Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Gene APC ● Mutations increase risk for: Adenomatous Polyposis Syndrome (colon) Turcot syndrome (colon) Colon cancer Stomach (gastric) cancers Gardner syndrome (colon) Breast cancer Stomach (gastric) cancers Pancreas cancer Ovarian cancer Breast cancer Juvenile Polyposis Syndrome (colon) Colorectal cancer Ovarian cancer BRCA1 Breast cancer Ovarian cancer Male breast cancer Pancreatic cancer Prostate cancer 1, 23, 24 1, 23, 24, 26 1, 23, 25 1, 2, 23, 28 23, 27 BRCA2 Breast cancer Ovarian cancer Male breast cancer Pancreatic cancer Prostate cancer Melanoma Breast cancer 1, 23, 24 1, 23, 24, 26 1, 23, 25 1, 2, 23, 28 23, 27 2, 33 CDH1 Breast cancer Hereditary diffuse gastric cancer Colorectal cancer Ovarian cancer Prostate cancer 1, 2, 36 1,2, 36 1, 37 2, 39 2, 40 CDK4 CDKN2A Cutaneous malignant melanoma Cutaneous malignant melanoma 2 Melanoma astrocytoma syndrome Melanoma-pancreatic cancer syndrome Breast cancer Li-Fraumeni syndrome (colon) Prostate cancer Colon cancer Ovarian cancer 2, 42 2, 43 2, 44 2, 45 2, 46, 49 2, 47 2, 38 2, 51 2, 53 ATM BARD1 BMPR1A BRAF BRIP1 CHEK2 References 1, 2, 3 2, 5 2, 4 2, 7 6 2, 10, 15 2, 11 2, 13 2, 15 2, 16 1, 2, 17 1, 18 2, 149 2, 34 EGFR Anal cancer Epithelial ovarian cancer 56, 57 58, 59 ELAC2 Prostate cancer, hereditary 2, 62, 63 EPCAM Lynch syndrome 2, 65, 66 HRAS1 • Breast cancer 2, 150 KRAS Pancreatic cancer Colorectal cancer 2, 74, 75 2, 77 MLH1 Lynch syndrome Endometrial cancer Ovarian cancer 1, 2, 79, 82 1, 80 1, 81 MRE11A MSH2 Breast & ovarian cancer Lynch syndrome 2, 151 1, 2, 88, 89 MSH6 Lynch syndrome 1, 2, 88, 89 MUTYH NBN Familial adenomatous polyposis (colon) Breast cancer Prostate cancer Ovarian cancer Melanoma 2, 95, 96 2, 99 2, 100 2, 101 2, 102 PALB2 Breast cancer 2, 104, 105, 106 PMS2 Lynch syndrome 1, 2, 88, 89 PTCH1 2, 101, 111 2, 110 2, 110 1, 2, 113 2, 116 2, 117 2, 120 2, 121, 122 2, 123, 124 1, 2, 129 152 RAD50 RAD51C Gorlin syndrome (colon) Breast cancer Colon cancer Cowden syndrome (colon) Prostate cancer Endometrial cancer Melanoma Breast cancer Breast-ovarian cancer RET Multiple endocrine neoplasia PTEN SMAD4 STK11 TP53 Juvenile polyposis syndrome (colon) Colon cancer Pancreas cancer Breast cancer Melanoma Breast cancer Li-Fraumeni syndrome (colon) Colorectal cancer 1, 2, 134 2, 136 2, 137 2, 139 2, 141 1, 2, 142 1, 2, 144 2, 145 References 1. http://www.informeddna.com/index.php 2. http://ghr.nlm.nih.gov/ 3. Deep sequencing with intronic capture enables identification of an APC exon 10 inversion in a patient with polyposis. Shirts BH et al. Genet Med. 2014 Mar 27 4. Parallel states of pathological Wnt signaling in neonatal brain injury and colon cancer. Fancy SP et al. Nat Neurosci. 2014 Apr;17(4):506-12. 5. The APC Gene in Turcot's Syndrome. N Engl J Med 1995; 333:524. August 24, 1995. 6. http://www.cancer.net/cancer-types/gardner-syndrome 7. Mutation analysis of APC gene in gastric cancer with microsatellite instability. Fang DC. World J Gastroenterol. 2002 Oct;8(5):787-91. 8. Characterization of ATM Gene Mutations in 66 Ataxia Telangiectasia Families. Sandoval n et al. Hum. Mol. Genet. (1999) 8 (1): 69-79. 9. http://www.cancer.gov/cancertopics/factsheet/Risk/ataxia 10. Rare variants in the ATM gene and risk of breast cancer. Goldgar ED. Breast Cancer Research 2011, 13:R73 11. Alteration of the ATM gene occurs in gastric cancer cell lines and primary tumors associated with cellular response to DNA damage. Zhang L et al. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. Volume 557, Issue 1, 10 January 2004, Pages 41–51. 