
116.
Role of PTEN gene in progression of prostate cancer. Pourmand G et al. Urol J. 2007
Spring;4(2):95-100.
117.
PTEN mutation in endometrial cancers is associated with favorable clinical and
pathologic characteristics. Risinger JI et al. Clin Cancer Res December 1998 4; 3005.
118.
http://www.nih.gov/news/pr/nov2005/ninds-09.htm
119.
p53 and PTEN gene mutations in gemistocytic astrocytomas. Watanabe K et al. Acta
Neuropathol. 1998 Jun;95(6):559-64.
120.
Identification of PTEN mutations in metastatic melanoma specimens. Celebi JT et al. J
Med Genet. Sep 2000; 37(9): 653–657.
121.
https://genomeinterpretation.org/content/rad50
122.
Screening for BRCA1, BRCA2, CHEK2, PALB2, BRIP1, RAD50, and CDH1 mutations in
high-risk Finnish BRCA1/2-founder mutation-negative breast and/or ovarian cancer individuals.
Kuusisto KM et al. Breast Cancer Research 2011, 13:R20.
123.
Germline RAD51C mutations confer susceptibility to ovarian cancer. Loveday C et al.
Nature Genet. 44: 475-476, 2012.
124.
Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a
human cancer susceptibility gene. Meindl A et al. Nature Genet. 42: 410-414, 2010.
125.
Fanconi anemia: at the crossroads of DNA repair. Deakyne JS et al. Biochemistry 76: 3648, 2011.
126.
Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Vaz F et al. Nature
Genet. 42: 406-409, 2010.
127.
https://www.ambrygen.com/tests/ret-related-hirschsprung-disease
128.
Hirschsprung Disease in MEN 2A: Increased Spectrum of RET Exon 10 Genotypes and
Strong Genotype—Phenotype Correlation. Decker RA et al. Hum. Mol. Genet. (1998) 7 (1): 129134.
129.
http://www.cancer.net/cancer-types/multiple-endocrine-neoplasia-type-2
130.
Genetic mutation screening in an italian cohort of nonsyndromic
pheochromocytoma/paraganglioma patients. Castellano M et al. Ann N Y Acad Sci. 2006
Aug;1073:156-65.
131.
RET expression in papillary thyroid cancer from patients irradiated in childhood for benign
conditions. Collins BJ et al. J Clin Endocrinol Metab. 2002 Aug;87(8):3941-6.
132.
http://emedicine.medscape.com/article/1744824-overview
133.
SMAD4 mutations found in unselected HHT patients. Gallione CJ et al. J Med Genet.
2006 Oct;43(10):793-7.
134.
Mutations in DPC4 (SMAD4) cause juvenile polyposis syndrome, but only account for a
minority of cases. Houlston R et al. Hum. Mol. Genet. (1998) 7 (12): 1907-1912.
135.
A Restricted Spectrum of Mutations in the SMAD4 Tumor-Suppressor Gene Underlies
Myhre Syndrome. Caputo V et al. AJHG Volume 90, Issue 1, p161–169, 13 January 2012.
136.
http://www.mycancergenome.org/content/disease/colorectal-cancer/smad4
137.
The SMAD4 Protein and Prognosis of Pancreatic Ductal Adenocarcinoma. Tascilar M et
al. Clin Cancer Res December 2001 7; 4115.
138.
Germline and somatic mutations of the STK11/LKB1 Peutz-Jeghers gene in pancreatic
and biliary cancers. Su GH et al. Am J Pathol. 1999 Jun;154(6):1835-40.
139.
Germline mutation screening of the STK11/LKB1 gene in familial breast cancer with LOH
on 19p. Chen J et al. Clin Genet. 2000 May;57(5):394-7.
140.
LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the
metabolism drug phenformin. Shackelford DB et al. Cancer Cell. 2013 Feb 11;23(2):143-58.
141.
LKB1/STK11 inactivation leads to expansion of a prometastatic tumor subpopulation in
melanoma. Liu W et al. Cancer Cell. 2012 Jun 12;21(6):751-64.
142.
http://www.cancerresearchuk.org/cancer-help/type/breast-cancer/about/risks/breastcancer-genes
143.
TP53 gene mutations as an independent marker for urinary bladder cancer progression.
Ecke TH et al. Int J Mol Med. 2008 May;21(5):655-61.
144.
http://www.cancer.net/cancer-types/li-fraumeni-syndrome
145.
TP53 mutation in colorectal cancer. Iacopetta B. Hum Mutat. 2003 Mar;21(3):271-6.
146.
Germ-line genetic variation of TP53 in osteosarcoma. Savage SA et al. Pediatr Blood
Cancer. 2007 Jul;49(1):28-33.
147.
Anaplastic rhabdomyosarcoma in TP53 germline mutation carriers. Hettmer S et al.
Cancer. 2014 Apr 1;120(7):1068-75.
148.
TP53 germline mutations in adult patients with adrenocortical carcinoma. Herrmann LJ et
al. J Clin Endocrinol Metab. 2012 Mar;97(3):E476-85.
149.
Tagging single-nucleotide polymorphisms in candidate oncogenes and susceptibility to
ovarian cancer. Quaye, L; Song, H; Ramus, SJ; Gentry-Maharaj, A; Hogdall, E; DiCioccio, RA.
Ovarian Canc Assoc Consortium, 2009
150.
Cancer Epidemiol Biomarkers Prev. 2003 Dec;12(12):1528-30.The HRAS1 variable
number of tandem repeats and risk of breast cancer.Tamimi RM, Hankinson SE, Ding S,
Gagalang V, Larson GP, Spiegelman D, Colditz GA, Krontiris TG, Hunter DJ.
151.
Folkins, A., Longacre, T. (2013). Hereditary gynecological malignancies: advances in
screening and treatment. Histopathology,62:2-30.
152.
RET (MEN2) germline polymorphisms were associated with ovarian carcinoma. Hum
Genet. 2005 Jul;117(2-3):143-53
Related documents