12. Genistein sensitizes bladder cancer cells to HCPT treatment in vitro and in vivo via ATM/NFκB/IKK pathway-induced apoptosis. Wang Y et al. PLoS One. 2013;8(1):e50175. 13. ATM mutations in patients with hereditary pancreatic cancer. Robert NJ et al. Cancer Discov. 2012 Jan;2(1):41-6. 14. ATM polymorphisms and risk of lung cancer among never smokers. Lo YL et al. Lung Cancer. 2010 Aug;69(2):148-54. 15. Contributions of ATM mutations to familial breast and ovarian cancer. Thorstenson YR et al. Cancer Res. 2003 Jun 15;63(12):3325-33. 16. Mutation screening of the BARD1 gene: evidence for involvement of the Cys557Ser allele in hereditary susceptibility to breast cancer. Karppinen S-M et al. J Med Genet 2004;41:e114. 17. http://www.cancer.net/cancer-types/juvenile-polyposis-syndrome 18. BMPR1A mutations in hereditary nonpolyposis colorectal cancer without mismatch repair deficiency. Nieminen TT. Gastroenterology. 2011 Jul;141(1):e23-6. 19. Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes: molecular diversity and associated phenotypic spectrum. Sarkozy A. Hum Mutat. 2009 Apr;30(4):695-702. 20. https://www.inkling.com/read/jones-smiths-recognizable-patterns-human-malformation7th/chapter-1q/multiple-lentigines-syndrome 21. http://www.cancer.gov/cancertopics/pdq/treatment/lchistio/HealthProfessional/page3 22. Erdheim-Chester Disease Harboring the BRAF V600E Mutation. Blombery P et al. JCO November 10, 2012 vol. 30 no. 32 e331-e332. 23. http://www.cancer.gov/cancertopics/factsheet/Risk/BRCA 24. http://cancer.stanford.edu/information/geneticsAndCancer/types/herbocs.html 25. Breast Cancer Risk Among Male BRCA1 and BRCA2 Mutation Carriers. Tai YC et al. JNCI J Natl Cancer Inst (2007) 99 (23): 1811-1814. 26. Salpingo-oophorectomy and the risk of ovarian, fallopian tube, and peritoneal cancers in women with a BRCA1 or BRCA2 mutation.Finch A, Beiner M, Lubinski J, et al. JAMA 2006; 296(2):185– 192. 27. Cancer risks among BRCA1 and BRCA2 mutation carriers. Levy-Lahad E, Friedman E. British Journal of Cancer 2007; 96(1):11–15. 28. BRCA germline mutations in Jewish patients with pancreatic adenocarcinoma. Ferrone CR, Levine DA, Tang LH, et al. Journal of Clinical Oncology 2009; 27(3):433–438. 29. The Fanconi anaemia/BRCA pathway. D'Andrea AD et al. Nat Rev Cancer. 2003 Jan;3(1):23-34. 30. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Garcia-Higuera I et al. Mol Cell. 2001 Feb;7(2):249-62. 31. Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Xia B et al. Nature Genetics 39, 159 - 161 (2006). 32. http://emedicine.medscape.com/article/960401-overview 33. http://www.skincancer.org/skin-cancer-information/melanoma/breast-cancer-melanoma-link 34. A Novel Breast Cancer–Associated BRIP1 (FANCJ/BACH1) Germ-line Mutation Impairs Protein Stability and Function. Nicolo AD et al. Clin Cancer Res July 15, 2008 14; 4672. 35. http://www.ncbi.nlm.nih.gov/books/NBK1401/ 36. http://cancer.stanford.edu/patient_care/services/geneticCounseling/HDGC.html 37. Germline E-cadherin gene (CDH1) mutations predispose to familial gastric cancer and colorectal cancer. Richards FM et al. Hum Mol Genet. 1999 Apr;8(4):607-10. 38. Association between E-cadherin (CDH1) polymorphisms and papillary thyroid carcinoma risk in Han Chinese population. Wang YX et al. Endocrine. 2012 Jun;41(3):526-31. 39. http://www.genecards.org/cgi-bin/carddisp.pl?gene=CDH1 40. The E-cadherin (CDH1) −160 C/A polymorphism and prostate cancer risk: a meta-analysis. Qiu LX et al. Eur J Hum Genet. Feb 2009; 17(2): 244–249. 41. 16q22.1 microdeletion detected by array-CGH in a family with mental retardation and lobular breast cancer. Palka Bayard de Volo C et al. Gene. 2012 May 1;498(2):328-31. 42. http://www.cancercommons.org/patients-caregivers/melanoma/cdk4/ 43. http://omim.org/entry/155601 44. http://omim.org/entry/155755 45. http://omim.org/entry/606719 46. http://www.cancer.gov/cancertopics/genetics/breast/CHEK2gene 47. Chapter 22: Li-Fraumeni Syndrome, including Li-Fraumeni-Like Syndrome. Concise Handbook of Familial Cancer Syndromes, Second Edition. Journal of the National Cancer Institute Monographs, No. 38, 2008, pp 48-50. 48. Mutations in CHEK2 Associated with Prostate Cancer Risk. Dong X et al. Am J Hum Genet. Feb 2003; 72(2): 270–280. Published online Jan 17, 2003. 49. The CHEK2 gene and inherited breast cancer susceptibility. Nevanlinna H et al. Oncogene (2006) 25, 5912–5919. doi:10.1038/sj.onc.1209877. 50. CHEK2*1100delC homozygosity in the Netherlands—prevalence and risk of breast and lung cancer. Huijts P EA et al. European Journal of Human Genetics (2014) 22, 46–51. 51. Germline CHEK2 mutations and colorectal cancer risk: different effects of a missense and truncating mutations? Cybulski C et al. European Journal of Human Genetics (2007) 15, 237– 241. 52. CHEK2 Is a Multiorgan Cancer Susceptibility Gene. Cybulski C et al. Cybulski C et al. Am J Hum Genet. Dec 2004; 75(6): 1131–1135. 53. http://www.familialcancerdatabase.nl/loggedin/syndromedetails.aspx?enc=5Hs6oRA2n56PTbnlB 8c7BaW5I8NWyEa+J20dPdOnUMef2UNFhFljUMeFKIT7HXSM 54. EGFR mutations and lung cancer. da Cunha Santos G et al. Annu Rev Pathol. 2011;6:49-69. 55. http://www.cancer.net/research-and-advocacy/asco-care-and-treatment-recommendationspatients/epidermal-growth-factor-receptor-egfr-testing-advanced-non-small-cell-lung-cancer 56. EGFR, KRAS, BRAF, and PIK3CA characterization in squamous cell anal cancer. EGFR, KRAS, BRAF, and PIK3CA characterization in squamous cell anal cancer. Martin V et al. Histol Histopathol. 2013 Oct 14. 57. The Role of EGFR Inhibitors in the Treatment of Metastatic Anal Canal Carcinoma: A Case Series. Muhammad W. Saif et al. Journal of Oncology Volume 2011 (2011), Article ID 125467, 5 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. pages http://dx.doi.org/10.1155/2011/125467 The therapeutic potential of targeting the EGFR family in epithelial ovarian cancer. Sheng Q et al. Br J Cancer. 2011 Apr 12;104(8):1241-5. Targeting the Epidermal Growth Factor Receptor in Epithelial Ovarian Cancer: Current Knowledge and Future Challenges. Siwak DR et al. Journal of Oncology, Volume 2010 (2010), Article ID 568938, 20 pages. http://dx.doi.org/10.1155/2010/568938 Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance. Taylor TE. Curr Cancer Drug Targets. 2012 Mar;12(3):197-209. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Heimberger AB. Clin Cancer Res. 2005 Feb 15;11(4):1462-6. Meta-analysis of associations of the ser217-to-leu and ala541-to-thr variants in ELAC2 (HPC2) and prostate cancer. Camp NJ et al. Am. J. Hum. Genet. 71: 1475-1478, 2002. Association of HPC2/ELAC2 genotypes and prostate cancer. Rebbeck TR et al. Am. J. Hum. Genet. 67: 1014-1019, 2000. ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Haack TB et al. Am. J. Hum. Genet. 93: 211-223, 2013. EPCAM deletion carriers constitute a unique subgroup of Lynch syndrome patients. EPCAM deletion carriers constitute a unique subgroup of Lynch syndrome patients. Ligtenberg MJ et al. Fam Cancer. 2013 Jun;12(2):169-74. http://www.lynchcancers.com/index.php/genetic-testing Intractable infant diarrhea with epithelial dysplasia associated with polymalformation. Abely M et al. J. Pediat. Gastroent. Nutr. 27: 348-352, 1998. Tufting enteropathy and chronic arthritis: a newly recognized association with a novel EpCAM gene mutation. Al-Mayouf SM et al. J. Pediat. Gastroent. Nutr. 49: 642-644, 2009. http://medical-dictionary.thefreedictionary.com/HRAS1 HRAS1 variable number of tandem repeats polymorphism and risk of bladder cancer. van Gils CH et al. Int J Cancer. 2002 Aug 1;100(4):414-8. http://books.google.com/books?id=yYs2FvAUyQYC&pg=RA2-PA1796&lpg=RA2PA1796&dq=HRAS1+and+Bladder+cancer&source=bl&ots=n5x6pd4rSn&sig=53sMuAp7hYJdNv Lp6NtbvnbxUQo&hl=en&sa=X&ei=l3g9U5eKG4ipsQTxy4HgBQ&ved=0CEUQ6AEwAw#v=onepa ge&q=HRAS1%20and%20Bladder%20cancer&f=false Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Niihori T net al. Nat Genet. 2006 Mar;38(3):294-6. http://www.openingautism.com/Genetics/MarkerDetails/16 Roles for KRAS in pancreatic tumor development and progression. di Magliano MP et al. Gastroenterology. 2013 Jun;144(6):1220-9. http://www.pnas.org/content/110/51/20723.short?rss=1 KRAS Mutations in Non–Small Cell Lung Cancer. Riely GJ et al. Proceedings of the American Thoracic Society, Vol. 6, No. 2 (2009), pp. 201-205. http://emedicine.medscape.com/article/1690010-overview Core-binding factor acute myeloid leukemia: can we improve on HiDAC consolidation? Paschka P et al. ASH Education Book December 6, 2013 vol. 2013 no. 1 209-219. http://chromium.liacs.nl/LOVD2/colon_cancer/home.php?select_db=MLH1 Molecular characterization of endometrial cancer: a correlative study assessing microsatellite instability, MLH1 hypermethylation, DNA mismatch repair protein expression, and PTEN, PIK3CA, KRAS, and BRAF mutation analysis. Peterson LM. Int J Gynecol Pathol. 2012 May;31(3):195-205. Analysis of MLH1 and MSH2 expression in ovarian cancer before and after platinum drug-based chemotherapy. Samimi G et al. Clin Cancer Res. 2000 Apr;6(4):1415-21. 82. Phenotype Comparison of MLH1 and MSH2 Mutation Carriers in a Cohort of 1,914 Individuals Undergoing Clinical Genetic Testing in the United States. Kastrinos F et al. Cancer Epidemiol Biomarkers Prev August 2008 17; 2044. 83. http://www.mayomedicallaboratories.com/test-catalog/Clinical+and+Interpretive/83191 84. Methylation of the MLH1 gene in hematological malignancies. Matsushita M. Oncol Rep. 2005 Jul;14(1):191-4. 85. Human MLH1 deficiency predisposes to hematological malignancy and neurofibromatosis type 1. Ricciardone MD et al. Cancer Res. 1999 Jan 15;59(2):290-3. 86. MRE11 mutations and impaired ATM-dependent responses in an Italian family with ataxiatelangiectasia -like disorder. Delia D et al. Hum. Molec. Genet. 13: 2155-2163, 2004. 87. Identification and functional consequences of a novel MRE11 mutation affecting 10 Saudi Arabian patients with the ataxia telangiectasia-like disorder. Farnet M et al. Hum. Molec. Genet. 14: 307318, 2005. 88. http://www.cancer.net/cancer-types/lynch-syndrome 89. http://www.fightlynch.org/physician.php 90. http://www.cancer.net/cancer-types/muir-torre-syndrome 91. Muir Torre syndrome and MSH2 mutations: the importance of dermatological awareness. Tischkowitz M et al. British Journal of Cancer (2006) 95, 243–244. 92. Constitutional mismatch repair deficiency and childhood leukemia/lymphoma--report on a novel biallelic MSH6 mutation. Ripperger T et al. Haematologica. 2010 May;95(5):841-4. 93. Compound heterozygosity for MSH6 mutations in a pediatric lymphoma patient. Peters A. J Pediatr Hematol Oncol. 2009 Feb;31(2):113-5. 94. A homozygous MSH6 mutation in a child with café-au-lait spots, oligodendroglioma and rectal cancer. Menko FH et al. Fam Cancer. 2004;3(2):123-7. 95. http://www.uptodate.com/contents/familial-adenomatous-polyposis-and-mutyh-associatedpolyposis-screening-and-management-of-patients-and-families 96. The genetics of familial adenomatous polyposis (FAP) and MutYH-associated polyposis (MAP). Claes K et al. Acta Gastroenterol Belg. 2011 Sep;74(3):421-6. 97. http://www.ncbi.nlm.nih.gov/books/NBK1176/ 98. http://preventiongenetics.com/clinical-dna-testing/test/nijmegen-breakage-syndrome-via-the-nbngene/1351/ 99. Variations in the NBN/NBS1 gene and the risk of breast cancer in non-BRCA1/2 French Canadian families with high risk of breast cancer. Desjardins S et al. BMC Cancer 2009, 9:181. 100. An inherited NBN mutation is associated with poor prognosis prostate cancer. Cybulski C et al. Br J Cancer. 2013 Feb 5;108(2):461-8. 101. http://www.pnas.org/content/108/44/18032.full 102. Molecular genetic analysis of NBS1 in German melanoma patients. Meyer P et al. Melanoma Res. 2007 Apr;17(2):109-16. 103. Germline variants in MRE11/RAD50/NBN complex genes in childhood leukemia. Mosor M et al. BMC Cancer. 2013 Oct 5;13:457. 104. http://www.cityofhope.org/Breast_Cancer_Susceptibility_MDL 105. https://www.ambrygen.com/tests/palb2-related-cancer 106. A PALB2 Mutation Associated with High Risk of Breast Cancer. Southey MC et al. Breast Cancer Res. 2011;12(6):R109. 107. http://www.ncbi.nlm.nih.gov/books/NBK1401/ 108. PMS2 mutations in childhood cancer. De Vos M et al. J Natl Cancer Inst. 2006 Mar 1;98(5):358-61 109. Differential MSH2 promoter methylation in blood cells of Neurofibromatosis type 1 (NF1) patients. Titze S et al. Eur J Hum Genet. 2010 Jan;18(1):81-7. 110. https://www.ambrygen.com/tests/ptch1nevoid-basal-cell-carcinoma-syndrome 111. Nevoid basal cell carcinoma syndrome (Gorlin syndrome). Muzio LL. Orphanet Journal of Rare Diseases 2008, 3:32. 112. Heterogeneity of familial medulloblastoma and contribution of germline PTCH1 and SUFU mutations to sporadic medulloblastoma. Slade I et al. Fam Cancer. 2011 Jun;10(2):337-42. 113. PTEN Mutation Spectrum and Genotype-Phenotype Correlations in Bannayan-RileyRuvalcaba Syndrome Suggest a Single Entity With Cowden Syndrome. Marsh DJ et al. Hum. Mol. Genet. (1999) 8 (8): 1461-1472. 114. Germline mutation of the tumour suppressor PTEN in Proteus syndrome. Smith JM et al. J Med Genet 2002;39:937-940 doi:10.1136/jmg.39.12.937. 115. http://ambrygen.com/tests/pten-related-disorders-including-autism-spectrum-disorder 116. Role of PTEN gene in progression of prostate cancer. Pourmand G et al. Urol J. 2007 Spring;4(2):95-100. 117. PTEN mutation in endometrial cancers is associated with favorable clinical and pathologic characteristics. Risinger JI et al. Clin Cancer Res December 1998 4; 3005. 118. http://www.nih.gov/news/pr/nov2005/ninds-09.htm 119. p53 and PTEN gene mutations in gemistocytic astrocytomas. Watanabe K et al. Acta Neuropathol. 1998 Jun;95(6):559-64. 120. Identification of PTEN mutations in metastatic melanoma specimens. Celebi JT et al. J Med Genet. Sep 2000; 37(9): 653–657. 121. https://genomeinterpretation.org/content/rad50 122. Screening for BRCA1, BRCA2, CHEK2, PALB2, BRIP1, RAD50, and CDH1 mutations in high-risk Finnish BRCA1/2-founder mutation-negative breast and/or ovarian cancer individuals. Kuusisto KM et al. Breast Cancer Research 2011, 13:R20. 123. Germline RAD51C mutations confer susceptibility to ovarian cancer. Loveday C et al. Nature Genet. 44: 475-476, 2012. 124. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Meindl A et al. Nature Genet. 42: 410-414, 2010. 125. Fanconi anemia: at the crossroads of DNA repair. Deakyne JS et al. Biochemistry 76: 3648, 2011. 126. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Vaz F et al. Nature Genet. 42: 406-409, 2010. 127. https://www.ambrygen.com/tests/ret-related-hirschsprung-disease 128. Hirschsprung Disease in MEN 2A: Increased Spectrum of RET Exon 10 Genotypes and Strong Genotype—Phenotype Correlation. Decker RA et al. Hum. Mol. Genet. (1998) 7 (1): 129134. 129. http://www.cancer.net/cancer-types/multiple-endocrine-neoplasia-type-2 130. Genetic mutation screening in an italian cohort of nonsyndromic pheochromocytoma/paraganglioma patients. Castellano M et al. Ann N Y Acad Sci. 2006 Aug;1073:156-65. 131. RET expression in papillary thyroid cancer from patients irradiated in childhood for benign conditions. Collins BJ et al. J Clin Endocrinol Metab. 2002 Aug;87(8):3941-6. 132. http://emedicine.medscape.com/article/1744824-overview 133. SMAD4 mutations found in unselected HHT patients. Gallione CJ et al. J Med Genet. 2006 Oct;43(10):793-7. 134. Mutations in DPC4 (SMAD4) cause juvenile polyposis syndrome, but only account for a minority of cases. Houlston R et al. Hum. Mol. Genet. (1998) 7 (12): 1907-1912. 135. A Restricted Spectrum of Mutations in the SMAD4 Tumor-Suppressor Gene Underlies Myhre Syndrome. Caputo V et al. AJHG Volume 90, Issue 1, p161–169, 13 January 2012. 136. http://www.mycancergenome.org/content/disease/colorectal-cancer/smad4 137. The SMAD4 Protein and Prognosis of Pancreatic Ductal Adenocarcinoma. Tascilar M et al. Clin Cancer Res December 2001 7; 4115. 138. Germline and somatic mutations of the STK11/LKB1 Peutz-Jeghers gene in pancreatic and biliary cancers. Su GH et al. Am J Pathol. 1999 Jun;154(6):1835-40. 139. Germline mutation screening of the STK11/LKB1 gene in familial breast cancer with LOH on 19p. Chen J et al. Clin Genet. 2000 May;57(5):394-7. 140. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Shackelford DB et al. Cancer Cell. 2013 Feb 11;23(2):143-58. 141. LKB1/STK11 inactivation leads to expansion of a prometastatic tumor subpopulation in melanoma. Liu W et al. Cancer Cell. 2012 Jun 12;21(6):751-64. 142. http://www.cancerresearchuk.org/cancer-help/type/breast-cancer/about/risks/breastcancer-genes 143. TP53 gene mutations as an independent marker for urinary bladder cancer progression. Ecke TH et al. Int J Mol Med. 2008 May;21(5):655-61. 144. http://www.cancer.net/cancer-types/li-fraumeni-syndrome 145. TP53 mutation in colorectal cancer. Iacopetta B. Hum Mutat. 2003 Mar;21(3):271-6. 146. Germ-line genetic variation of TP53 in osteosarcoma. Savage SA et al. Pediatr Blood Cancer. 2007 Jul;49(1):28-33. 147. Anaplastic rhabdomyosarcoma in TP53 germline mutation carriers. Hettmer S et al. Cancer. 2014 Apr 1;120(7):1068-75. 148. TP53 germline mutations in adult patients with adrenocortical carcinoma. Herrmann LJ et al. J Clin Endocrinol Metab. 2012 Mar;97(3):E476-85. 149. Tagging single-nucleotide polymorphisms in candidate oncogenes and susceptibility to ovarian cancer. Quaye, L; Song, H; Ramus, SJ; Gentry-Maharaj, A; Hogdall, E; DiCioccio, RA. Ovarian Canc Assoc Consortium, 2009 150. Cancer Epidemiol Biomarkers Prev. 2003 Dec;12(12):1528-30.The HRAS1 variable number of tandem repeats and risk of breast cancer.Tamimi RM, Hankinson SE, Ding S, Gagalang V, Larson GP, Spiegelman D, Colditz GA, Krontiris TG, Hunter DJ. 151. Folkins, A., Longacre, T. (2013). Hereditary gynecological malignancies: advances in screening and treatment. Histopathology,62:2-30. 152. RET (MEN2) germline polymorphisms were associated with ovarian carcinoma. Hum Genet. 2005 Jul;117(2-3):143-53